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Estimation of Nucleation Parameters Using a Linear Optimal Control Problem
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Abstract. In this paper, we consider a Becker-Doring-type mathematical interaction model between Aβ monomers and

Aβ proto-oligomers, which play an important role in Alzheimer’s disease, with a given initial condition, but where

the nucleation parameter is unknown. All of this work revolves around estimating the nucleation rate, which is not

accessible experimentally. This estimation is made using techniques related to solving optimal control problems. We

then propose a necessary and sufficient condition to ensure the existence and uniqueness of the solution, which should

make it possible to estimate this parameter.

1. Introduction

The formation of Aβ proto-oligomers occurs through the polymerization of Aβmonomers. This

polymerization mechanism is based on a process of gaining and losing Aβ monomers at given

rates. Thus, when there are initially no proto-oligomers, the polymerization process cannot start,

so at least one Aβ proto-oligomer core is needed to trigger the process. This core is obtained by

primary nucleation, where two or more monomers suddenly aggregate and form a proto-oligomer

of size i ( i is the number of aggregated monomers) [17].

This mechanism of monomer gain and loss causes the appearance of a multitude of proto-

oligomers which, through elongation, reach their maximum size and then become Aβ oligomers.

Oligomers are known to be very harmful to neurons and are thought to be one of the causes of

neuronal death ( [2], [3], [4], [5], [6]). Thus, many mathematical models focus on this polymerization

phenomenon leading to the formation of oligomers and their involvement in Alzheimer’s disease

( [1], [15], [16], [17], [18], [19], [20], [21]).
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We consider the classical model of interaction between Aβ monomers and Aβ proto-oligomers by

adding the concentration of Aβ oligomers [10] by making µ dependent on time, and we define an

optimal control problem that minimizes a cost function dependent on a desired distribution of Aβ

oligomers. The control thus considered is based on Pontryagin’s maximum principle, which will

allow us to establish the necessary conditions for optimality as a function of the set of admissible

controls.

One of the first discrete models of fragmentation polymerization dates back to the 1930. Intro-

duced by Becker-Doring in 1935, it aims to describe the polymerization and depolymerization of

aggregates through the gain or loss of monomers. In other words, by choosing monomer C1 as the

reference unit for measuring the size of an aggregate, these polymerization and depolymerization

reactions can be written as follows: for polymerization, we have Ci + C1
ai⇀ Ci+1, where Ci is a

cluster containing i elements C1 and for depolymerization we have Ci + C1
bi↽ Ci+1 ( [7], [8], [9]).

The reaction rates are ai for polymerization and bi for depolymerization, respectively. Thanks to

the mass law, these very simple kinetic schemes can be used to describe the flow of each aggregate

of size i and thus the evolution of their concentrations for each size. In this interaction, the total

mass, ρ(t) =
∞∑

i=1

iCi, is constant.

The Becker-Doring model is then represented by the following system:
dC1

dt
= −2J1 −

+∞∑
i=2

Ji,

dCi

dt
= Ji−1 − Ji, f or i ≥ 2,

where the flows are given for all i ≥ 1 by Ji = aiCiC1 − bi Ci+1.

Optimal control theory has really taken off since the 1950s with the discovery of powerful

tools such as R. Bellman’s dynamic programming principle or Pontryagin’s maximum principle

( [24], [12]). These results play an essential role in the theory of optimal control of nonlinear

systems and have given rise to two different approaches to optimal control problems.

From a mathematical point of view, a controlled system is a dynamic system whose state is

described by an unknown function called a state function (or state variable), which verifies one or

more laws of evolution (very often these are differential equations, but other types of equations can

also be considered: integral equations, difference equations, stochastic equations, etc.). We will

assume that we can act on the system (in fact, on the state of the system) via one or more functions

called controls (or commands). Another type of problem that we may encounter, but which is

mathematically equivalent, is the fact that the system itself is poorly understood, i.e., there are one

or more parameters that are unknown, inaccessible, or difficult to measure directly. We then seek

to deduce these parameters by viewing them as controls and observing the state of the system.

