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Abstract. This article presents a comprehensive numerical investigation of the fourth-order Schrödinger equation (FSE),

a dispersive partial differential equation characterized by higher-order linear terms and nonlinear interactions for a

localized and radiative initial data. Using the Implicit-Explicit (IMEX) splitting method, we address the computational

challenges posed by the equation, balancing efficiency and stability for both localized and radiative initial data. We

analyze the effects of dispersive parameters (β and γ) and nonlinear growth parameters (α and q) on the boundedness

of the solutions. A dynamic framework is proposed to track stability using Sobolev norms and energy functionals. The

numerical schemes are implemented with Fourier spectral methods for spatial discretization and Runge-Kutta schemes

for time evolution. Our results demonstrate the efficacy of the IMEX splitting method in handling stiff dispersive terms

while providing insights into parameter sensitivity. In addition, radiative initial data evolves into a decomposed smaller

wave-packets.

1. Introduction

1.1. The fourth order Nonlinear Schrödinger (FNLS) Equations. The fourth-order Schrödinger

equation (FSE) is a nonlinear dispersive partial differential equation that arises in various physical
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models, including fluid dynamics, quantum mechanics, and optical systems. Mathematically, it is

expressed as:

iut + βuxxxx + γuxx + α|u|qu = 0 (1.1)

where u(x, t) is the complex-valued solution, and the parameters β, γ, α, and q characterize the

equation’s dispersive and nonlinear properties.

This equation poses significant challenges due to the interplay between high-order dispersive

terms and nonlinear interactions, which can lead to instability or energy concentration (blow-up)

if not properly managed. The primary goal of this work is to address these challenges through

efficient numerical methods and rigorous analysis.

One prominent numerical approach for such equations is the IMEX splitting method, which

splits the equation into stiff linear and non-stiff nonlinear parts. The linear part is solved implicitly

to ensure stability, while the nonlinear part is handled explicitly for computational efficiency.

We further analyze the stability and boundedness of solutions using Sobolev norms and energy

functionals, providing insights into the role of parameters β/γ and α/q.

The Nonlinear Schrödinger (NLS) equation and its extensions have been extensively studied

in the context of dispersive and nonlinear systems. Classical studies, such as [18], explored the

theoretical properties of dispersive equations, focusing on existence, uniqueness, and blow-up

phenomena. Two dimensional version of the NLS equation such as Davey-Stewartson Systems

are studied in greater detail, some of the recent results are found in Joerg et. al. [10].

Higher-order Schrödinger equations, including the Fourth Order Nonlinear Schrödinger (FNLS)

equation, have gained attention for their applications in quantum mechanics and wave propaga-

tion. As we are interested in equation that of fourth order, such as the biharmonic equations,

some of the recent results are found in the literature [16] where dispersive and nonlinearity effects

were studied. Numerical methods for such equations include spectral methods [20], time-splitting

methods [13], and Runge-Kutta schemes [4]. The IMEX splitting method, analyzed in [3], has

proven effective for equations with stiff linear operators, balancing stability and computational

cost. For the spectral methods of implementation for some of these dispersive equations see [20].

For the existing results on similar kind of nonlinear dispersive equations, see [5]. In the work

by Capistrano-Filho, a higher-order generalized kind of KdV is studied using rigorous analysis

approach that involves some dispersive estimates. A controllability study of the KdV-equation on

a bounded domain is carried out by [6]. Similar studied were done on the extended KdV-type of

equation [7] [8].

For the theoretical understanding of these kind of equations on different kind of domain and

boundaries read Kato (2012) [12], and some existing local and global analysis of some nonlinear

related Schrödinger equations ( Tao, 2006 [19]). On the control and stability studies of other kind

of dispersive equations, read [21], [22] and Zhao (2018). Another study of a modified dispersive

equation is carried out on energy decay of the solution on a bounded domain [1].
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In addition, Sobolev embedding theorems and energy conservation laws have been used to

establish the boundedness of solutions in nonlinear PDEs [9]. For more similar studies on different

kind of equation see [7] and [8] using Sobolev Spaces. These tools are essential for understanding

the dynamics of the NLFS equaiton and its parameter sensitivity.

