Evolution of Radiative Initial Data in Higher-Order Nonlinear Schrödinger Equations: Stability Study
Main Article Content
Abstract
This article presents a comprehensive numerical investigation of the fourth-order Schrödinger equation (FSE), a dispersive partial differential equation characterized by higher-order linear terms and nonlinear interactions for a localized and radiative initial data. Using the Implicit-Explicit (IMEX) splitting method, we address the computational challenges posed by the equation, balancing efficiency and stability for both localized and radiative initial data. We analyze the effects of dispersive parameters (β and γ) and nonlinear growth parameters (α and q) on the boundedness of the solutions. A dynamic framework is proposed to track stability using Sobolev norms and energy functionals. The numerical schemes are implemented with Fourier spectral methods for spatial discretization and Runge-Kutta schemes for time evolution. Our results demonstrate the efficacy of the IMEX splitting method in handling stiff dispersive terms while providing insights into parameter sensitivity. In addition, radiative initial data evolves into a decomposed smaller wave-packets.
Article Details
References
- F. Araruna, R. Capistrano-Filho, G. Doronin, Energy Decay for the Modified Kawahara Equation Posed in a Bounded Domain, J. Math. Anal. Appl. 385 (2012), 743–756. https://doi.org/10.1016/j.jmaa.2011.07.003.
- U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta Methods for Time-Dependent Partial Differential Equations, Appl. Numer. Math. 25 (1997), 151–167. https://doi.org/10.1016/s0168-9274(97)00056-1.
- U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta Methods for Time-Dependent Partial Differential Equations, Appl. Numer. Math. 25 (1997), 151–167. https://doi.org/10.1016/s0168-9274(97)00056-1.
- J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2016.
- R.D.A. Capistrano–Filho, C. Kwak, F.J. Vielma Leal, On the Control Issues for Higher-Order Nonlinear Dispersive Equations on the Circle, Nonlinear Anal.: Real World Appl. 68 (2022), 103695. https://doi.org/10.1016/j.nonrwa.2022.103695.
- M.A. Caicedo, R. Capistrano Filho, B. Zhang, Neumann Boundary Controllability of the Korteweg–De Vries Equation on a Bounded Domain, SIAM J. Control. Optim. 55 (2017), 3503–3532. https://doi.org/10.1137/15m103755x.
- R.A. Capistrano–Filho, A.F. Pazoto, L. Rosier, Control of a Boussinesq System of Kdv–Kdv Type on a Bounded Interval, ESAIM: Control. Optim. Calc. Var. 25 (2019), 58. https://doi.org/10.1051/cocv/2018036.
- R.D.A. Capistrano-Filho, M.M.D.S. Gomes, Well-posedness and Controllability of Kawahara Equation in Weighted Sobolev Spaces, Nonlinear Anal. 207 (2021), 112267. https://doi.org/10.1016/j.na.2021.112267.
- L.C. Evans, Partial Differential Equations, American Mathematical Society, 2010.
- J. Frauendiener, C. Klein, U. Muhammad, N. Stoilov, Numerical Study of Davey–Stewartson I Systems, Stud. Appl. Math. 149 (2022), 76–94. https://doi.org/10.1111/sapm.12491.
- G.E. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press, 2013.
- T. Kato, Low Regularity Well-Posedness for the Periodic Kawahara Equation, Differ. Integral Equ. 25 (2012), 1011–1036. https://doi.org/10.57262/die/1356012249.
- R.I. McLachlan, G.R.W. Quispel, Splitting Methods, Acta Numer. 11 (2002), 341–434. https://doi.org/10.1017/s0962492902000053.
- D. Russell, B. Zhang, Exact Controllability and Stabilizability of the Korteweg-De Vries Equation, Trans. Am. Math. Soc. 348 (1996), 3643–3672. https://doi.org/10.1090/s0002-9947-96-01672-8.
- P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 2010. https://doi.org/10.1007/978-1-4612-4350-2.
- S.S. Sabo, U.M. Dauda, S. Babuba, A.I. Bakari, On Nonlinear Biharmonic Dispersive Wave Equations, FUDMA J. Sci. 9 (2025), 87–100. https://doi.org/10.33003/fjs-2025-0901-2925.
- T. Saanouni, R. Ghanmi, A Note on the Inhomogeneous Fourth-Order Schrödinger Equation, J. Pseudo-Differ. Oper. Appl. 13 (2022), 56. https://doi.org/10.1007/s11868-022-00489-0.
- W.A. Strauss, Nonlinear Wave Equations, American Mathematical Society, 1990.
- T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, American Mathematical Society, 2006.
- L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000.
- B. Zhang, X. Zhao, Control and Stabilization of the Kawahara Equation on a Periodic Domain, Commun. Inf. Syst. 12 (2012), 77–96. https://doi.org/10.4310/cis.2012.v12.n1.a4.
- X. Zhao, B. Zhang, Global Controllability and Stabilizability of Kawahara Equation on a Periodic Domain, Math. Control. Relat. Fields 5 (2015), 335–358. https://doi.org/10.3934/mcrf.2015.5.335.
- X.Z. Xiangqing Zhao, M.B. Meng Bai, Control and Stabilization of High-Order Kdv Equation Posed on the Periodic Domain, J. Partial. Differ. Equ. 31 (2018), 29–46. https://doi.org/10.4208/jpde.v31.n1.3.