On Enriched Suzuki Nonexpansive Mappings in P-Uniformly Convex Metric Spaces
Main Article Content
Abstract
This paper introduces and defines the concept of enriched Suzuki nonexpansive mappings T in p-uniformly convex metric spaces, thereby extending earlier results established in Hadamard spaces. We show that the τ-averaged mapping Tτ preserves the fixed points of T. In addition, we prove that Tτ is quasi-nonexpansive and that the sequence generated by the Mann iteration converges to a fixed point of both T and its averaged counterpart Tτ. We further establish both ∆-convergence and strong convergence of the Mann iteration sequence for the τ-averaged mapping. Additionally, we present an illustrative example of an enriched Suzuki nonexpansive mapping within p-uniformly convex metric spaces.
Article Details
References
- A. Naor, L. Silberman, Poincaré Inequalities, Embeddings, and Wild Groups, Compos. Math. 147 (2011), 1546–1572. https://doi.org/10.1112/s0010437x11005343.
- K.O. Aremu, C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, Multi-step Iterative Algorithm for Minimization and Fixed Point Problems in P-Uniformly Convex Metric Spaces, J. Ind. Manag. Optim. 17 (2021), 2161–2180. https://doi.org/10.3934/jimo.2020063.
- B.J. Choi, U.C. Ji, The Proximal Point Algorithm in Uniformly Convex Metric Spaces, Commun. Korean Math. Soc. 31 (2016), 845–855. https://doi.org/10.4134/ckms.c150114.
- D. Ariza-Ruiz, G. López-Acedo, A. Nicolae, The Asymptotic Behavior of the Composition of Firmly Nonexpansive Mappings, J. Optim. Theory Appl. 167 (2015), 409–429. https://doi.org/10.1007/s10957-015-0710-3.
- C. Izuchukwu, G.C. Ugwunnadi, O.T. Mewomo, A.R. Khan, M. Abbas, Proximal-type Algorithms for Split Minimization Problem in P-Uniformly Convex Metric Spaces, Numer. Algorithms 82 (2018), 909–935. https://doi.org/10.1007/s11075-018-0633-9.
- J.A. Clarkson, Uniformly Convex Spaces, Trans. Am. Math. Soc. 40 (1936), 396. https://doi.org/10.2307/1989630.
- B. Nanjaras, B. Panyanak, W. Phuengrattana, Fixed Point Theorems and Convergence Theorems for Suzuki-Generalized Nonexpansive Mappings in CAT(0) Spaces, Nonlinear Anal.: Hybrid Syst. 4 (2010), 25–31. https://doi.org/10.1016/j.nahs.2009.07.003.
- R. Espínola, A. Fernández-León, B. Piątek, Fixed Points of Single- and Set-Valued Mappings in Uniformly Convex Metric Spaces with No Metric Convexity, Fixed Point Theory Appl. 2010 (2009), 169837. https://doi.org/10.1155/2010/169837.
- S. Dhompongsa, W. Kirk, B. Sims, Fixed Points of Uniformly Lipschitzian Mappings, Nonlinear Anal.: Theory Methods Appl. 65 (2006), 762–772. https://doi.org/10.1016/j.na.2005.09.044.
- H.F. Senter, W.G. Dotson, Approximating Fixed Points of Nonexpansive Mappings, Proc. Am. Math. Soc. 44 (1974), 375–380. https://doi.org/10.2307/2040440.
- T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.
- T.C. Lim, Remarks on Some Fixed Point Theorems, Proc. Am. Math. Soc. 60 (1976), 179–179. https://doi.org/10.1090/s0002-9939-1976-0423139-x.
- T. Turcanu, M. Postolache, On Enriched Suzuki Mappings in Hadamard Spaces, Mathematics 12 (2024), 157. https://doi.org/10.3390/math12010157.
- K. Ullah, J. Ahmad, M. Arshad, Z. Ma, Approximation of Fixed Points for Enriched Suzuki Nonexpansive Operators with an Application in Hilbert Spaces, Axioms 11 (2021), 14. https://doi.org/10.3390/axioms11010014.
- V. Berinde, M. Păcurar, Approximating Fixed Points of Enriched Chatterjea Contractions by Krasnoselskij Iterative Algorithm in Banach Spaces, J. Fixed Point Theory Appl. 23 (2021), 66. https://doi.org/10.1007/s11784-021-00904-x.
- V. Berinde, M. Păcurar, Approximating Fixed Points of Enriched Contractions in Banach Spaces, J. Fixed Point Theory Appl. 22 (2020), 38. https://doi.org/10.1007/s11784-020-0769-9.
- V. Berinde, M. Păcurar, Kannan’s Fixed Point Approximation for Solving Split Feasibility and Variational Inequality Problems, J. Comput. Appl. Math. 386 (2021), 113217. https://doi.org/10.1016/j.cam.2020.113217.
- V. BERINDE, Approximating Fixed Points of Enriched Nonexpansive Mappings by Krasnoselskij Iteration in Hilbert Spaces, Carpathian J. Math. 35 (2019), 293–304. https://doi.org/10.37193/cjm.2019.03.04.
- W. Kirk, B. Panyanak, A Concept of Convergence in Geodesic Spaces, Nonlinear Anal.: Theory Methods Appl. 68 (2008), 3689–3696. https://doi.org/10.1016/j.na.2007.04.011.