2. Properties of the FNSE

Knowing fully the geometric and algebraic properties of the equation will help a lot in under-

standing the properties of the equation and its solutions. The equation (1.1), like the classical

nonlinear Schrödinger equation, has its mass and energy functionals defined as

M[u(t)] =

∫
R

|u|2dx = ‖u‖2L2
(2.1)

E[u(t)] =

∫
R

(
γ|ux|

2
− β|uxx|

2
−

2α
q + 2

|u|q+2
)

dx, q ≥ 2. (2.2)

Consequent to this, the equation (1.1) like the classical NLS equation, has, associated to it, some

invariants. Based on the Noether’s theorem we can have the following symmetries:

(1) Translation Symmetry: The equation is invariant under spatial and temporal translations:

u(x, t) 7→ u(x + x0, t + t0).

(2) Scaling Symmetry:

For specific choices of β,γ,α, the equation is invariant under the scaling transformation:

u(x, t) 7→ λ−2/qu(λx,λ4t).

(3) Phase Symmetry:

The equation remains invariant under a global phase transformation:

u(x, t) 7→ eiθu(x, t),

where θ ∈ R.

(4) Pseudo conformal Transformation:

u(x, t)→
ei|x−x0|

2/4β(t−t0)

|t− t0|1/2
u
(

x− x0

t− t0
,−

1
t− t0

)
,

where |t − t0|
−1/2 is a scaling factor that to preserve the L2-norm, ei|x−x0|

2/4β(t−t0) is a phase

factor, as in the phase-transformation, to compensate for the spatial transformation while
x−x0
t−t0

,− 1
t−t0

are meant for the inversion, respectively, in space and time.

Proof of some of these symmetries are provided as follows:

(1) Translation symmetries

• Time translation: t → t + t0 for t′ = t + t0, x′ = x, u′(x′, t′) = u(x, t) under the

transformation, u′(x′, t′) = u(x, t + t0), so we have

∂u′

∂t
=
∂u
∂t

, u′xxxx = uxxxx, u′xx = uxx
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Thus, iu′t + βu′xxxx + γu′xx + α|u′|qu′ = 0, Since each term remains invariant.

• Space translation (x→ x + x0)

For a space translation, shift x→ x + x0, x′ = x + x0, t′ = t, u′(x′, t′) = u(x + x0, t).
The spatial derivatives remain unchanged:

∂u′

∂x′
=
∂u
∂x

, u′xxxx = uxxxx, u′xx = uxx

and the time derivative
∂u
∂t′

=
∂u
∂t

Therefore iu′t + βu′xxxx + γu′xx + α|u′|qu′ = 0.

(2) Phase symmetry:

u′(x′, t′) = u(x, t)eiθ x′ = x, t′ = t

For phase shift by θ, we modify the wave function as u(x, t) → u(x, t)eiθ For the time

derivative
∂u′

∂t′
= u′t = uteiθ

u′x = uxeiθ, u′xx = uxxeiθ, u′xxxx = uxxxxeiθ

Considering the non linear part

|u|q → |u′(x′, t′)|q = |u(x, t)eiθ
|
q = |u(x, t)|q|eiθ

|
q = |u(x, t)|q

then |u′(x; , t′)|qu′(x′, t′) = |u(x, t)|qu(x, t)eiθ.

Substituting into the main equation (1.1) we have

iu′t + βu′xxxx + γu′xx + α|u′|qu′ = eiθ(iut + βuxxxx + γuxx + α|u|qu) = 0.

(3) Galilean symmetry:

x′ = x− ct, u′(x′, t′) = u(x, t)ei(cx− c2t
2 )

In a Galiliean transformation, we move to a reference frame moving with velocity c. This

introduces a phase form in the wave function. There, we have

u′t =
∂u′

∂t′
=
∂(u(x, t)ecx− c2t

2 )

∂t
=

(
ut + icux −

ic2

2
u
)

ei(cx− c2t
2 )

u′x =
∂u′

∂x′
=

∂
∂x

(
u(x, t)ei(cx− c2t

2 )
)
=

(
ux + iuc

)
ei(cx− c2t

2 ),

u′xx = (uxx + 2icux − uc2)ei(cx− c2t
2 ),

u′xxx = (uxxx + 3iuxxc− 3c2ux − iuc3)ei(cx− c2t
2 ),

u′xxxx = (uxxxx + 4icuxxx − 6c2uxx − 4ic3ux + uc4)ei(cx− c2t
2 ).