The paper is organized as follows: Section 2 is devoted to the formulation of our optimal control

problem. In Section 3, we study the existence and uniqueness of the solution to the optimal
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control problem and the optimality condition of the linear quadratic system. Section 4 presents

the conclusion and future prospects.

2. Optimal control problem

2.1. Position of the problem. In this section, we add the oligomer population to our classical

model of interaction between Aβ monomers and Aβ proto-oligomers [10].

The control problems we consider in this section will be of the following form:

J(u,µ) =
∫ T

0
L
(
t, u(t),µ(t)

)
dt −→ min

µ
,

du(t)
dt

= F
(
t, u(t),µ(t)

)
,

u(0) = u0,

µ ∈ U, t ∈ I = [0, T],

(2.1)

where I is an interval of R, u(0) = u0 is the initial position of the Equation 2.1. In practice, the state

of the system can represent velocity, position, temperature, and other measurable parameters. U
is the set of measurable applications, locally bounded on I with values in U ⊂ Rm.

The goal is to optimize the function described by the following formula:

J(u,µ) =
∫ T

0
L
(
t, u(t),µ(t)

)
dt.

We call J(u,µ) the control cost or objective function. The term involved in the objective function∫ T

0
L(t, u(t),µ(t))dt depends on the state of the system throughout the trajectory of the solution,

defined by the state variables. This trajectory also depends on time t but above all on the control

variables µ(t).

The first question we usually ask ourselves when faced with a control problem 2.1 is what the

optimal trajectories are in relation to the cost under consideration. Next, one of the related questions

is the optimality condition, which is often based on Pontryagin’s maximum principle.

2.2. Description of our optimal control problem. In this section, we introduce an optimal control

problem on the total desired amount of oligomers that must not be exceeded from the polymeriza-

tion and depolymerization process of proto-oligomers. This step constitutes a phase of predicting

therapeutic strategies. Indeed, if we can control the nucleation rate µ(t) =
(
µ2(t), . . . ,µN(t)

)T

using, for example, medication, then it will be possible to evolve the system towards a desired

stable state. Understanding this mechanism relies on knowledge of the nucleation rate, i.e., the

rate at which a few Aβ monomers spontaneously group together to form a proto-oligomer. The

lack of biological data on this nucleation rate, which is of paramount importance in the initiation of

the pathology, motivates this study, in which we propose to estimate this nucleation rate through

an optimal control problem.
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The summary diagram is as follows:

Figure 1. Representation of the polymerization process of monomers Aβ

We assume in Figure 1 that a proto-oligomer of size i, with i ∈ {2, . . . , N}, reaches size i + 1 through

monomer gain at a rate ri (polymerization rate). Similarly, it can reach size i− 1 through monomer

loss at a constant rate b (depolymerization rate). We will denote by ui(t) the concentration of

proto-oligomers of size i with i ∈ {2, . . . , N} at time t and by u1(t) the concentration of monomers

at time t. For this microscopic model, if there are no proto-oligomers at the start of the experiment,

then the reaction does not start. This is why we introduce the parameter µi to take into account

the effect of spontaneous nucleation for proto-oligomers of size i..

The system parameters are given in Table 1.

Parameters Description

t ≥ 0 the observation time

N ∈N∗ the maximum size of Aβ proto-oligomers

Nol = N + 1 the size of the Aβ oligomers

µi(t), i = 2, . . . , N the nucleation rate of proto-oligomers of size i at time t

ri ≥ 0, i = 1, . . . , N
with r1 = 0

the polymerization rate of proto-oligomers of size i

b > 0 the (constant) depolymerization rate of proto-oligomers

u1(t) the concentration of monomers Aβ at time t

ui(t), i = 2, . . . , N the concentration of proto-oligomers Aβ of size i at time t

uol(t) = uN+1(t) the concentration of oligomers at time t

ud(t) the concentration of desired oligomers at time t

Table 1. List of parameters used in the model .
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The model considered is as follows: find u1, . . . , uN+1 :]0, T] −→ R of class C1 solution of the system

of equations defined for all t ∈]0, T] by



du1(t)
dt

= −u1(t)
N∑

i=1

riui(t) + b

2u2(t) +
N∑

i=3

ui(t)

