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Abstract. This paper investigates the output feedback stabilization problem of a class of coupled ODE-PDE cascade

systems. A state feedback controller was designed based on a backstepping transformation. Then, using the unique

measurement signal, a state observer is designed to realize the real-time estimation of the system state. Furthermore,

an observer based output feedback control was established to achieve exponential stability of the system. Finally, we

presented the application of our results in reliability systems and distributed reactor systems.

1. Introduction

In this paper, we consider the following ODE-PDE system

vt(x, t) = −vx(x, t) + b(x)v(1, t), 0 < x < 1, t > 0,

v(0, t) = σω(t), t ≥ 0,

ω̇(t) = β1ω(t) + β2v(1, t) + U(t), t ≥ 0,

y(t) = v(1, t), t ≥ 0,

v(x, 0) = v0(x),ω(0) = ω0, 0 ≤ x ≤ 1,

(1.1)

where vx and vt represent the partial derivatives of v with respect to x and t, respectively, ω̇(t)
denotes the derivative ofωwith respect to t, b(·) ∈ C1[0, 1], and σ, β1, β2 ∈ R are system parameters

and σ , 0. In addition, U(t) is the input and y(t) is the output of this system. Our goal is to design

a controller using a unique measurement signal y(t) to make the closed-loop system of system

(1.1) exponentially stable.

The system (1.1) includes the heat exchanger equation [1], the centralized and distributed

reactor system [2] and the reliability system ( [3], [4]). For the case where ω = 0 and b is a bounded
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exponential function, the exponential stability and differentiability of system (1.1) were studied in

references ( [1], [5]), and the output feedback regulation problem was studied in reference [6]. For

the case where σ = 1, β1 > 0, β2 ∈ [0, 1] and b is bounded exponential function, in [2] designed a

discrete regulator for system (1.1).

The boundary feedback stabilization problem of first-order hyperbolic unstable partial differ-

ential equations (PDEs) is discussed in [7], and its application in finite dimensional systems with

actuator and sensor delays is studied. Anfinsen and Aamo [8] incorporates first-order actuator and

sensor dynamics into the PDE in [7], and designs the controller and observer for the system. They

designed two types of observers and combined them with state feedback to form output feedback

control laws, which made the closed-loop system exponentially stable. Wang and Jin [9] extends

the results in [8] from the boundary to non-local terms related to any intermediate point. Recently,

observers and output feedback controllers were designed for hyperbolic ODE-PDE coupled sys-

tems in literature ( [10], [11], [12], [13], [14]). The state feedback and output feedback controllers for

one-dimensional wave equations were proposed in [15], where the non-local terms are boundary

dependent. The finite-time exponential stability of one-dimensional wave equations was studied

in [16] by designing a state observer and an output feedback controller. Recently, Hu et al. [4]

designed an adaptive observer for multi state repairable systems, the mathematical model of this

system is governed by coupled transport and integro-differential equations.

This paper is inspired by ( [8], [10]) and [16] to investigate the output feedback stabilization

problem of system (1.1). This article has the following innovative points: (i) A state feedback

controller was designed based on backstepping transformation. (ii) Using the unique measurement

signal v(1, t), a state observer was designed to make the observation error system exponentially

decay. (iii) Designed an observer based output feedback controller to ensure finite-time exponential

stability of the closed-loop system (1.1).

The arrangement of this article is as follows: In sections 2, a state feedback controller is designed

and the finite-time stability of the closed-loop system is proved. A state observer was designed

in sections 3. In Sections 4, an output feedback controller was designed and the finite-time

stability of the output feedback closed-loop system was demonstrated. Finally, we presented

some applications of our result.

2. State feedback control

Taking inspiration from ( [10], [17]), we introduce the following backstepping integral transfor-

mation

h(x, t) = [(I + P)v](x, t)

= v(x, t) −
∫ 1

x
k(x, y)v(y, t)dy,

(2.1)

where k(·, ·) is the undetermined kernel function. By taking partial derivatives in space and time

for system (2.1), we obtain
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hx(x, t) = vx(x, t) + k(x, x)v(x, t) −
∫ 1

x
kx(x, y)v(y, t)dy, (2.2a)

ht(x, t) = −vx(x, t) + b(x)v(1, t) + k(x, 1)v(1, t) − k(x, x)v(x, t)

−

∫ 1

x
ky(x, y)v(y, t)dy−

∫ 1

x
k(x, y)b(y)v(1, t)dy.

