Discretization of the Alpha Power Weibull-G Family of Distributions: A Novel Discrete Distribution with Properties, Estimation, and Applications to Medical and Educational Data

Main Article Content

Abeer Balubaid, Dawlah Alsulami

Abstract

This article introduces a new four-parameter discrete distribution, named the discrete alpha power Weibull-exponential (DAPWE) distribution. The new distribution is obtained by applying the survival discretization method to the alpha power Weibull-G family of distributions. The new distribution is highly flexible due to its ability to exhibit symmetric and asymmetric shapes of its probability mass function. Additionally, the hazard function exhibits various shapes including uniform, increasing, decreasing, J-shaped, reversed J-shaped and bathtub showing its versatility. Furthermore, some important characteristics of the proposed distribution, such as moments, order statistics and entropy are discussed. The method of maximum likelihood approach is used to estimate the distribution’s unknown parameters. The efficiency of the maximum likelihood in estimating the model’s parameters is assessed through simulation studies. The model performance is also evaluated through four real medical and educational data sets. The results demonstrate that the suggested distribution can indeed provide a better fit to the data compared to other distributions.

Article Details

References

  1. A. Marshall, A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families, Biometrika 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641.
  2. R.C. Gupta, P.L. Gupta, R.D. Gupta, Modeling Failure Time Data by Lehman Alternatives, Commun. Stat. - Theory Methods 27 (1998), 887–904. https://doi.org/10.1080/03610929808832134.
  3. A. Alzaatreh, C. Lee, F. Famoye, A New Method for Generating Families of Continuous Distributions, METRON 71 (2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y.
  4. A. Mahdavi, D. Kundu, A New Method for Generating Distributions with an Application to Exponential Distribution, Commun. Stat. - Theory Methods 46 (2016), 6543–6557. https://doi.org/10.1080/03610926.2015.1130839.
  5. M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem, Alpha Power Weibull Distribution: Properties and Applications, Commun. Stat. - Theory Methods 46 (2016), 10236–10252. https://doi.org/10.1080/03610926.2016.1231816.
  6. S. Nadarajah, I.E. Okorie, On the Moments of the Alpha Power Transformed Generalized Exponential Distribution, Ozone: Sci. Eng. 40 (2017), 330–335. https://doi.org/10.1080/01919512.2017.1419123.
  7. M.E. Mead, G.M. Cordeiro, A.Z. Afify, H.A. Mofleh, The Alpha Power Transformation Family: Properties and Applications, Pak. J. Stat. Oper. Res. 15 (2019), 525–545. https://doi.org/10.18187/pjsor.v15i3.2969.
  8. M. Nassar, A.Z. Afify, M. Shakhatreh, Estimation Methods of Alpha Power Exponential Distribution with Applications to Engineering and Medical Data, Pak. J. Stat. Oper. Res. 16 (2020), 149–166. https://doi.org/10.18187/pjsor.v16i1.3129.
  9. L.A. Baharith, W.H. Aljuhani, New Method for Generating New Families of Distributions, Symmetry 13 (2021), 726. https://doi.org/10.3390/sym13040726.
  10. A.W. Kemp, Classes of Discrete Lifetime Distributions, Commun. Stat. - Theory Methods 33 (2004), 3069–3093. https://doi.org/10.1081/sta-200039051.
  11. M. Ibrahim, M.M. Ali, H.M. Yousof, The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods, Ann. Data Sci. 10 (2021), 1069–1106. https://doi.org/10.1007/s40745-021-00327-y.
  12. I. Elbatal, N. Alotaibi, E.M. Almetwally, S.A. Alyami, M. Elgarhy, On Odd Perks-G Class of Distributions: Properties, Regression Model, Discretization, Bayesian and Non-Bayesian Estimation, and Applications, Symmetry 14 (2022), 883. https://doi.org/10.3390/sym14050883.