− u1(t)
N∑

i=2

iµi(t),

dui(t)
dt

= ri−1u1(t)ui−1(t) −
(
b + riu1(t)

)
ui(t) + bui+1(t) + u1(t)µi(t),

i = 2, . . . , N − 1,

duN(t)
dt

= rN−1u1(t)uN−1(t) −
(
b + rNu1(t)

)
uN(t) + u1(t)µN(t),

duN+1(t)
dt

= rNu1(t)uN(t),

u(0) = u0,

(2.2)

where u0 =
(
u0

1, . . . , u0
N+1

)T
∈ RN+1

+ is the initial position of the Equation 2.2.

Let u(t) =
(
u1(t), . . . , uN+1(t)

)T
∈ RN+1 denote the solution of the Equation 2.2 where b and

ri, i = 1, . . . , N are problem data.

The fourth equation represents the dynamics of oligomers Aβ of size N + 1, and the last equations

of the system 2.2 represent the initial condition.

With this model, we seek to quantify (estimate) the nucleation rate at which monomers fuse and

form a proto-oligomer core. This quantification is crucial in modeling Alzheimer’s disease accord-

ing to the amyloid cascade hypothesis, because without the nucleation process, the polymerization

and depolymerization mechanisms never start.

We introduce the function S dependent on u and µ called the cost function, which will be of the

form

S
(
u,µ

)
=

∫ T

0

((
uN+1(t) − ud(t)eN+1

)2
+
ε
2

∥∥∥µ(t)∥∥∥2
)

dt, (2.3)

where uN+1(t) represents the concentration of oligomers and ud(t) represents the desired concen-

tration of oligomers (desired state).

Remark 2.1. In system 2.2, we have the classic model of interaction between Aβ monomers and Aβ
proto-oligomers and Aβ oligomers .

3. Linear-quadratic (LQ) system

In this section, we assume that the concentration of monomers u1(t) = m(t) is known on ]0, T].
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For a function µ(t) : [0, T] −→ Γ ⊂ RN−1, Γ =
([

0,+∞
[)N−1

given with µ(t) =
(
µ2(t), . . . ,µN(t)

)T
,

we obtain the following system: find u(t) : [0, T] −→ RN with u(t) =
(
u2(t), . . . , uN+1(t)

)T
satisfy-

ing ∀t ∈ [0, T], T > 0:

du2(t)
dt

= r1m2(t) −
(
b + r2m(t)

)
u2(t) + bu3(t) + m(t)µ2(t),

dui(t)
dt

= ri−1m(t)ui−1(t) −
(
b + rim(t)

)
ui(t) + bui+1(t) + m(t)µi(t),

i = 3, . . . , N − 1,

duN(t)
dt

= rN−1m(t)uN−1(t) −
(
b + rNm(t)

)
uN(t) + m(t)µN(t),

duN+1(t)
dt

= rNm(t)uN(t),

u(0) = u0,

(3.1)

where u0 =
(
u0

2, . . . , u0
N+1

)T
∈ RN

+ is the initial position of the system 3.1.