(2.2b)

Adding Eqs. (2.2a) and (2.2b) yields

ht(x, t) + hx(x, t) = −

∫ 1

x

[
kx(x, y) + ky(x, y)

]
v(y, t)dy

+

[
b(x) + k(x, 1) −

∫ 1

x
k(x, y)b(y)dy

]
v(1, t).

(2.3)

We choose the kernel function k(·, ·) as
kx(x, y) + ky(x, y) = 0,

k(x, 1) =
∫ 1

x
k(x, y)b(y)dy− b(x).

(2.4)

Then, using Eq. (2.3) and system (2.4) we have

ht(x, t) = −hx(x, t). (2.5)

The following Lemma 2.1 indicates that system (2.4) has a unique solution:

Lemma 2.1. The system (2.4) has a unique solution k(x, y) ∈ C1([0, 1] × [0, 1]) such that

sup
0≤x,y≤1

|k(x, y)| 6M1eM1(x−y), (2.6)

where M1 = maxx∈[0,1] |b(x)|.

Proof. By using a proof similar to [7, Theorem 1], it can be concluded that the result of this lemma

holds true. �

The inverse transformation of transformation (2.1) is defined as follows

v(x, t) = [(I + P)−1h](x, t)

= h(x, t) +
∫ 1

x
m(x, y)h(y, t)dy,

(2.7)

where m(·, ·) is an undetermined kernel function. By taking the partial derivatives of the transfor-

mation (2.7) in space and time, we obtain

vx(x, t) = hx(x, t) −m(x, x)h(x, t) +
∫ 1

x
mx(x, y)h(y, t)dy, (2.8a)

vt(x, t) = −hx(x, t) −m(x, 1)h(1, t) + m(x, x)h(x, t) +
∫ 1

x
my(x, y)h(y, t)dy. (2.8b)
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From Eqs. (2.8a)-(2.8b), we obtain

0 = vt(x, t) + vx(x, t) − b(x)v(1, t)

=

∫ 1

x

[
mx(x, y) + my(x, y)

]
h(y, t)dy− [m(x, 1) + b(x)]h(1, t).

(2.9)

Based on Eq. (2.9), we select the kernel function m(·, ·) that satisfies mx(x, y) + my(x, y) = 0,

m(x, 1) = −b(x).
(2.10)

Through a simple calculation, we obtain that there exists a unique continuous differentiable solu-

tion for system (2.10):

m(x, y) = m(x− y) = −b(x− y + 1).

From the transformation (2.1) and the system (1.1), we define

h(0, t) = σω(t) −
∫ 1

0
k(0, y)v(y, t)dy := p(t). (2.11)

Consequently, system h satisfies  ht(x, t) = −hx(x, t),
h(0, t) = p(t).

(2.12)

Take the derivative of function p(t), and use v(0, t) = σω(t) and k(0, 1) =
∫ 1

0 k(0, y)b(y)dy− b(0),
from systems (2.12) and (1.1) we obtain

ṗ(t) = σω̇(t) −
∫ l

0
k(0, y)vt(y, t)dy

= σ [β1ω(t) + β2v(1, t) + U(t)] + k(0, 1)v(1, t) − k(0, 0)v(0, t)

−

∫ 1

0
ky(0, y)v(y, t)dy− v(1, t)

∫ 1

0
k(0, y)b(y)dy

= σ(β1 − k(0, 0))ω(t) + σU(t) − (b(0) − σβ2)v(1, t)

−

∫ 1

0
ky(0, y)v(y, t)dy.

