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Abstract. This article introduces a new four-parameter discrete distribution, named the discrete alpha power Weibull-

exponential (DAPWE) distribution. The new distribution is obtained by applying the survival discretization method to

the alpha power Weibull-G family of distributions. The new distribution is highly flexible due to its ability to exhibit

symmetric and asymmetric shapes of its probability mass function. Additionally, the hazard function exhibits various

shapes including uniform, increasing, decreasing, J-shaped, reversed J-shaped and bathtub showing its versatility.

Furthermore, some important characteristics of the proposed distribution, such as moments, order statistics and entropy

are discussed. The method of maximum likelihood approach is used to estimate the distribution’s unknown parameters.

The efficiency of the maximum likelihood in estimating the model’s parameters is assessed through simulation studies.

The model performance is also evaluated through four real medical and educational data sets. The results demonstrate

that the suggested distribution can indeed provide a better fit to the data compared to other distributions.

1. Introduction

Utilizing statistical distributions is vital for analyzing different types of data. Traditional distri-

butions often fail to capture the underlying patterns and characteristics present in real-world data.

This limitation has driven the creation of new distribution families aimed at better handling com-

plex data structures. Similarly, discrete distributions play a key role in modeling product lifetimes

on non-continuous scales, prompting the development of innovative discrete models. However,

these also face limitations when applied to intricate data scenarios, highlighting the demand

for more adaptable alternatives. Consequently, there has been a growing interest in convert-

ing existing continuous models into discrete ones to improve their fit for a wider range of data sets.
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Numerous approaches for introducing new families of statistical distributions have been docu-

mented in the literature, such as the Marshall-Olkin method [1] and the exponentiated method [2].

More recently, a new technique known as the transformed-transformer (T-X) method has been in-

troduced by [3] to create novel distribution families. The cumulative distribution function (CDF)

and the probability density function (PDF) of this family can be respectively defined by

F(x) =
∫ W(G(x))

a
r(t)dt, (1.1)

f (x) = {
d
dx

W(G(x))}r{W(G(x))}. (1.2)

where W(G(x)) = −log(1 − G(x)) is a weight function and G(x) is the cumulative distribution

function of a baseline distribution. This method has been widely used in literature to construct

new families of distributions such as gamma-G, beta-exponential-G, and Weibull-G distributions.

[4] proposed a new approach that involves adding extra parameter to existing distributions,

which enhances the richness and adaptability of the resulting distribution for data modeling. This

approach is known as the alpha power transformation (APT). The APT method was utilized by

various researchers, such as [5], [6], [7] and [8].

The APT family has the following CDF and PDF ,respectively.

F(x) =


αF(x)

− 1
α− 1

if α > 0,α , 1

F(x) if α = 1
(1.3)

f (x) =


logα
α− 1

f (x)αF(x) if α > 0, α , 1

f (x) if α = 1
(1.4)

[9] presented a new approach to generate distributions by combining two techniques, the T-X

method proposed by [3] and the alpha power transformation (APT) approach proposed by [4],

which significantly increases the flexibility of the resulting distributions. Their proposed family is

called the alpha power Weibull-G family of distributions and has the following CDF

F(x) =


α

1−exp

−
− log(1−G(x, δ))

β


c
− 1

α− 1
, α > 0, α , 1,

1− exp
(
−

(
− log(1−G(x, δ))

β

)c)
, α = 1.

(1.5)

Thus, the PDF and the survival function (SF) take the following forms, respectively.
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f (x) =



logα
α− 1

c
β

g(x)
1−G(x)

− log
(
1−G(x, δ)

)
β


c−1

× exp

−
− log

(
1−G(x, δ)

)
β


c α

1−exp

−

− log

(
1−G(x, δ)

)
β


c

α > 0, α , 1,

c
β

g(x)
1−G(x)

− log
(
1−G(x, δ)

)
β


c−1

exp

−
− log

(
1−G(x, δ)

)
β


c α = 1.

(1.6)

S(x) =



α
α− 1


1− α

− exp

−

− log

(
1−G(x, δ)

)
β


c


, α > 0, α , 1,

exp

−
− log

(
1−G(x, δ)

)
β


c , α = 1.

(1.7)

In recent decades, various discretized versions of continuous distributions have been developed

to represent diverse discrete data. The survival discretization technique introduced by [10], is one

of the most significant methods of discretization. This innovative approach creates a new discrete

distribution by utilizing the survival function of any continuous distribution. According to [10],

The survival function (SF) of the continuous distribution can be used to define the PMF of a discrete

distribution as follows:

P(X = x) = S(x) − S(x + 1), x = 0, 1, 2, ..., (1.8)

and

S(x) = P(X ≥ x) = 1− F(x; η), (1.9)

with F(x; η) being the CDF of the continuous distribution and η denoting a parameter vector.