The system 3.1 is a Cauchy problem that can be written as:
du(t)

dt
= F

(
t, u(t),µ(t)

)
, t ∈]0, T]

u(0) = u0,
(3.2)

where F : [0, T] ×RN
× Γ −→ RN is given by F(t, ũ, µ̃) =

(
F2, . . . , FN+1

)T
with

F2(t, ũ, µ̃) = r1m2(t) −
(
b + r2m(t)

)
ũ2 + bũ3 + m(t)µ̃2,

F j(t, ũ, µ̃) = r j−1m(t)ũ j−1 −
(
b + r jm(t)

)
ũ j + bũ j+1 + m(t)µ̃ j,

j = 3, . . . , N − 1,

FN(t, ũ, µ̃) = rN−1m(t)ũN−1 −
(
b + rNm(t)

)
ũN + m(t)µ̃N,

FN+1(t, ũ, µ̃) = rNm(t)ũN.

The system 3.2 is a controlled system where u(t) is the state of the system and µ(t) is the control.

We define two matrix-valued functions

A : [0, T] −→MN(R) with A(t) =
(
Ai j(t)

)
i j=2···N+1

and

B : [0, T] −→MN,N−1(R) with B(t) =
(
Bi j(t)

)
i=2···N+1, j=2···N

and a vector-valued function

g : [0, T] −→MN(R) with g(t) =
(
g2(t), · · · , gN+1(t)

)T
.

We observe that F can be written in the form

F(t, ũ, µ̃) = A(t)ũ + B(t)µ̃+ g(t), ∀(t, ũ, µ̃) ∈ [0, T] ×RN
× Γ,
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where the matrix A(t) is given by

a0 b 0 0 . . . 0 0 0 0

r2m(t) b0 b 0 . . . 0 0 0 0
...

...
...

...

0 0 0 0 . . . rN−2m(t) c0 b 0

0 0 0 0 . . . 0 rN−1m(t) d0 0

0 0 0 0 . . . 0 0 rNm(t) 0



. (3.3)

where a0 = −b− r2m(t), b0 = −b− r3m(t), c0 = −b− rN−1m(t), and d0 = −b− rNm(t).

B(t) =



m(t) 0 0 0 . . . 0 0 0 0

0 m(t) 0 0 . . . 0 0 0 0
...

...
...

...

0 0 0 0 . . . m(t) 0 0 0

0 0 0 0 . . . 0 0 m(t) 0

0 0 0 0 . . . 0 0 0 0



=


m(t)IN−1 0

0 0

 (3.4)

and

g(t) =
(
r1m2(t), . . . , 0

)T
= r1m2(t)e1, e1 =

(
1, 0, . . . , 0

)T
(3.5)

The controlled system 3.2 can then be written as
du(t)

dt
= A(t)u(t) + B(t)µ(t) + g(t), t ∈]0, T]

u(0) = u0.

We introduce the function S dependent on u and µ called the cost function, which will be of the

form

S
(
u,µ

)
=

∫ T

0

((
uN+1(t) − ud(t)eN+1

)2
+
ε
2

∥∥∥µ(t)∥∥∥2
)

dt, (3.6)

where uN+1(t) represents the concentration of oligomers and ud(t) represents the desired concen-

tration of oligomers (desired state). Furthermore, suppose that ud(t) is a bounded function in

L∞.

We ask

J = J(µ) = S
(
u(µ),µ

)
=

∫ T

0
L
(
t, u(t),µ(t)

)
dt,
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with L : [0, T] ×RN
× Γ −→ R given by

L
(
t, ũ, µ̃

)
=

(
ũN+1 − ud(t)eN+1

)2
+ ε

2‖µ̃‖
2.

We observe that L
(
t, ũ, µ̃

)
is a quadratic function that can be rewritten as

L
(
t, ũ, µ̃

)
=

(
ũ− ud(t)eN+1

)T
Q
(
ũ− ud(t)eN+1

)
,

where the matrix Q is symmetric, defined, non-negative, and is given by:

Q =


0 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 1

 ∈ MN(R). (3.7)

Having a linear system 3.1 associated with a quadratic cost 3.6, the associated optimal control

problem is said to be linear-quadratic (LQ).