(2.13)

Design the following full state feedback controller

U(t) = (k(0, 0) − γ1)ω(t) +
b(0) − σβ2

σ
v(1, t)

+
1
σ

∫ 1

0

[
(γ1 − β1)k(0, y) + ky(0, y)

]
v(y, t)dy,

(2.14)



Int. J. Anal. Appl. (2025), 23:284 5

where γ1 > β1 is the regulation constant. Hence, by Eqs. (2.12)-(2.14) we see that system “(h, p)"
satisfies 

ht(x, t) = −hx(x, t), 0 < x < 1, t > 0,

h(0, t) = p(t), t ≥ 0,

ṗ(t) = (β1 − γ1)p(t), t ≥ 0,

h(x, 0) = h0(x), p(0) = p0, 0 ≤ x ≤ 1.

(2.15)

Therefore, under the controller (2.14), we obtain the following closed-loop system for system (1.1):



vt(x, t) = −vx(x, t) + b(x)v(1, t),
v(0, t) = σω(t),

ω̇(t) = [k(0, 0) − γ1 + β1]ω(t) +
1
σ

b(0)v(1, t)

+
1
σ

∫ 1

0

[
(γ1 − β1)k(0, y) + ky(0, y)

]
v(y, t)dy,

v(x, 0) = v0(x), ω(0) = ω0.

(2.16)

Now, we consider system (2.16) on space H = L2(0, 1) ×R, and the norm on H is as follows

‖( f , g)‖2H =

∫ 1

0
| f (x)|2dx + |g|2, ∀( f , g) ∈ H.

Theorem 2.1. For any initial value (v0(·),ω0) ∈ H, system (2.16) has a unique solution (v(·, t),ω(t)) ∈
C(0,∞; H) that satisfies

‖(v(·, t),ω(t))‖H ≤M2e(β1−γ1)t, t > 1, (2.17)

where M2 > 0 is a constant and γ1 > β1.

Proof. Solving system (2.15), we obtain p(t) = p0e(β1−γ1)t, t ≥ 0 and

h(x, t) =

h0(x− t), t ≤ x ≤ 1,

p0e(β1−γ1)t, x < t.
(2.18)

This indicates that h(x, t) and p(t) are exponentially stable when t > 1 and γ1 > β1.

When t ≤ x ≤ 1, using the Eqs. (2.1), (2.7)-(2.10) and (2.18), we obtain

v(x, t) = h0(x− t) +
∫ 1

x
m(x, y)h0(y− t)dy

= v0(x− t) −
∫ 1

0
k(x, y)v0(y− t)dy

−

∫ 1

x
b(x− y + 1)

(
v0(y− t) −

∫ 1

0
k(y, ξ)v0(ξ− t)dξ

)
dy.

(2.19)
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When x < t, applying the Eqs. (2.7), (2.18) and p0 = σω0 −
∫ 1

0 k(0, y)v0(y)dy, we have

v(x, t) = p0e(β1−γ1)t +

∫ 1

x
m(x, y)p0e(β1−γ1)tdy

= e(β1−γ1)t
(
σω0 −

∫ 1

0
k(0, y)v0(y)dy

) (
1−

∫ 1

x
b(x− y + 1)dy

)
.

(2.20)

Then, using Eqs. (2.11), (2.15), (2.18) and (2.20), we obtain

ω(t) =
1
σ

p(t) +
1
σ

∫ 1

0
k(0, y)v(y, t)dy

=
1
σ

e(β1−γ1)t
(
σω0 −

∫ 1

0
k(0, y)v0(y)dy

)
+

1
σ

∫ 1

0
k(0, y)v(y, t)dy.

(2.21)

Therefore, (v(·, t),ω(t)) ∈ C(0,∞; H) is a solution of system (2.16).

When t > 1, since (v0,ω0) ∈ H, Lemma 2.1 and b ∈ C1[0, 1], kernel function k(·, ·) and function

b(·) are bounded, that is,

sup
0≤x,y≤1

|k(x, y)| ≤ L1, sup
0≤x≤1

|b(x)| ≤ L2. (2.22)

where L1, L2 > 0 are constants. Then, using Eqs. (2.20)-(2.22) and Hölder inequality, we obtain

‖v(x, t)‖L2(0,1) ≤ e(β1−γ1)t (|σ||ω0|+ L1‖v0‖) (1 + L2) , t > 1, (2.23a)

|ω(t)| ≤
1
|σ|

e(β1−γ1)t (|σ||ω0|+ L1‖v0‖) +
L1

|σ|

∫ 1

0
|v(y, t)|dy

≤
1
|σ|

e(β1−γ1)t (|σ||ω0|+ L1‖v0‖) +
L1

|σ|
‖v(·, t)‖L2(0,1)

≤M2e(β1−γ1)t, t > 1.