Recently, new discrete families of distributions have been created and derived from existing

continuous families by employing this statistical method. For instance, [11] studied a discrete

analogue of the Weibull-G family, where [12] introduced the discrete odd Perks exponential distri-

bution derived from the odd Perk-G family. [13] studied the discrete odd Weibull inverse-Weibull

and discrete odd Weibull-Geometric that were proposed from a discrete version of odd Weibull-G

family. Finally, [14] introduced the discrete Weibull-G family and presented the discrete Weibull

exponential distribution.

Additionally, [15] presented the discrete alpha power exponential distribution. [16] presented

the discrete alpha power transformed exponential distribution. [17] proposed the discrete alpha
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power inverse Lomax distribution. [18] presented and studied the discrete alpha power inverse

Weibull distribution. [19] presented the discrete alpha power inverted Kumaraswamy distribution.

The primary interest of this article is to apply the discretization method proposed by [10] to

create a new discrete distribution which offers greater flexibility in data fitting. To demonstrate

this, the study employs the survival discretization technique to introduce a discrete version of

the alpha power Weibull-G (APW-G) family of distributions. This discrete family is called the

discrete alpha power Weibull-G (DAPW-G) family, and a four-parameter distribution known as the

discrete alpha power Weibull exponential (DAPWE) distribution is established with this approach.

Applying the discretization technique by [10] and the continuous alpha power Weibull-G family

introduced by [9], the discrete alpha power Weibull-G (DAPW-G) family has the following CDF

and SF, respectively.

F(x;α, β, c, δ) =
α

1−exp

−

− log

(
1−G(x + 1, δ)

)
β


c
− 1

α− 1
, α > 0, α , 1. (1.10)

S(x) =
α

α− 1


1− α

− exp

−

− log

(
1−G(x, δ)

)
β


c


, α > 0, α , 1. (1.11)

Therefore, the probability mass function (PMF)can be expressed as

f (x;α, β, c, δ) =
α

α− 1

[
α
− exp

(
−

(
− log(1−G(x+1,δ))

β

)c)
− α
− exp

(
−

(
− log(1−G(x,δ))

β

)c)]
, α > 0, α , 1. (1.12)

Based on Equations (1.11) and (1.12), the hazard rate function (HRF) takes the form

h(x;α, β, c, δ) =
α

− exp

−

− log

(
1−G(x + 1, δ)

)
β


c
− α

− exp

−

− log

(
1−G(x, δ)

)
β


c

1− α

− exp

−

− log

(
1−G(x, δ)

)
β


c

, α > 0, α , 1.

(1.13)

The rest of the article is organized as follows: In Section 2, the DAPWE distribution is presented

with various forms of its PMF and hazard function. Section 3 explores several key properties of

the DAPWE distribution. Section 4 addresses the parameter estimation through the maximum

likelihood (ML) method. Section 5 includes some simulation studies to assess and evaluate the

efficiency of the ML in estimating the distribution parameters. Section 6 examines four applications

to illustrate the effectiveness of the proposed discrete distribution. Lastly, Section 7 concludes.
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2. Discrete Alpha PowerWeibull Exponential Distribution (DAPWE)

The CDF of an exponential random variable X with parameter θ > 0, is represented as:

G(x) = 1− e−θx,θ > 0, x > 0. (2.1)

The DAPWE distribution can be expressed in terms of its CDF and PMF, respectively, by substi-

tuting G(x) into equations (1.10) and (1.12).

F(x;α, β, c,θ) =
α

1−exp
[
−

(
θ(x+1)

β

)c]
− 1

α− 1
. (2.2)

f (x;α, β, c,θ) =
α

α− 1

[
α
− exp

(
−

(
θ(x+1)

β

)c)
− α
− exp

(
−

(
θx
β

)c)]
. (2.3)

Moreover, the SF and HRF are respectively obtained by:

S(x) =
α

α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
, α > 0, α , 1. (2.4)

h(x) =
α
− exp

(
−

(
θ(x+1)

β

)c)
− α
− exp

(
−

(
θx
β

)c)

1− α
− exp

(
−

(
θx
β

)c) . (2.5)

Figures 1 and 2 illustrate various plots of PMF and HRF for the DAPWE model based on selected

values of parameters. As shown in Figure 1, the plots of the PMF of the DAPWE distribution exhibit

different forms, including increasing, right skewed, J-shaped, symmetric, left skewed, and reversed

J-shaped forms. Moreover, Figure 2 demonstrates that the HRF of the DAPWE distribution can

also take on different shapes including increasing, uniform, decreasing, bathtub, and J-shaped.

These findings indicate the significant versatility of the DAPWE distribution in modeling real

data.

3. Mathematical Characteristics

Some characteristics of the DAPWE distribution are provided. These characteristics include the

quantile, moments, entropy and order statistics.