  13. M. El-Morshedy, M.S. Eliwa, A. Tyagi, A Discrete Analogue of Odd Weibull-G Family of Distributions: Properties, Classical and Bayesian Estimation with Applications to Count Data, J. Appl. Stat. 49 (2021), 2928–2952. https://doi.org/10.1080/02664763.2021.1928018.
  14. A. Balubaid, H. Klakattawi, D. Alsulami, On the Discretization of the Weibull-G Family of Distributions: Properties, Parameter Estimates, and Applications of a New Discrete Distribution, Symmetry 16 (2024), 1519. https://doi.org/10.3390/sym16111519.
  15. A.A. El-Helbawy, M.A. Hegazy, G.R. Al-Dayian, A New Family of Discrete Alpha Power Distributions, Sci. J. Fac. Commer. Sect. Al-Azhar Univ. 28 (2022), 158–190. https://doi.org/10.21608/jsfc.2022.299825.
  16. H. Fawzy, Discrete of a Novel Alpha Power Transformed Exponential Distribution: Estimation and COVID-19 Application, Sci. J. Bus. Finance 43 (2023), 200–222. https://doi.org/10.21608/caf.2023.301515.
  17. E.M. Almetwally, G.M. Ibrahim, Discrete Alpha Power Inverse Lomax Distribution With Application of COVID-19 Data, Int. J. Appl. Math 9 (2020), 49–60.
  18. R. Alotaibi, E.M. Almetwally, H. Rezk, Optimal Test Plan of Discrete Alpha Power Inverse Weibull Distribution Under Censored Data, J. Radiat. Res. Appl. Sci. 16 (2023), 100573. https://doi.org/10.1016/j.jrras.2023.100573.
  19. G.R. Al-Dayian, A.A. El-Helbawy, M.A. Hegazy, A Discrete Analog of the Alpha Power Inverted Kumaraswamy Distribution with Applications to Real-Life Data Sets, Egypt. J. Bus. Stud. 48 (2024), 1018–1064. https://doi.org/10.21608/alat.2024.365943.
  20. A. R{'e}nyi, ON Measures of Entropy and Information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 547–562, 1961.
  21. B.C. Arnold, N. Balakrishnan, H.N. Nagaraja, A First Course in Order Statistics, SIAM, 2008.
  22. S.D. Poisson, Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile: Précédées des Règles Générales du Calcul des Probabilités, Bachelier, 1837.
  23. M.O. Mohamed, N.A. Hassan, N. Abdelrahman, Discrete Alpha-Power Weibull Distribution: Properties and Application, Int. J. Nonlinear Anal. Appl. 13 (2022), 1305–1317. https://doi.org/10.22075/ijnaa.2022.6301.
  24. M. El-Morshedy, M.S. Eliwa, E. Altun, Discrete Burr-Hatke Distribution with Properties, Estimation Methods and Regression Model, IEEE Access 8 (2020), 74359–74370. https://doi.org/10.1109/access.2020.2988431.
  25. K. Jayakumar, M.G. Babu, Discrete Weibull Geometric Distribution and Its Properties, Commun. Stat. - Theory Methods 47 (2017), 1767–1783. https://doi.org/10.1080/03610926.2017.1327074.
  26. H. Krishna, P. Singh Pundir, Discrete Burr and Discrete Pareto Distributions, Stat. Methodol. 6 (2009), 177–188. https://doi.org/10.1016/j.stamet.2008.07.001.
  27. H.~Akaike, A new look at the statistical model identification, IEEE transactions on automatic control 19~(6) (1974) 716–723.
  28. C.M. HURVICH, C. TSAI, Regression and Time Series Model Selection in Small Samples, Biometrika 76 (1989), 297–307. https://doi.org/10.1093/biomet/76.2.297.
  29. E.J. Hannan, B.G. Quinn, The Determination of the Order of an Autoregression, J. R. Stat. Soc. Ser. B: Stat. Methodol. 41 (1979), 190–195. https://doi.org/10.1111/j.2517-6161.1979.tb01072.x.
  30. A. S. Hassan, E. M. Almetwally, G. M. Ibrahim, Kumaraswamy Inverted Topp–Leone Distribution with Applications to COVID-19 Data, Comput. Mater. Contin. 68 (2021), 337–358. https://doi.org/10.32604/cmc.2021.013971.
  31. T.M. Therneau, T. Lumley, Package ‘survival’, https://github.com/therneau/survival.