(2.23b)

where M2 > 0 is a constant. Hence, combining the inequalities (2.23a) with (2.22), it can be

concluded that Eq. (2.17) is established. �

Remark 2.1. From system (2.15), it can be seen that increasing the regulation constant γ1 can make the
convergence speed of the target system faster.

3. State observer

Using the unique measurement signal v(1, t), we design the following state observer
v̂t(x, t) = −v̂x(x, t) + b(x)v̂(1, t) + L(x)[v(1, t) − v̂(1, t)],
v̂(0, t) = σω̂(t),
˙̂ω(t) = β1ω̂(t) + β2v̂(1, t) + U(t) + γ2[v(1, t) − v̂(1, t)],

v̂(x, 0) = v̂0(x), ω̂(0) = ω̂0,

(3.1)
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where γ2 is the regulation constant and L(x) is the regulation function such that
γ2 > β2 +

β1

σ
eβ1 , if σ > 0,

γ2 < β2 +
β1

σ
eβ1 , if σ < 0,

(3.2)

and

L(x) = b(x) + σ(γ2 − β2)e−β1x. (3.3)

To demonstrate the asymptotic convergence of the observer mentioned above, we introduce

observer error ṽ = v− v̂, ω̃ = ω− ω̂. Then, system (ṽ, ω̃) satisfies
ṽt(x, t) = −ṽx(x, t) + [b(x) − L(x)]ṽ(1, t),
ṽ(0, t) = σω̃(t),
˙̃ω(t) = β1ω̃(t) + (β2 − γ2)ṽ(1, t),

ṽ(x, 0) = ṽ0(x), ω̃(0) = ω̃0.

(3.4)

Theorem 3.1. For any initial value (ṽ0(·), ω̃0) ∈ H, system (3.4) has a unique solution (ṽ(·, t), ω̃(t)) ∈
C(0,∞; H) that satisfies

‖(ṽ(·, t), ω̃(t))‖ ≤M3eβ3t
|ω̃0|, ∀t > 1, (3.5)

where M3 > 0 and β3 = β1 + σ(β2 − γ2)e−β1 < 0.

Proof. We introduce the following transformation

z(x, t) = ṽ(x, t) − σe−β1xω̃(t). (3.6)

Then, under the transformation (3.6), the error system (3.4) can be written as
zt(x, t) = −zx(x, t),
z(0, t) = 0,
˙̃ω(t) =

[
β1 + σ(β2 − γ2)e−β1

]
ω̃(t) + (β2 − γ2)z(1, t),

z(x, 0) = z0(x), ω̃(0) = ω̃0.

(3.7)

System (3.7) can be divided into two parts: z−subsystem and w̃−subsystem. Solving z−subsystem,

we obtain

z(x, t) =

z0(x− t), t ≤ x ≤ 1,

0, x < t.
(3.8)

Hence,

z(·, t) ≡ 0, ∀ t > 1. (3.9)

If we take β3 = β1 + σ(β2 − γ2)e−β1 , then from Eq. (3.2) we deduce that β3 < 0. By solve

w̃−subsystem, we have

ω̃(t) = eβ3tω̃0 + (β2 − γ2)

∫ t

0
eβ3(t−s)z(1, s)ds. (3.10)

Therefore, using Eqs. (3.8), (3.10) and (3.6), it can be conclude that (ṽ(·, t), ω̃(t)) ∈ C(0,∞; H) is a

solution of system (3.4).