3.1. Quantile function. The DAPWE distribution has the following quantile function:

xq =

⌈
β

θ

{
− log

[
1−

(
log[(α− 1)q + 1]

logα

)]} 1
c

− 1
⌉

(3.1)

where the ceiling function denoted by d.e returns the smallest integer equal to or larger than its

argument.

Specifically, by setting q = 0.5, we can get the median M for DAPWE distribution. Thus, it can

be as follows:
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Figure 1. PMF plots of the DAPWE model.

Figure 2. Hazard plots of the DAPWE model.
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M =

⌈
β

θ

{
− log

[
1−

(
log[0.5(α− 1) + 1]

logα

)]} 1
c

− 1
⌉

(3.2)

3.2. Moments. For the random variable X ∼ DAPWE, the rth moment is given by:

µ′r = E(Xr) =
∞∑

x=0

xr f (x) =
∞∑

x=1

(
xr
− (x− 1)r

) α
α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
. (3.3)

Therefore,

µ′1 = E(X) =
∞∑

x=1

α
α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
, α > 0, α , 1,

µ̀2 = E(x2) =
∞∑

x=1

(2x− 1)
α

α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
,

µ̀3 = E(x3) =
∞∑

x=1

(3x2
− 3x + 1)

α
α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
,

µ̀4 = E(x4) =
∞∑

x=1

(4x3
− 6x2 + 4x− 1)

α
α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
.

Therefore, the variance (var) of the DAPWE distribution can be expressed as:

σ2 = µ̀2 −
(
µ̀1

)2

=
∞∑

x=1

(2x− 1)
α

α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
−

 ∞∑
x=1

α
α− 1

(
1− α

− exp
(
−

(
θx
β

)c))
2

.

Furthermore, skewness (sk) and kurtosis (K) take the following forms, respectively.

skewness =
µ̀3 − 3 µ̀2 µ̀1 + 2 µ̀ 2

1

(σ2)3/2

kurtosis =
µ̀4 − 4 µ̀3 µ̀1 + 6 µ̀2 µ̀ 2

1 − 3 µ̀ 4
1

(σ2)2

3.3. Index of dispersion and variation coefficient. The dispersion index (DSI) and the coefficient

of variation (COV) are defined as

DSI =
var(x)
mean

COV(x) =

√
var(x)

mean
Thus, the DSI and COV of the DAPWE distribution can be presented respectively as

DSI =

∞∑
x=1

(2x− 1)
α

α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
−

 ∞∑
x=1

α
α− 1

(
1− α

− exp
(
−

(
θx
β

)c))
2

∞∑
x=1

α
α− 1

(
1− α

− exp
(
−

(
θx
β

)c)) .
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COV =

√√√
∞∑

x=1

(2x− 1)
α

α− 1

[
1− α

− exp
(
−

(
θx
β

)c)]
−

 ∞∑
x=1

α
α− 1

(
1− α

− exp
(
−

(
θx
β

)c))
2

∞∑
x=1

α
α− 1

(
1− α

− exp
(
−

(
θx
β

)c)) .

Table 1 presents some empirical results regarding the mean, var, sk, K, DSI and COV, along with

insightful commentary.

Table 1. Numerical findings for the DAPWE distribution for mean, var, sk, K, DSI

and COV.