This LQ problem consists of finding, among all pairs of functions (u,µ) satisfying the system 3.2,

those that minimize the function S given by 3.6. We can then write the problem in the form

min
µ(t) ∈ Γ

{∫ T

0
L
(
t, u(t),µ(t)

)
dt

}
.

We can view this as a minimization problem with constraints:

min
µ(t)∈Γ

J(µ). (3.8)

3.1. Existence and uniqueness of the solution to the optimal control problem. The existence

and uniqueness of the solution to our optimal control problem is obtained by direct application of

Theorem 4.1.1 ( [22], page 54 ), a simplified version of which is given below.

Theorem 3.1. (Simplified version of theorem 4.1.1 [22] ).

Let us consider a shape control system du(t)
dt = Ã(t)u(t) + B̃(t)µ(t) + g̃(t),

u(0) = u0,
(3.8)

with a quadratic cost of the form

J(µ) =
∫ T

0

[(
u(t) − ũd(t)

)T
Q̃
(
u(t) − ũd(t)

)
+ µ(t)TRµ(t)

]
dt,

where u(t) is a solution to Equation 3.8 with Ã(t) : [0, T] −→ MN(R), B̃(t) : [0, T] −→ MN,N−1(R) of
measurable and bounded functions, Q̃ ∈ MN(R) a positive symmetric matrix, R ∈ MN−1(R) a positive
definite symmetric matrix, and ũd(t) a function in L2

(
[0, T], RN

)
.

Let Γ ⊂ RN−1 be convex and closed, and define Uadm as the set
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Uadm =

{
µ ∈ L2

(
[0, T], RN−1

)
,µ ∈ Γ p.p t ∈ [0, T]

}
.

Then the optimal control problem, finding µ(t) ∈ Uadm that minimizes J(µ), has a unique solution.

The proof of the theorem is given in [22] and is essentially based on a coercivity assumption on µ.

Thanks to Theorem 3.1, we state the following theorem associated with our optimal control problem

(3.1).

Theorem 3.2. The optimal control problem 3.8 has a unique solution µ∗ ∈ Uadm.

Proof of Theorem 3.2. Our control problem is a special case of the problem described in Theorem

3.1 with Ã = A given in 3.3, B̃ = B is given in 3.4, g̃ = g is given in 3.5, Q̃ = Q is given in 3.7,

Γ =
([

0,+∞
[)N−1

, R = εId and ũd(t) = ud(t)eN+1. It is very easy to see that the assumptions of

Theorem 3.1 are satisfied, so by applying this theorem we obtain the result of Theorem 6.1.

Indeed, we have

µ(t)TRµ(t) =
(
µ2(t), . . . ,µN(t)

)

ε 0 · · · 0

0 ε · · · 0
...

...
...

0 0 · · · ε




µ2(t)
µ3(t)

...

µN(t)

 = ε‖µ(t)‖2 and µ(t)Tµ(t) =

(
µ2, . . . ,µN

)

µ2(t)
µ3(t)

...

µN(t)

 = ‖µ(t)‖
2.

We set c = ε
2 > 0 such that for all t ∈ [0, T] and for all vectors µ ∈ Γ we have µTRµ > cµTµ.

3.2. Optimality conditions and Pontryagin’s maximum principle (PMP). We define the Hamil-

tonian H associated with our optimal control problem H : [0, T] ×RN
×RN

× Γ −→ RN such

that:

H(t, ũ, p̃, µ̃) = L(t, ũ, µ̃) + p̃ · F(t, ũ, µ̃),

where p̃ is the vector adjoint to the state vector ũ of the same dimension N.

