Further Numerical Radius Inequalities of Operators
Main Article Content
Abstract
We investigate advanced numerical radius inequalities for \(2 \times 2\) block operator matrices acting on complex separable Hilbert spaces. Our primary contribution establishes a refined upper bound for the numerical radius of block matrices, expressed in terms of the numerical radii of diagonal blocks and the operator norms of off-diagonal components. We demonstrate that for operators \(A, B, C, D \in \mathcal{B}(H)\), the inequality \[\begin{align*}
w \begin{bmatrix} A & B \\ C & D \end{bmatrix} &\leq \frac{1}{2}\Big\|f^2(|A|) + g^2(|A^*|)\Big\| + \frac{1}{2} \Big\|f^2(|D|) + g^2(|D^*|)\Big\| \\
&\quad + \frac{\|B\| + \|C\|}{2}
\end{align*}\]provides an effective estimation tool. Additionally, we present a comprehensive comparative analysis with existing bounds, establishing conditions under which our result offers superior performance. The theoretical framework is supplemented with concrete examples and applications to polynomial zero estimation.
Article Details
References
- M. Al-Labadi, R. Al-Naimi, W. Audeh, Singular Value Inequalities for Generalized Anticommutators, J. Inequal. Appl. 2025 (2025), 15. https://doi.org/10.1186/s13660-025-03264-z.
- W. Audeh, H.R. Moradi, M. Sababheh, Commutator Bounds via Singular Values with Applications to the Numerical Radius, Mediterr. J. Math. 22 (2024), 8. https://doi.org/10.1007/s00009-024-02776-0.
- W. Audeh, A. Al-Boustanji, M. Al-Labadi, R. Al-Naimi, Singular Value Inequalities of Matrices via Increasing Functions, J. Inequal. Appl. 2024 (2024), 114. https://doi.org/10.1186/s13660-024-03193-3.
- W. Audeh, H. Moradi, M. Sababheh, Generalizations of Recent Singular Value Inequalities for Sums of Products of Matrices, Filomat 38 (2024), 9905–9919. https://doi.org/10.2298/fil2428905a.
- W. Audeh, H.R. Moradi, M. Sababheh, Matrix Hölder Inequalities and Numerical Radius Applications, Linear Algebr. Appl. 696 (2024), 68–84. https://doi.org/10.1016/j.laa.2024.05.010.
- W. Audeh, M. Al-Labadi, R. Al-Naimi, Numerical Radius Inequalities via Block Matrices, Acta Sci. Math. (Szeged) (2024). https://doi.org/10.1007/s44146-024-00164-4.
- W. Audeh, Singular Value Inequalities for Operators and Matrices, Ann. Funct. Anal. 13 (2022), 24. https://doi.org/10.1007/s43034-022-00170-z.
- W. Audeh, Singular Value Inequalities for Accretive-Dissipative Normal Operators, J. Math. Inequal. 2 (2022), 729–737. https://doi.org/10.7153/jmi-2022-16-51.
- W. Audeh, Singular Value Inequalities with Applications, J. Math. Comput. Sci. 24 (2022), 323–329. https://doi.org/10.22436/jmcs.024.04.04.
- W. Audeh, M. Al-Labadi, Some Results About Numerical Radius Inequalities, Int. J. Math. Comput. Sci. 17 (2022), 33–39.
- A. Al-Boustanji, W. Audeh, Applications of Numerical Radius Inequalities, Int. J. Math. Comput. Sci. 17 (2022), 1305–1312.
- W. Audeh, Singular Value and Norm Inequalities of Davidson-Power Type, J. Math. Inequal. (2021), 1311–1320. https://doi.org/10.7153/jmi-2021-15-88.
- W. Audeh, M. Al-Labadi, Numerical Radius Inequalities for Finite Sums of Operators, Complex Anal. Oper. Theory 17 (2023), 128. https://doi.org/10.1007/s11785-023-01437-6.
- W. Audeh, Some Generalizations for Singular Value Inequalities of Compact Operators, Adv. Oper. Theory 6 (2020), 14. https://doi.org/10.1007/s43036-020-00115-0.
- W. Audeh, Generalizations for Singular Value and Arithmetic-Geometric Mean Inequalities of Operators, J. Math. Anal. Appl. 489 (2020), 124184. https://doi.org/10.1016/j.jmaa.2020.124184.
- W. Audeh, Generalizations for Singular Value Inequalities of Operators, Adv. Oper. Theory 5 (2020), 371–381. https://doi.org/10.1007/s43036-019-00027-8.
- W. Audeh, Singular Value Inequalities and Applications, Positivity 25 (2020), 843–852. https://doi.org/10.1007/s11117-020-00790-6.
- W. Audeh, F. Kittaneh, Singular Value Inequalities for Compact Operators, Linear Algebr. Appl. 437 (2012), 2516–2522. https://doi.org/10.1016/j.laa.2012.06.032.
- R. Bhatia, Matrix Analysis, Springer, New York, 1997. https://doi.org/10.1007/978-1-4612-0653-8.
- I. Gohberg, M. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, American Mathematical Society, Providence, 1969. https://doi.org/10.1090/mmono/018.
- K.E. Gustafson, D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, New York, 1997. https://doi.org/10.1007/978-1-4613-8498-4.
- F. Kittaneh, M.S. Moslehian, T. Yamazaki, Cartesian Decomposition and Numerical Radius Inequalities, Linear Algebr. Appl. 471 (2015), 46–53. https://doi.org/10.1016/j.laa.2014.12.016.
- F. Kittaneh, Numerical Radius Inequalities Associated with the Cartesian Decomposition, Math. Inequal. Appl. (2015), 915–922. https://doi.org/10.7153/mia-18-68.
- F. Kittaneh, Numerical Radius Inequalities for Hilbert Space Operators, Stud. Math. 168 (2003), 73–80. https://eudml.org/doc/284514.
- F. Kittaneh, A Numerical Radius Inequality and an Estimate for the Numerical Radius of the Frobenius Companion Matrix, Stud. Math. 158 (2003), 11–17. https://doi.org/10.4064/sm158-1-2.