θ β α c mean var sk K DSI COV

0.9 1 1.2 1 0.73679 1.2346690 1.905760 7.425394 1.8798239 1.552427
1.0 1 1.2 1 0.62141 0.9671538 1.945520 7.584825 1.4654336 1.379551
1.1 1 1.2 1 0.53564 0.8003945 2.008823 7.805834 1.5115865 1.490946
1.2 1 1.2 1 0.46282 0.6610743 2.077098 8.066518 1.6675849 1.946783
1.3 1 1.2 1 0.39854 0.5437588 2.127448 8.244007 1.0412824 2.127749
1.4 1 1.2 1 0.35240 0.4627927 2.174658 8.337063 1.1111111 1.924501
1.5 1 1.2 1 0.30723 0.3886625 2.244833 8.618008 1.1114852 2.028944
1.6 1 1.2 1 0.27205 0.3355876 2.321280 8.916761 0.9576409 1.757602
1.7 1 1.2 1 0.24094 0.2901822 2.398436 9.139604 1.5682916 2.611256
1 0.9 1.2 1 0.52980 0.7808929 2.000638 7.742846 1.519743 1.662278
1 1.0 1.2 1 0.62141 0.9671538 1.945520 7.584825 1.465434 1.379551
1 1.1 1.2 1 0.72257 1.2093015 1.926166 7.544507 1.844711 1.423782
1 1.2 1.2 1 0.82084 1.4472616 1.897672 7.441891 1.802483 1.473657
1 1.3 1.2 1 0.91056 1.6806824 1.871200 7.390762 1.380471 1.516834
1 1.4 1.2 1 1.02161 1.9744987 1.830342 7.170893 1.762065 1.399232
1 1.5 1.2 1 1.11304 2.2544014 1.826406 7.200551 1.556277 1.178785
1 1.6 1.2 1 1.21915 2.5761294 1.810463 7.152816 1.656490 1.116011
1 1.7 1.2 1 1.32171 2.9317738 1.794201 7.030958 2.463092 1.376476
1 1 1.2 1 0.62753 0.9865484 1.949332 7.558793 1.528139 1.557439
1 1 1.3 1 0.63933 0.9878910 1.907995 7.406633 1.465423 1.370674
1 1 1.4 1 0.65894 1.0289861 1.896712 7.357293 1.590909 1.410190
1 1 1.5 1 0.67335 1.0460567 1.880248 7.284418 1.484263 1.466665
1 1 1.6 1 0.68056 1.0418127 1.840617 7.132413 1.187238 1.701677
1 1 1.7 1 0.70166 1.0673317 1.804441 6.939396 1.441363 1.563006
1 1 1.8 1 0.70915 1.0712419 1.786681 6.851458 1.162202 1.297825
1 1 1.9 1 0.72253 1.0862054 1.761797 6.751108 1.286153 1.275947
1 1 2.0 1 0.73693 1.1023845 1.736290 6.609931 1.794797 1.568001
1 1 1.2 0.9 0.69627 1.3270573 2.168235 8.812224 1.5627706 1.670527
1 1 1.2 1.0 0.62450 0.9751560 1.932793 7.467094 2.1993171 1.760008
1 1 1.2 1.1 0.57397 0.7620835 1.731769 6.395976 1.6835017 1.675063
1 1 1.2 1.2 0.52887 0.6124845 1.566820 5.583118 0.9855700 1.326630
1 1 1.2 1.3 0.50465 0.5265062 1.419084 4.902467 1.1452991 1.484082
1 1 1.2 1.4 0.47703 0.4530415 1.282848 4.290075 0.8037518 1.280746
1 1 1.2 1.5 0.46151 0.4064951 1.174378 3.889785 0.7796836 1.212890
1 1 1.2 1.6 0.44376 0.3633758 1.058947 3.428760 0.6930085 1.165693
1 1 1.2 1.7 0.43137 0.3365266 0.982653 3.141213 0.7952250 1.344370
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From the data in Table 1, it is evident that as θ increases while keeping α , β, and c constant,

there is an evident decrease in both mean and variance and increase in skewness and kurtosis.

Conversely, when β increases with θ , α and c remain constant, the mean and variance both rise as

skewness and kurtosis decline. Similarly, increasing α while maintaining θ, β, and c leads to an

increase in the mean and variance, with a decrease in skewness and kurtosis. Finally, as c increases

while keeping θ, β and α constant, the mean, variance, skewness, and kurtosis all decrease.

3.4. The moment generating function. The moment generating function for a random variable

X, where X is non-negative and follows the DAPWE distribution, can be derived as:

Mx(t) = E(etx) =
∞∑

x=0

etx f (x) = 1 +
∞∑

x=1

(
etx
− et(x−1)

) α
α− 1

[
1− α− exp

(
−

(
θx
β

)c)]
.

3.5. The Rényi entropy. [20] proposed a fundamental entropy, called Rényi entropy. The entropy

can be obtained by

γR(δ) =
1

1− δ
log

 ∞∑
x=0

f (x)δ
 , (3.4)

where δ > 0 and δ , 1. By substituting the equation (2.3) in entropy, we get

γR(δ) =
1

1− δ
log


∞∑

x=0

 α
α− 1

α− exp
(
−

(
θ(x+1)

β

)c)
− α
− exp

(
−

(
θx
β

)c)

δ

3.6. The order statistic. Assume that x1, x2, .., xn is a random sample of DAPWE, then the ith order

statistic Xi:n has the following CDF

Fi:n(x) =
n∑

r=i

(
n
r

)
[F(x)]r [1− F(x)] n−r, (3.5)

using the binomial expansion equation

(1− y)k−r =
k−r∑
j=0

(−1) j
(
k− r

j

)
y j,

therefore,

Fi:n(x) =
n∑

r=i

n−r∑
j=0

(−1) j
(
n
r

)(
n− r

j

)
[F(x)] r+ j

=
n∑

r=i

n−r∑
j=0

(−1) j
(
n
r

)(
n− r

j

) α
1−exp

(
−

(
θ(x+1)

β

)c)
− 1

α− 1


r+ j

. (3.6)

Applying the formula discussed by [21], the corresponding PMF of ith order statistic is as follows:

fi(y) = Fi(y) − Fi(y− 1)
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fi(x) =
n∑

r=i

n−r∑
j=0

(−1) j
(
n
r

)(
n− r

j

) 
α

1−exp
(
−

(
θ(x+1)

β

)c)
− 1

α− 1


r+ j

−

α
1−exp

(
−

(
θx
β

)c)
− 1

α− 1


r+ j

 . (3.7)

Particularly, the PMF of minimum and maximum order statistic are obtained by setting i = 1 and

i = n in Equation (3.7), respectively.

