Output Feedback Stabilization of a Class of Coupled ODE-PDE Systems and Its Applications
Main Article Content
Abstract
This paper investigates the output feedback stabilization problem of a class of coupled ODE-PDE cascade systems. A state feedback controller was designed based on a backstepping transformation. Then, using the unique measurement signal, a state observer is designed to realize the real-time estimation of the system state. Furthermore, an observer based output feedback control was established to achieve exponential stability of the system. Finally, we presented the application of our results in reliability systems and distributed reactor systems.
Article Details
References
- H. Sano, Exponential Stability of a Mono-Tubular Heat Exchanger Equation with Output Feedback, Syst. Control. Lett. 50 (2003), 363–369. https://doi.org/10.1016/s0167-6911(03)00193-2.
- G.O. Cassol, S. Dubljevic, Discrete Output Regulator Design for a Coupled Ode-Pde System, in: 2020 American Control Conference (ACC), IEEE, 2020, pp. 3455-3460. https://doi.org/10.23919/ACC45564.2020.9147501.
- W.K. Chung, A Reparable Multistate Device with Arbitrarily Distributed Repair Times, Microelectron. Reliab. 21 (1981), 255–256. https://doi.org/10.1016/0026-2714(81)90398-x.
- W. Hu, M.A. Demetriou, Adaptive Observer Design for a Multi-State Reparable System, in: 2024 American Control Conference (ACC), IEEE, 2024, pp. 2527-2532. https://doi.org/10.23919/ACC60939.2024.10644610.
- B. Guo, X. Liang, Differentiability of the $C_0$-Semigroup and Failure of Riesz Basis for a Mono-Tubular Heat Exchanger Equation with Output Feedback: A Case Study, Semigroup Forum 69 (2004), 462–471. https://doi.org/10.1007/s00233-004-0126-0.
- X. Xu, S. Dubljevic, Finite-Dimensional Output Feedback Regulator for a Mono-Tubular Heat Exchanger Process, IFAC-PapersOnLine 49 (2016), 54–59. https://doi.org/10.1016/j.ifacol.2016.07.418.
- M. Krstic, A. Smyshlyaev, Backstepping Boundary Control for First-Order Hyperbolic PDEs and Application to Systems with Actuator and Sensor Delays, Syst. Control. Lett. 57 (2008), 750–758. https://doi.org/10.1016/j.sysconle.2008.02.005.
- H. Anfinsen, O.M. Aamo, Stabilization of a Linear Hyperbolic PDE with Actuator and Sensor Dynamics, Automatica 95 (2018), 104–111. https://doi.org/10.1016/j.automatica.2018.05.019.
- L. Wang, F. Jin, Stabilization of a Transport Equation with Non-Local Terms Coupled Actuator and Sensor Dynamics, in: 2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC), IEEE, 2022, pp. 203-209. https://doi.org/10.1109/YAC57282.2022.10023642.
- J. Deutscher, N. Gehring, R. Kern, Output Feedback Control of General Linear Heterodirectional Hyperbolic ODE–PDE–ODE Systems, Automatica 95 (2018), 472–480. https://doi.org/10.1016/j.automatica.2018.06.021.
- F. Di Meglio, P. Lamare, U.J.F. Aarsnes, Robust Output Feedback Stabilization of an ODE–PDE–ODE Interconnection, Automatica 119 (2020), 109059. https://doi.org/10.1016/j.automatica.2020.109059.
- K. Mathiyalagan, A.S. Nidhi, H. Su, T. Renugadevi, Observer and Boundary Output Feedback Control for Coupled ODE-Transport PDE, Appl. Math. Comput. 426 (2022), 127096. https://doi.org/10.1016/j.amc.2022.127096.
- J. Redaud, F. Bribiesca-Argomedo, J. Auriol, Output Regulation and Tracking for Linear ODE-Hyperbolic PDE–ODE Systems, Automatica 162 (2024), 111503. https://doi.org/10.1016/j.automatica.2023.111503.
- J. Wang, M. Krstic, Event-Triggered Output-Feedback Backstepping Control of Sandwich Hyperbolic PDE Systems, IEEE Trans. Autom. Control. 67 (2022), 220–235. https://doi.org/10.1109/tac.2021.3050447.
- L. Su, W. Guo, J. Wang, M. Krstic, Boundary Stabilization of Wave Equation with Velocity Recirculation, IEEE Trans. Autom. Control. 62 (2017), 4760–4767. https://doi.org/10.1109/tac.2017.2688128.
- H. Feng, B. Guo, Observer Design and Exponential Stabilization for Wave Equation in Energy Space by Boundary Displacement Measurement Only, IEEE Trans. Autom. Control. 62 (2017), 1438–1444. https://doi.org/10.1109/tac.2016.2572122.
- H. Anfinsen, O.M. Aamo, Adaptive Control of Hyperbolic PDEs, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-05879-1.
- V. Havu, J. Malinen, The Cayley Transform as a Time Discretization Scheme, Numer. Funct. Anal. Optim. 28 (2007), 825–851. https://doi.org/10.1080/01630560701493321.
- W. Hu, H. Xu, J. Yu, G. Zhu, Exponential Stability of a Reparable Multi-State Device, J. Syst. Sci. Complex. 20 (2007), 437–443. https://doi.org/10.1007/s11424-007-9039-9.
- H. Xu, J. Yu, G. Zhu, Asymptotic Property of a Reparable Multi-State Device, Q. Appl. Math. 63 (2005), 779–789. https://doi.org/10.1090/s0033-569x-05-00986-0.