Similarly, for the nonlinear part:

|u′(x′, t′)|q = |u(x, t)ei(cx− c2t
2 )
|
q = |u(x, t)|q,
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since |ei(cx− c2t
2 )
|
2 = 1

Again, substituting back into the main equation one gets:

iu′t + βu′xxxx + γu′xx + α|u′|2u′ = ei(cx− c2t
2 )

[ (
iut + i2cux − i2

c2u
2

)
+ β(uxxxx + 4icuxxx − 6c2uxx − 4ic3ux + uc4)

+ γ(uxx + 2icux − uc2) + α|u|qu
]

= ei(cx− c2t
2 )

[ (
c2u
2
− cux

)
+ βc2(uc2

− 6uxx) − γc2u

+ i(4cβuxxx − 4c3ux + 2γcux)

]
This implies that the equation stays invariant provided that the following conditions(

c2u
2
− cux

)
+ βc2(uc2

− 6uxx) − γc2u = 0,

4cβuxxx − 4c3ux + 2γcux = 0

hold.

2.1. Local Gauge Transform and Invariance. Here we investigate the invariance property of the

main equation (1.1) under local gauge transformation. It turns out that the global one holds (phase

transform).

The local Guage transform modifies the solution u(x, t) as:

u(x, t) 7→ u′(x, t) = u(x, t)eiφ(x,t),

where φ(x, t) is a smooth real-valued function. Substituting u′(x, t) into the FSE, we obtain the

transformed equation:

iu′t + βu′xxxx + γu′xx + α|u′|qu′ = (βφ2
x −φt − γφ

2
x − 4βφxxxφx − 3βφ2

xx)u− 6βuxxφ
2
x

− 12βuxφxxφx + u|u|q + βuxxxx + γuxx + i
[
4βuxxxφx + 6βuxxφxx + γφxx

+ 4βuxφxxx + βuφxxxx − 4βuxφ
3
x − 6βuφ2

xφxx + 2γuxφx + ut

]
= ([β− γ]φ2

x −φt − 4βφxxxφx − 3βφ2
xx)u− 6βuxxφ

2
x − 12βuxφxxφx

+ i
[
(4βuxxx − 4βuxφ

2
x − 6βuφxφxx + 2γux)φx + [6βuxx + γ]φxx + 4βuxφxxx + βuφxxxx

]
(2.3)

The equation remains invariant under the gauge transformation provided that:

([β− γ]φ2
x −φt − 4βφxxxφx − 3βφ2

xx)u− 6βuxxφ
2
x − 12βuxφxxφx = 0;

(4βuxxx − 4βuxφ
2
x − 6βuφxφxx + 2γux)φx + [6βuxx + γ]φxx + 4βuxφxxx + βuφxxxx = 0.

This invariance condition restricts the choice of φ(x, t), ensuring the transformation does not alter

the dynamics. More relaxing conditions may leads to the promising new solutions.
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2.2. Dispersive Nature of The equation. The dispersive nature of the FSE is determined by its

dispersion relation. Assuming u(x, t) = ei(kx−ωt), substituting into the linearized equation:

iut + βuxxxx + γuxx = 0,

yields the dispersion relation:

ω(k) = γk2
− βk4.

The group velocity, vg = dω
dk , is:

vg(k) = 2γk− 4βk3.

while the phase velocity vp = ω/k = γk− βk3 , vg. The dispersion relation is shown in Fig.

Figure 1. The dispersion relation ω(k) for the linearised form of the nonlinear 4th

order equation.

For β > 0, the fourth-order dispersion term dominates for large k, leading to highly dispersive

behavior. The balance between β and γ determines the relative contributions of higher- and lower-

order dispersive effects. This dispersive nature influences wave propagation and stability, making

parameter tracking critical for numerical simulations.

2.3. Derivation via the Euler-Lagrange Equation. The Euler-Lagrange equation for a complex-

valued field is:
∂
∂t

(
∂L
∂u∗t

)
+
∂
∂x

(
∂L

∂(∂xu∗)

)
−
∂2

∂x2

(
∂L

∂(∂2
xu∗)

)
−
∂L
∂u∗

= 0.

Firstly by computing the partial derivatives of L as found according to the Euler’s Lagrange

equation, we found:

∂L
∂u∗t

= −
i
2

u,
∂L

∂(∂xu∗)
= −γ∂xu,

∂L

∂(∂2
xu∗)

= β∂2
xu,

∂L
∂u∗

=
i
2

ut −
α
2
|u|qu.
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Substituting into Euler-Lagrange Equation, we obtain:

iut + β∂4
xu + γ∂2

xu + α|u|qu = 0,

which recovers the original fourth-order Schrödinger equation.