4. EstimationMethod

The ML approach is used to estimate the distribution’s parameters. For a parameter vector

ω̂ = (θ, β,α, c), the ML method involves three main steps. First, the log-likelihood function must

be defined. Next, the partial derivatives with respect to each parameter are calculated. Finally,

these derivatives are set to zero and solved analytically.

L(X;θ, β,α, c) =
n∏

i=1

f (xi) =
n∏

i=1

α
α− 1

α− exp
(
−

(
θ(xi+1)

β

)c)
− α
− exp

(
−

(
θxi
β

)c) ,

Then, the DAPWE distribution has the following log-likelihood function

`(θ, β,α, c; x) =
n∑

i=1

log
(
α

α− 1

)
+

n∑
i=1

log
[(
α
− exp

(
−

(
θ(xi+1)

β

)c)
− α
− exp

(
−

(
θxi
β

)c))]
(4.1)

The derivation of equation (4.1) with respect to the parameters gives the following results.

∂`
∂θ

= cθ c−1 logα
n∑

i=1

( xi+1
β

)c
exp

[
−

(
θ(xi+1)

β

)c]
α
− exp

(
−

(
θ(xi+1)

β

)c)
−

( xi
β

)c
exp

[
−

(
θxi
β

)c]
α
− exp

(
−

(
θxi
β

)c)

α
− exp

(
−

(
θ(xi+1)

β

)c)
− α
− exp

(
−

(
θxi
β

)c) . (4.2)

∂`
∂β

= −
c θc logα

β

n∑
i=1

(
(xi+1)
β

)c
exp

−

(
θ(xi+1)

β

)c

α
− exp

(
−

(
θ(xi+1)

β

)c)
−

(
xi
β

)c
exp

−

(
θxi
β

)c

α
− exp

(
−

(
θxi
β

)c)

α
− exp

(
−

(
θ(xi+1)

β

)c)
− α
− exp

(
−

(
θxi
β

)c) . (4.3)

∂`
∂α

=
−n

α(α− 1)
−

n∑
i=1

α
− exp

(
−

(
θ(xi+1)

β

)c)
−1

exp
(
−

(
θ(xi+1)

β

)c)
− α
− exp

(
−

(
θxi
β

)c)
−1

exp
(
−

(
θxi
β

)c)
α
− exp

(
−

(
θ(xi+1)

β

)c)
− α
− exp

(
−

(
θxi
β

)c) . (4.4)

∂`
∂c

=
θc log(α)

βc

n∑
i=1


(
x + 1

)c
exp

(
−

(
θ(xi+1)

β

)c
)
α
− exp

(
−

(
θ(xi+1)

β

)c
)

log
(
θ(xi+1)

β

)
α
− exp

(
−

(
θ(xi+1)

β

)c
)
− α
− exp

(
−

(
θxi
β

)c
)

−

xc exp
(
−

(
θxi
β

)c
)
α
− exp

(
−

(
θxi
β

)c
)

log
(
θxi
β

)
α
− exp

(
−

(
θ(xi+1)

β

)c
)
− α
− exp

(
−

(
θxi
β

)c
) . (4.5)
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Consequently, by setting equations (4.2 - 4.5) to zero and find the solution analytically or

employing numerical methods like the Newten Raphson, the MLEs for the parameters are obtained.

Alternatively, maximizing the aforementioned equations using any optimization method, such as

optim in the statistical software R yields the estimators.

5. Simulation

This section outlines three simulation study cases aimed at evaluating the performance of the

ML estimates for the parameters of the DAPWE distribution. Various true parameter values were

examined, with the following cases:

Case I : θ = 0.1, β = 5,α = 3, c = 9.

Case II : θ = 1.3, β = 1.3,α = 2.1, c = 0.8.

Case III : θ = 0.09, β = 4,α = 3.5, c = 7.

Each simulation was executed with a total of 10,000 iterations (nsim = 10,000). The mean square

error (MSE) was utilized to assess the MLE, ω̂, for each parameter. This can be expressed as:

MSE(ω̂) =
∑nsim

i=1 (ω̂i −ωtr)2

nsim
The method of Monte Carlo simulation was employed in this process. Table 2 displays the

parameters estimates along with their MSEs.

Table 2. Results for the simulation for the DAPWE estimates and MSE, with differ-

ent sample sizes for the three cases.