8 Int. J. Anal. Appl. (2025), 23:284

Finally, from Eqs. (3.9), (3.7) and (3.6) we obtain that ω̃(t) = eβ3tω̃0 and ṽ(x, t) = σe−β1xeβ3tω̃0

when t > 1. This indicates that Eq. (3.5) is established �

4. Output feedback control and main results

We consider the following output feedback controller

U(t) = (k(0, 0) − γ1)ω̂(t) +
b(0) − σβ2

σ
v̂(1, t)

+
1
σ

∫ 1

0

[
(γ1 − β1)k(0, y) + ky(0, y)

]
v̂(y, t)dy.

(4.1)

Then, under the output feedback controller (4.1), we can obtain the following closed-loop system

for system (1.1)

vt(x, t) = −vx(x, t) + b(x)v(1, t),
v(0, t) = σω(t),

ω̇(t) = [k(0, 0) − γ1 + β1]ω(t) +
1
σ

b(0)v(1, t)

+
1
σ

∫ 1

0

[
(γ1 − β1)k(0, y) + ky(0, y)

]
v(y, t)dy,

v̂t(x, t) = −v̂x(x, t) + b(x)v̂(1, t) + L(x)[v(1, t) − v̂(1, t)],
v̂(0, t) = σω̂(t),

˙̂ω(t) = (k(0, 0) − γ1 + β1)ω̂(t) +
1
σ

b(0)v̂(1, t)

+
1
σ

∫ 1

0

[
(γ1 − β1)k(0, y) + ky(0, y)

]
v̂(y, t)dy + γ2[v(1, t) − v̂(1, t)],

v(x, 0) = v0(x),ω(0) = ω0, v̂(x, 0) = v̂0(x), ω̂(0) = ω̂0.

(4.2)

The main result of this paper is the following Theorem 4.1:

Theorem 4.1. For any initial value (v0(·),ω0, v̂0(·), ω̂0) ∈ H ×H, the closed-loop system (4.2) has a
unique (weak) solution (v(·, t),ω(t), v̂(·, t), ω̂(t)) ∈ C(0,∞; H ×H) such that

‖(v(·, t),ω(t), v̂(·, t), ω̂(t))‖H×H 6M4‖ (v0(·),ω0, v̂0(·), ω̂0) ‖e−εt, ∀t > 1, (4.3)

where M4 > 0 and ε = min{γ1 − β1,−(β1 + σ(β2 − γ2)e−β1)} > 0.

To prove Theorem 4.1, we consider the following equivalent transformation
v
ω

v̂
ω̂

 =

(I + P)−1 0 0 0

0 1
σ (I + P)−1 0 0

(I + P)−1 0 −I 0

0 1
σ (I + P)−1 0 −I




h
p
ṽ
ω̃

 . (4.4)
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Then, the system (4.2) is equivalent to

ht(x, t) = −hx(x, t),
h(0, t) = p(t),
ṗ(t) = (β1 − γ1)p(t) + σζ(t),
ṽt(x, t) = −ṽx(x, t) + [b(x) − L(x)]ṽ(1, t),
ṽ(0, t) = σω̃(t),
˙̃ω(t) = β1ω̃(t) + (β2 − γ2)ṽ(1, t),

h(x, 0) = h0(x), p(0) = p0, ṽ(x, 0) = ṽ0(x), ω̃(0) = ω̃0.

(4.5)

where
σζ(t) = −σ(k(0, 0) − γ1)ω̃(t) − (b(0) − σβ2)ṽ(1, t)

−

∫ 1

0

[
(γ1 − β1)k(0, y) + ky(0, y)

]
ṽ(y, t)dy.

(4.6)

The system (4.5) can be divided into two parts (ṽ, ω̃)−subsystem and (h, p)−subsystem. Since

Theorem 3.1 we know that subsystem (ṽ, ω̃) has a unique solution on C(0,∞; H). In the following,

we need to prove (h, p) has a unique solution on C(0,∞; H).

Lemma 4.1. For any initial value (h0(·), p0) ∈ H, the subsystem (h, p) of system (4.5) has a unique solution
(h(·, t), p(t)) ∈ C(0,∞; H) that satisfies

‖(h(·, t), p(t))‖H ≤M5e−εt, ∀t > 1, (4.7)

where M5 > 0 and ε = min{γ1 − β1,−(β1 + σ(β2 − γ2)e−β1)} > 0.