Definition 3.1. (Normal cone, ( [13], [11]))

Let Q ⊆ Rn be a convex, closed set. Let x0 ∈ ∂Q. We call the following set the normal cone to Q at x0 and
denote it by NQ(x0):

NQ(x0) =
{
y ∈ Rn, 〈y, x− x0〉 ≤ 0, ∀x ∈ Q

}
.
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Pontrygin’s necessary conditions are
(

[22], [14]
)
:

du(t)
dt

= F
(
t, u(t),µ(t)

)
,

u(0) = u0,
dpi(t)

dt
= −

∂H
∂ui

(
t, u(t), p(t),µ(t)

)
,

i = 2, . . . , N + 1

p(T) = 0,

−
∂H
∂µ

(
t, u(t), p(t),µ(t)

)
∈ N(

[0,+∞[

)N−1(µ(t)),

(3.9)

whereN(
[0,+∞[

)N−1(µ(t)) is the normal cone at µ, it is in the Euclidean space RN−1.

This translates into the fact that −
∂H
∂µi

(
t, u(t), p(t),µ(t)

)
is in the normal cone to [0,+∞[ at µi, i =

2, . . . , N and it is in the space R. Therefore,

−
∂H
∂µi

(
t, u(t), p(t),µ(t)

) 
= 0 i f µi(t) > 0,

≤ 0 i f µi(t) = 0.

(3.10)

We have H(t, ũ, p̃, µ̃) =

(
ũN+1 − ud(t)

)2
+ ε

2 ‖µ̃‖
2 + p̃ ·

(
A(t)ũ + B(t)µ̃+ g(t)

)
(
ũN+1 − ud(t)

)2
+
ε
2
‖µ̃‖2 + 〈p̃, A(t)ũ + B(t)µ̃+ g(t)〉

(
ũN+1 − ud(t)

)2
+
ε
2
‖µ̃‖2 + 〈p̃, A(t)ũ〉+ 〈p̃, B(t)µ̃〉+ 〈p̃, g(t)〉

(
ũN+1 − ud(t)

)2
+
ε
2
‖µ̃‖2 + 〈AT(t)p̃, ũ〉+ 〈BT(t)p̃, µ̃〉+ 〈p̃, g(t)〉.

(3.11)

By differentiating Equation 3.11 with respect to µ̃i, i = 2, . . . , N, we obtain

∂H
∂µ̃i

(t, ũ, p̃, µ̃) = εµ̃i + m(t)p̃i.

According to 3.10, we have:

µi(t) =

−
1
ε

m(t)pi(t) si pi(t) < 0,

0 si pi(t) ≥ 0.

We set for all i = 2, . . . , N + 1

p−i = −min{pi, 0} =

0 i f pi ≥ 0,

− pi i f pi < 0,
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so that ∀i = 2, . . . , N, µi(t) = 1
εm(t)p−i (t).Noting that p−(t) =


p−2 (t)

...

p−N+1(t)

 then the vector can be

written as follows

µ(t) =
1
ε

BT(t)p−(t). (3.12)

By deriving Equation 3.11 with respect to ũi, i = 2, . . . , N + 1, we obtain

∇ũH(t, ũ, p̃, µ̃) = 2
(
ũN+1 − ud(t)

)
eN+1 + AT(t)p̃.

So the third equation of the system 3.9 gives us

p′(t) = −AT(t)p(t) − 2
(
uN+1(t) − ud(t)

)
eN+1.

Finally, we obtain the following optimal system:

du(t)
dt

= A(t)u(t) +
1
ε

m2(t)

IN−1 0

0 0

 p−(t) + r1m2(t)e1,

u(0) = u0,
dp(t)

dt
= −AT(t)p(t) − 2

(
uN+1(t) − ud(t)

)
eN+1,

p(T) = 0.

(3.13)

where the expression of µi(t), i = 2, . . . , N is given by

µi(t) =
1
ε

m(t) p−i (t), i = 2, . . . , N.

4. Conclusion

In this article, we have developed the optimal control theory approach in the linear case for

estimating the nucleation rate appearing in the modeling of Alzheimer’s disease according to the

amyloid cascade hypothesis. This nucleation rate, which is biologically unmeasurable, explains

the genesis of Aβ oligomer formation, which is considered to be the main cause of extracellular

neuronal death. The results obtained clearly allow this nucleation rate to be estimated, and

the prospects would be, first, to study the nonlinear case (existence, uniqueness, and optimality

condition) and, second, to propose an algorithm that would allow this parameter to be estimated

numerically.
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APPENDIX

Proof of the inequality ρ(t) ≤ ρ0 ∀t > 0.