3. Methodology: Control Analysis

3.1. Splitting Technique. We decompose the equation into linear and nonlinear parts:

iut +L4u = 0, iut + α|u|qu = 0. (3.1)

The linear evolution equation is solved using a spectral method, which efficiently handles the

dispersive operator:

L4 = β∂4
x + γ∂2

x (3.2)

We define

û(t, k) = F [u](t, k) =
∫
∞

−∞

e−ikxu(t, x)dx, F
−1[u](t, x) =

∫
∞

−∞

eikxû(t, k)dk = u(t, x),

as the Fourier Transform F of the function u(t, x) in x and its inverse Fourier transform F −1.

Applying the Fourier Transformation to the linear part equation we write:

iût = iL̂4u = iL̂4û; (3.3)

where

L̂4 = βk4
− γk2.

To obtain the solution of the equation, we apply the IMEX (Implicit-Explicit) splitting method.

It is a time integration technique that splits the terms of the partial differential equation (PDE)

into linear (stiff) and nonlinear (non-stiff) components. It is particularly effective for higher disper-

sive equations such as the underlying nonlinear 4th order nonlinear Schrödinger equation. The

description of the method is highlighted as follows.

3.2. Description of the IMEX splitting. Here we describe how the IMEX splitting technique is

applied to our dispersive equation.

(1) Splitting the Equation: The equation is split into two parts:

• Linear Component (stiff):

iut +L4u = 0.

• Nonlinear Component (non-stiff):

iut + α|u|qu = 0.

The IMEX method treats the linear component implicitly for stability and the nonlinear
component explicitly for computational efficiency.
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(2) Time-Stepping Scheme
Let un be the solution at time t = n∆t, where ∆t is the time step size. The IMEX splitting

method advances the solution from un to un+1 in two steps:

• Step 1: Linear Evolution (Implicit)

Solve the linear part implicitly:

un+1/2 = e−iL4∆tun,

where e−iL4∆t is the matrix exponential operator, typically computed in Fourier space

for efficiency.

• Step 2: Nonlinear Evolution (Explicit)

Evolve the nonlinear part explicitly:

un+1 = un+1/2
− i∆tα|un+1/2

|
qun+1/2.

(3) Applying the Method step-by-step:

• Initialize:

- Define the initial condition u0(x), and parameters β, γ, α, and q.

- Set up the spatial grid and Fourier transform operators.

• Linear Evolution:

- Use the Fourier transform to diagonalize the linear operator L4.

- Compute the matrix exponential e−iL4∆t efficiently in Fourier space.

• Nonlinear Evolution:

- Compute the nonlinear term α|u|qu explicitly in physical space.

• Advance Time: - Combine the linear and nonlinear components to update the solution.

(4) Stability and Accuracy
For stability,

• Implicit Linear Step:

- The stiff linear operatorL4 is treated implicitly, ensuring numerical stability for large

time steps.

For accuracy,

• Explicit Nonlinear Step:

- The nonlinear term is non-stiff and is evaluated explicitly, avoiding expensive implicit

solvers.

The accuracy of the approach from the first order splitting leads to the order one accuracy in

time. One achieves higher-order-accuracy by applying this method of Strang splitting, where the

sequence is modified as:

un+1 = e−iL4
∆t
2

(
un
− i∆tα|un

|
qun

)
e−iL4

∆t
2 .

This improves the accuracy to second-order in time.

One of the advantages of this method (IMEX splitting) for this problem include the computational
efficiency which is achieve due to diagonalization in the Fourier space, while the implicit linear
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step avoid expensive matrix inversions. The stability is another advantage which is attained by

handling the stiffness from the linear dispersion operator L4 efficiently. It can further be adapted

to higher schemes such as Strang splitting.

3.3. Algorithms & Stability Tracking. Below are two algorithms that address the choice of the

nonlinearity where stability is guaranteed:

3.4. Tracking Stability of Dispersive Effects (β/γ). This algorithm evaluates and tracks the impact

of dispersive terms on the solution stability using the Sobolev embedding theorem. The Sobolev

H2-norm is bounded to analyze stability.

Algorithm Description

• Define the fourth-order Schrödinger equation:

iut + βuxxxx + γuxx + α|u|qu = 0

• Decompose the equation into linear and nonlinear parts:

- L4u = β∂4
xu + γ∂2

xu
- Nonlinear term: α|u|qu.

• Compute the Sobolev embedding bounds for the linear operator:

‖u‖L∞ ≤ C‖u‖H2 .