Proof. According to (4.6), Theorem 3.1 and Lemma 2.1, there exist constants M6 > 0 and β3 < 0

such that
|σζ(t)| ≤ |σ||k(0, 0) − γ1||ω̃(t)|+ |b(0) − σβ2||ṽ(1, t)|

+

∫ 1

0

∣∣∣(γ1 − β1)k(0, y) + ky(0, y)
∣∣∣ |ṽ(y, t)|dy

≤M6|ω̃0|eβ3t, t > 1.

(4.8)

The subsystem (h, p) of system (4.5) can be written as
ht(x, t) = −hx(x, t),
h(0, t) = p(t),
ṗ(t) = (β1 − γ1)p(t) + σζ(t),
h(x, 0) = h0(x), p(0) = p0.

(4.9)

The system (4.9) can be divided into two parts h−subsystem and p−subsystem.

First, we solve the p−subsystem of system (4.9). Using p0 = σω0−
∫ 1

0 k(0, y)v0(y)dy, from system

(4.9) we obtain

p(t) = e(β1−γ1)t
(
σω0 −

∫ 1

0
k(0, y)v0(y)dy

)
+

∫ t

0
e(β1−γ1)(t−s)σζ(s)ds. (4.10)
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Hence, using Eqs. (4.8), (2.22) and the Cauchy-Schwarz inequality, there exist constants M7 > 0

and ε = min{γ1 − β1,−(β1 + σ(β2 − γ2)e−β1)} > 0 such that

|p(t)| ≤ e(β1−γ1)t(|σ||ω0|+ L1‖v0‖) + M6|ω̃0|

∫ t

0
e(β1−γ1)(t−s)+β3sds

= e(β1−γ1)t(|σ||ω0|+ L1‖v0‖) +
M6|ω̃0|

β1 − γ1 − β3

(
e(β1−γ1)t − eβ3t

)
≤M7(|σ||ω0|+ L1‖v0‖+ |ω̃0|)e−εt, t > 1.

(4.11)

By solve the h−subsystem of system (4.9), we obtain

h(x, t) =

h0(x− t), t ≤ x ≤ 1,

e(β1−γ1)tp0 +
∫ t

0 e(β1−γ1)(t−s)σζ(s)ds, x < t.
(4.12)

Therefore, using Eqs. (4.8), (2.22) and the Cauchy-Schwarz inequality, we obtain the establishment

of Eq. (4.7). �

Using Theorem 3.1 and Lemma 4.1, we obtain the following result:

Lemma 4.2. For any initial value (h0(·), p0, ṽ0(·), ω̃0) ∈ H × H, system (4.5) has a unique solution
(h(·, t), p(t), ṽ(·, t), ω̃(t)) ∈ C(0,∞; H ×H) such that

‖(h(·, t), p(t), ṽ(·, t), ω̃(t))‖H×H 6M8‖ (h0(·), p0, ṽ0(·), ω̃0) ‖e−εt, ∀t > 1, (4.13)

where M8 > 0 and ε = min{γ1 − β1,−(β1 + σ(β2 − γ2)e−β1)} > 0.

Proof of Theorem 4.1. Since the initial value (h0(·), p0, ṽ0(·), ω̃0) of system 4.5 in H × H,

by Theorem 3.1 and Lemma 4.1, system (4.5) has a unique solution (h(·, t), p(t), ṽ(·, t), ω̃(t)) ∈
C(0,∞; H×H) that makes Eq. (4.13) hold true. Therefore, using the transform (4.4), we obtain that

(v(·, t),ω(t), v̂(·, t), ω̂(t)) ∈ C(0,∞; H ×H) is a solution of closed-loop system (4.2). In addition,

since Eqs. (4.4) and (4.13), it can be conclude that Eq. (4.3) is established. �

5. Applications

In this section, we present our results for application in reliability systems and centralized and

distributed reactor systems.