Sample Size Parameter First case Second case Third case

MLE MSE MLE MSE MLE MSE

n = 30 θ 0.1001583 3.177414e-06 1.161508 0.08597770 0.09011732 4.374959e-06

β 4.9990808 5.845506e-05 1.403781 0.06519533 3.99292246 2.853079e-04

α 2.9922006 7.406129e-03 1.9421084 5.25259323 3.49641563 2.057189e-02

c 8.9799483 4.653185e-02 0.945816 0.07725800 6.98276053 2.656954e-01

n = 100 θ 0.1000493 9.539688e-07 1.1875715 0.06517131 0.09006012 1.215366e-06

β 4.9999064 6.026195e-06 1.3799060 0.04806201 3.99917415 2.407169e-05

α 3.0001994 1.596485e-04 1.9653759 3.18410142 3.49624582 1.213938e-03

c 9.0004404 9.603389e-04 0.8791983 0.02714949 6.98551589 1.717626e-02

n = 200 θ 0.1000097 4.805996e-07 1.1991885 0.05635460 0.09001163 6.161602e-07

β 4.9999947 8.961264e-08 1.3720042 0.04148667 3.99978343 7.671131e-06

α 2.9999986 9.104468e-07 1.9639074 2.49671081 3.49933736 2.868404e-04

c 8.9999971 4.985113e-06 0.8627653 0.01949143 6.99737643 4.145624e-03

n = 500 θ 0.1000097 1.859450e-07 1.2223791 0.03926199 0.09000877 2.365109e-07

β 4.9999992 8.012236e-11 1.3572180 0.02854648 3.99999515 6.855065e-08

α 3.0000000 3.907789e-12 1.9421084 1.53148079 3.49999323 3.504064e-07

c 9.0000001 2.551322e-11 0.8443388 0.01145764 6.99997387 6.656688e-06
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From Table 2 and Figures 3, 4 , 5, it is clearly obvious that the estimates become closer to the

true value of parameters and the MSE become smaller as the sample size increase.

Figure 3. The MSE of the estimates for DAPWE (0.1,5,3,9).

Figure 4. The MSE of the estimates for DAPWE (1.3,1.3,2.1,0.8).
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Figure 5. The MSE of the estimates for DAPWE (0.09,4,3.5,7).

6. Applications

Four real data sets in this section were used to be fitted using six various models, including the

DAPWE. The PMFs for the competitive models are shown as

(1) Discrete Weibull Exponential (DWE) distribution by [14]

f (x;α, β,θ) = exp
(
−

(
θx
β

)α)
− exp

(
−

(
θ(x + 1)

β

)α)
, α, β,θ > 0.

(2) Poisson distribution (Pois) by [22].

f (x;λ) =
λxe−λ

x!
,λ > 0.

(3) Discrete Alpha Power Weibull (DAPW) by [23]

f (x;α, β,θ) =
α

α− 1

[(
1− α−θ

xβ
)
−

(
1− α−θ

(x+1)β
)]

, 0 < θ < 1, α, β > 0,α , 1.

(4) Discrete Burr-Hatke (DBH) by [24]

f (x;λ) =
( 1
x + 1

−
λ

x + 2

)
λx, 0 < λ < 1.

(5) Discrete Weibull Geometric Distribution (DWGeom) by [25]

f (x;ρ, p,α) =
(1− p)

(
ρxα
− ρ(x+1)α

)(
1− pρxα

)(
1− pρ(x+1)α

) , 0 < ρ < 1, 0 < p < 1, α > 0.
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(6) Discrete Pareto (DPareto) by [26]

f (x;θ) = exp
(
− θ log(x + 1)

)
− exp

(
− θ log(x + 2)

)
, θ > 0.

To identify the best model, various information criteria (IC) were adopted, including Akaike’s

Information Criterion (AIC) [27], the Corrected Akaike Information Criterion (AICc) [28], the

Hannan-Quinn Information Criterion (HQIC) [29], and the Kolmogorov-Smirnov (K-S) test with

its p-value. Additionally, plots were presented to compare the DAPWE distribution’s effectiveness

with the aforementioned ones.

Data set I:
This data set, reported by [30], represents the daily COVID-19 death toll for Argentina that was

tracked over a period of 65 days, from June 1 to August 4, 2020. The data are: 20, 11, 19, 10, 18, 27,

27, 14, 14, 28, 19, 24, 31, 30, 17, 23, 20, 24, 43, 25, 25, 13, 24, 33, 36, 39, 43, 25, 25, 28, 38, 27, 53, 40, 50,

37, 33, 79, 52, 53, 42, 38, 31, 41, 67, 61, 85, 61,71, 42, 35, 145, 80, 111, 105, 125, 66, 43, 126, 118, 111,

155, 77, 69, and 55.

The p-p plot and the empirical CDF for the fitted models are presented in Figures 6 and 7. Table

3 summarizes the results of the MLE’s of parameters, including standard errors (SEs) for each

distribution, log-likelihood, AIC, AICc, HQIC, and P-Values of K-S.

Table 3. MLE’s ( and their corresponding SE’s in parentheses ) for data set I.