The total mass of the interaction system between monomers and proto-oligomers is

ρ(t) =
N∑

i=1

iui(t) = u1(t) +
N∑

i=2

iui(t), t ≥ 0. (3.14)

Deriving 3.14 with respect to t we write

ρ′(t) = u′1(t) +
N−1∑
i=2

iu′i (t) + Nu′N(t). (3.15)

From the differential equations governing the considered system, the relation is 3.15 as follow

ρ′(t) = −u1(t)
N∑

i=1

riui(t) + b
(
2u2(t) +

N∑
i=3

ui(t)
)
− u1(t)

N∑
i=2

iµi+

u1(t)
N−1∑
i=2

i
(
ri−1ui−1(t) − riui(t)

)
+ b

N−1∑
i=2

i
(
ui+1(t) − ui(t)

)
+

u1(t)
N−1∑
i=2

iµi + NrN−1u1(t)uN−1(t) −NbuN(t) −NrNu1(t)uN(t) + Nu1(t)µN.

Rearranging the terms leads to

ρ′(t) = −u1

N∑
i=1

riui + b
(
2u2 +

N∑
i=3

ui

)
+ u1A + bB − NbuN, (3.16)

where

A =
N∑

i=2

i
(
ri−1ui−1 − riui

)
and B =

N−1∑
i=2

i
(
ui+1 − ui

)
.

Computing A and B we obtain in one hand

A =
N∑

i=2

i
(
ri−1ui−1 − riui

)
=

N∑
i=2

iri−1ui−1 −

N∑
i=2

iriui

=
N−1∑
i=1

(
i + 1

)
riui −

N∑
i=2

iriui =
N−1∑
i=1

iriui +
N−1∑
i=1

riui −

N∑
i=2

iriui

= r1u1 +
N−1∑
i=2

iriui +
N−1∑
i=1

riui −

N−1∑
i=2

iriui −NrNuN

A =
N−1∑
i=2

riui −NrNuN
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and in other hand

B =
N−1∑
i=2

i
(
ui+1 − ui

)
=

N−1∑
i=2

iui+1 −

N−1∑
i=2

iui =
N∑

i=3

(
i− 1

)
ui −

N−1∑
i=2

iui

=
N−1∑
i=3

(
i− 1

)
ui + (N − 1)uN −

N−1∑
i=2

iui

=
N−1∑
i=3

iui − 2u2 −

N−1∑
i=3

iui −

N−1∑
i=3

ui + (N − 1)uN

B = (N − 1)uN − 2u2 −

N−1∑
i=3

ui.

Injecting the computed values of A and B in 3.16 get

ρ′(t) = −u1

N∑
i=1

riui + b
(
2u2 +

N∑
i=3

ui

)
+ u1

( N−1∑
i=2

riui −NrNuN

)
+

b
(
(N − 1)uN − 2u2 −

N−1∑
i=3

ui

)
−NbuN

= −u1

N∑
i=1

riui + b
N∑

i=3

ui + u1

N−1∑
i=2

riui −NrNu1uN − b
N∑

i=3

ui,

= −u1

N∑
i=1

riui + u1

N−1∑
i=2

riui −NrNu1uN,

= −u1r1u1 − u1

N−1∑
i=2

riui − rNu1uN + u1

N−1∑
i=2

riui −NrNu1uN,

= −u1r1u1 − rNu1uN −NrNu1uN,

ρ′(t) = −
(
r1u1 + rNuN + NrNuN

)
u1.

which implies ρ′(t) ≤ 0 means ρ(t) ≤ ρ(0) = ρ0 ∀ t > 0.
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