1. Lumped and distributed reactors system. We consider the unstable coupled ODE-PDE

cascade system with cyclic flow [2]

vt(x, t) = −vx(x, t) + b0eb(1−x)v(1, t), 0 < x < 1, t > 0,

v(0, t) = ω(t), t ≥ 0,

ω̇(t) = β1ω(t) + β2v(1, t) + U(t), t ≥ 0,

y(t) = v(1, t), t ≥ 0,

v(x, 0) = v0(x),ω(0) = ω0, 0 ≤ x ≤ 1,

(5.1)

where ω(t) denotes the dynamics of the scalar property ω ∈ R, v(x, t) represents the transport of

a scalar property v(·, t) ∈ L2(0, 1) through a reactor, β1 > 0 is the constant term responsible for the



Int. J. Anal. Appl. (2025), 23:284 11

generation of ω, and β2 ∈ [0, 1] is the recycle in the system input stream are system parameters and

b0, b ∈ R. In addition, U(t) is the input and y(t) is the output of system (5.1). When ω = 0, the

exponential stability and differentiability of system (1.1) were studied by ( [1], [5]), and the output

feedback regulation problem was studied in [6]. Cassol and Dubljevic [2] designed a discrete

regulator for system (5.1) by using the Cayley-Tustin time discretization transformation [18].

Moreover, in this article, we designed an output feedback controller for system (1.1), which

includes system (5.1), in the continuous time domain.

Hence, the result of Theorem 4.1 indicates the output feedback stabilization problem of the

ODE-PDE cascade system (5.1).

2. Reliability system. We consider the following simple reliable system ( [3], [4])

ṗ0(t) = −λp0(t) +
∫ 1

0
µ(x)p1(x, t)dx + U(t), t > 0,

∂tp1(x, t) = −∂xp1(x, t) − µ(x)p1(x, t), 0 < x < 1, t > 0,

p1(0, t) = λp0(t), t ≥ 0,

y(t) = e
∫ 1

0 µ(ξ)dξp(1, t), t ≥ 0,

p0(0) = p0,0, p1(x, 0) = p1,0, 0 ≤ x ≤ 1.

(5.2)

The above system describes a simple device which transfer its state between good state 0 and

failure mode 1. Here λ represents the constant failure rate of the device for failure mode; µ(x)
represents the time-dependent repair rate when the device is in state 1 and has an elapsed repair

time of x ∈ [0, 1]; p0(t) represents the probability that the device is in state 0 , i.e., the good state, at

time t; p1(x, t) represents the probability density (with respect to repair time) that the failed device

is in state 1 and has an elapsed repair time of x at time t. U(t) is the input and y(t) is the output of

system (5.1). When U(t) = 0 and y(t) = 0, the well-posedness and asymptotic behavior of system

(5.2) have been well addressed using C0−semigroup theory in the existing literature ( [19], [20]).

Recently, Hu et al. [4] designed an adaptive observer for system (5.2). For more explanation of

system (5.2), we suggest that readers refer to references ( [3], [4], [19], [20]).

We define the following state transformations

v(x, t) = e
∫ x

0 µ(ξ)dξp1(x, t), ω(t) = p0(t) (5.3)

and σ = λ, β1 = −λ, β2v(1, t) =
∫ 1

0 µ(x)e
−

∫ x
0 µ(ξ)dξv(x, t)dx, then system (5.2) can be written as

system (1.1) as the following form

ω̇(t) = β1ω(t) + β2v(1, t) + U(t),

vt(x, t) = −vx(x, t)

v(0, t) = σω(t),

y(t) = v(1, t), t ≥ 0,

ω(0) = ω0, v(x, 0) = v0, 0 ≤ x ≤ 1.

(5.4)
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Hence, the result of Theorem 4.1 indicates the output feedback stabilization problem of reliable

system (5.2).

6. Conclusion

This paper investigates the output feedback stabilization problem of a class of coupled ODE-PDE

systems. A state feedback controller for the system was designed based on the novel backstepping

transformation. Then, a state observer was designed using the unique measurement signal v(1, ·) to

achieve real-time estimation of the system state. Furthermore, an observer based output feedback

control was established to achieve exponential stability of the system. Our result shows that

the output feedback control can make the closed-loop system exponentially stable. Finally, we

demonstrated the application of our results in some simple reliability systems and distributed

reactor systems.
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