Distributions DAPWE DWE Pois DAPW DBHatke DWGeom DPareto

Paremeters estimation θ̂=0.0252 θ̂=0.015 λ̂=48.5695 α̂=1.045 λ̂=0.9997 p̂=0.071 θ̂=0.2694

(0.039) (0.015) (0.864) (0.8986) (0.002) (0.384) (0.033)

β̂=2.087 β̂ = 0.8149 −−− β̂=1.55 −−− ρ̂=0.9951 −−−

(3.283) (0.8255) −−− (0.0491) −−− (0.00196) −−−

α̂=0.0758 α̂ = 1.4947 −−− θ̂=0.998 −−− α̂ = 1.3513 −−−

(0.1038) (0.1388) −−− (0.00012) −−− (0.0799) −−−

c=1.8626 −−− −−− −−− −−− −−− −−−

(0.1767) −−− −−− −−− −−− −−− −−−

-logL 306.0943 308.5531 854.5994 308.4608 482.5658 309.5786 391.5444

AICc 620.8552 623.4996 1711.2622 623.3151 967.1951 625.5506 785.1524

AIC 620.1885 623.1062 1711.1987 622.9217 967.1316 625.1571 785.0889

HQIC 623.6203 625.6800 1712.0567 625.4955 967.9896 627.7309 785.9468

P-Value 0.4047033 2.40546e-01 5.232e-12 1.5467e-01 6.799e-48 3.2035e-01 7.185e-14
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Figure 6. The p-p plots for data set I.

Figure 7. The empirical CDFs plots for data set I.
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Data set II:
This data set was presented by [23] and includes the mathematics degrees of 48 students from

the Indian Institute of Technology in Kanpur. The data are as follows: 29,25, 50 ,15, 13 ,27, 15, 18,

7,7 ,8 ,19, 12 ,18, 5 ,21, 15, 86, 21 ,15 ,14 ,39 ,15, 14, 70, 44, 6, 23, 58, 19, 50 ,23, 11, 6, 34, 18, 28 ,34, 12,

37, 4, 60, 20, 23 ,40 ,65, 19, 31.

The p-p plot and the empirical CDF for the fitted models are presented in Figures 8 and 9. Table

4 summarizes the results of the MLE’s of parameters, including standard errors (SEs) for each

distribution, log-likelihood, AIC, AICc, HQIC, and P-Values of K-S.

Table 4. MLE’s ( and their corresponding SE’s in parentheses ) for data set II.

Distributions DAPWE DWE Pois DAPW DBHatke DWGeom DPareto

Paremeters estimation θ̂=0.0327 θ̂=0.00479 λ̂=25.896 α̂=3.923 λ̂=0.999 p̂=0.1673 θ̂=0.3225
((0.0764) (0.0025) (0.7345) (5.9395) (0.0046) (0.4479) (0.0465)
β̂=1.4585 β̂=0.12129 −−− β̂=1.278 −−− ρ̂=0.991 −−−

(3.4374) (0.067) −−− (0.2125) −−− (0.00725) −−−

α̂=0.081 α̂=0.83187 −−− θ̂=0.9808 −−− α̂=1.3754 −−−

(0.1423) (0.1059) −−− (0.0209) −−− (0.16655) −−−

c=1.8327 −−− −−− −−− −−− −−− −−−

(0.2064) −−− −−− −−− −−− −−− −−−

-logL 197.4232 210.6193 396.5892 199.2364 297.6761 199.3776 251.1808
AICc 403.7767 427.7841 795.2654 405.0183 597.4392 405.3006 504.4486
AIC 402.8465 427.2387 795.1784 404.4728 597.3523 404.7551 504.3617

HQIC 405.675 429.3601 795.8856 406.5942 598.0594 406.8765 505.0688
P-Value 0.8982 0.001827 4.3416e-07 6.6073e-01 < 2.2e-16 0.623357 9.4026e-09

Figure 8. The p-p plots for data set II.
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Figure 9. The empirical CDFs plots for data set II.

Data set III:
This data set was submitted by [30], it presents the daily new COVID-19 cases for Angola,

documented over 27 days from July 8 to August 3, 2020. The data are: 33, 10, 62, 4, 21, 23, 19, 16,

35, 31, 31, 49, 18, 44, 30, 33, 39, 29, 36, 16, 18, 50, 78, 31, 39, 16, 116.

The p-p plot and the empirical CDF for the fitted models are shown in Figures 10 and 11. Table

5 summarizes the results of the MLE’s of parameters, including standard errors (SEs) for each

distribution, log-likelihood, AIC, AICc, HQIC, and P-Values of K-S.

Table 5. MLE’s ( and their corresponding SE’s in parentheses ) for data set III.

Distributions DAPWE DWE Pois DAPW DBHatke DWGeom DPareto

Paremeters estimation θ̂=0.0307 θ̂=0.0183 λ̂=34.333 α̂=2.018 λ̂=0.9994 p̂=0.1406 θ̂=0.2935
(0.08) (0.0334) (1.1277) (2.7604) (0.0047) (0.4748) (0.0565)

β̂=2.1032 β̂=0.7156 −−− β̂=1.5411 −−− ρ̂=0.9935 −−−

(5.5202) (1.3077) −−− (0.1201) −−− (0.005) −−−

α̂=0.0177 α̂=1.66157 −−− θ̂=0.9957 −−− α̂= 1.3693 −−−

(0.0431) (0.2301) −−− (0.0026) −−− (0.1629) −−−

c=2.0924 −−− −−− −−− −−− −−− −−−

(0.3035) −−− −−− −−− −−− −−− −−−

-logL 116.2471 117.6509 238.7173 117.7497 183.9725 118.8870 152.0907
AICc 242.3124 242.3452 479.5945 242.5428 370.1051 244.8175 306.3414
AIC 240.4942 241.3017 479.4345 241.4993 369.9451 243.7740 306.1814

HQIC 242.0355 242.4577 479.8198 242.6553 370.3304 244.9300 306.5668
P-Value 0.8262 0.598906 3.4e-03 5.9801e-01 < 2.2e-16 0.2023379 3.0848e-06
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Figure 10. The p-p plots for data set III.

Figure 11. The empirical CDFs plots for data set III.



Int. J. Anal. Appl. (2025), 23:239 19

Data set IV:
This data set is from the survival package of R program [31], The data set is about Survival time

in 23 patients with Acute Myelogenous Leukemia. The data are as follows: 9 , 13 , 13 ,18 , 23 ,28 ,

31 ,34 , 45 ,48, 161 , 5, 5 , 8, 8 , 12 , 16, 23, 27 ,30 ,33, 43 , 45.

The p-p plot and the empirical CDF for the fitted models are shown in Figures 12 and 13. Table

6 summarizes the results of the MLE’s of parameters, including standard errors (SEs) for each

distribution, log-likelihood, AIC, AICc, HQIC, and P-Values of K-S.

Table 6. MLE’s ( and their corresponding SE’s in parentheses ) for data set IV.

Distributions DAPWE DWE Pois DAPW DBHatke DWGeom DPareto

Paremeters estimation θ̂=0.0276 θ̂=0.0232 λ̂=29.478 α̂=1.04496 λ̂=0.9994 p̂=0.0024 θ̂=0.3194
(0.0872 ) (0.0698) (1.132) (0.8986) (0.00497) (1.175) (0.0666)
β̂=2.093 β̂=0.748 −−− β̂=1.553 −−− ρ̂=0.9843 −−−

(6.6367) (2.24993 ) −−− (0.0491) −−− (0.02485 ) −−−

α̂=0.0077 α̂=1.19888 −−− θ̂=0.998 −−− α̂= 1.195 −−−

(0.01704) (0.1724) −−− (0.000117) −−− (0.230) −−−

c=1.5649 −−− −−− −−− −−− −−− −−−

(0.24012) −−− −−− −−− −−− −−− −−−

-logL 98.52762 100.49461 302.69560 100.57088 144.00921 100.49622 121.26128
AICc 207.2775 208.2524 607.5817 208.4049 290.2089 208.2556 244.7130
AIC 205.0552 206.9892 607.3912 207.1418 290.0184 206.9924 244.5226

HQIC 206.1975 207.8459 607.6768 207.9985 290.3040 207.8492 244.8081
P-Value 0.9855025 6.995549e-01 0.0006324 7.381453e-01 4.049202e-15 0.63614484 1.04793e-04

Figure 12. The p-p plots for data set IV.
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Figure 13. The empirical CDFs plots for data set IV.

The tables 3, 4, 5 and 6 clearly indicate that the DAPWE distribution achieves superior efficiency

compared to competing distributions, as evidenced by the AIC, AICc, HQIC, and P-Values of K-S.

Additionally, this conclusion is further supported by Figures 6, 8, 10, 12 and Figures 7, 9, 11 and

13.

7. Conclusion

This paper introduces a discretization method for a continuous family of distributions, referred

to as the Discrete Alpha Power Weibull-G family. Within this framework, the four-parameter

DAPWE distribution is introduced. Its PMF and HRF exhibit attractive forms for adopting differ-

ent data behaviors. Some statistical characteristics were analyzed, and the method of maximum

likelihood was employed to estimate its four parameters. To evaluate the performance of the

(MLEs), three scenarios with varying parameter values of the DAPWE and four various sample

sizes were examined. Furthermore, to demonstrate the effectiveness of the DAPWE distribution

compared to other distributions, four real data sets were utilized. The findings highlighted the

effectiveness and usefulness of the DAPWE, showing that the DAPWE distribution is highly

adaptable for modeling real data in different fields.
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