The stability is achieved if the

‖u‖H2

‖u0‖H2
< ∞ ∀t

That’s the quantity remains bounded for all time t, where

‖u‖2H2 := ‖u‖2L2(R)
+ ‖∇u‖2L2(R)

+ ‖∇2u‖2L2(R)
, ‖u‖2L2(R)

:=
∫

R

|u|2dx.

• Solve the linear evolution using a spectral method (efficient for dispersive operators).

3.5. Controlling Nonlinear Growth (α/q). This algorithm monitors the nonlinear effects using

energy functionals and Sobolev bounds, ensuring that the growth of the nonlinear term |u|q is

controlled.

Algorithm Description

• Use the define energy functional (2.2)

• Track the energy conservation:
dE[u]

dt
= 0.

• Use the Sobolev embedding to control |u|q via:

‖u‖qL∞ ≤ C‖u‖q
H2 .
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• Solve the nonlinear evolution iteratively using the Duhamel principle:

u(t) = eiL̂4tu0 − i
∫ t

0
eiL̂4(t−s)α|u|qu ds.

• Monitor ‖u‖H2 and ensure it remains bounded.

4. Numerical Simulation

Here we provide the simulation of the results obtained by using different choice of our param-

eters. All the simulated results are generated based on the choice of Schwartzian initial data.

• Case I. Taking initial data u0(x) = sech2(x − 1) and α = 1, β = 0.1, q = 2 and γ = 2, the

solution and the mass and energy conservations of u(t, x) is shown in the Fig. 2 as follows.

Figure 2. (top) Numerical solution u(t, x) of the equation (1.1) forα = 1, β = 0.1, q =

2 and γ = 2 with u0(x) = sech2(x− 1). (Bottom) Corresponding evolution of mass

and energy over time t.
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In this case the biharmonic behaviour is noticed as in the case of classical dispersive

beam equation type.

• Case II. The effect of higher nonlinearity and lower dispersion is observed in this case

where α = 1, β = 0.1, q = 2 and γ = 2 using the same type of initial data shown in Fig. 3.

Figure 3. Numerical solution u(t, x) of the equation (1.1) for α = 1, β = 0.1, q = 2

and γ = 2.

The mass and the energy conservations show significant variation in comparison with

the result shown in Fig. 2.

• Case III. Here the dispersive effect is varied significantly and exponential nonlinearity q
is assumed to have larger value. With α = 2, β = 1, q = 4 and γ = 2, the result shows an

anticipated behaviour. It is expected that stronger nonlinear could have the tendency to

alter the dispersion variation by overtaking it, see the behaviour in Fig. 4.
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Figure 4. Numerical solution |u(t, x)| of the equation (1.1) for α = 2, β = 1, q = 4

and γ = 2.

Through out the simulated results, the evolution of the mass and energy functions indicated that

there are slight variations as they evolve, however, as it is expected the system is conserved as

long as none of the dispersion or nonlinearity effect overtake the other. Thus, when these results

are simulated for a long time, the conservation can be guaranteed. However, when we attempt

to do that, the stability of the method is compromised since we are using numerical approach,

rounding errors tend to accumulate thereby affecting its accuracy. Therefore, for these reasons, we

intend to track the dispersive effects as well the nonlinearity effects via the use of L2 and H2-norms

of the solution to study the stability of the underlying nonlinear dispersive equation. This is

recommended by the Sobolev embedding theorem via the Duhamel formulation (7.6) of the main

equation. This is shown in a section on the control analysis.
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5. Results and Discussion: Control Analysis

The IMEX splitting method demonstrates stability and efficiency in solving the main equation

by dynamically varying the parameters β/γ and α/q. Here we analyse the the stability of the

equation based on the choice of parameters α, β,γ, q.

5.1. Nonlinearity effect. For the nonlinearity effect, the time t, mass M(t), energy E(t) and the

relative energy E(t)/E(0) are computed. We track the value of the energy and its relative variations

over time t. The result is shown while the nonlinearity parameters α and q vary, the dispersive

parameters are fixed. Here, we fixed γ = 1 and β = 0.1 (small dispersion) and vary the non-

linearity related parameters: α and q over the intervals α : [0.5, 1, 2, 4] and γ : [2, 4, 6, 8]:

• Case I With fixed α = 0.5 and q = 2, or α/q = 0.25 but with small dispersion coefficient

β = 0.1, we obtain the evolution of the mass and energy as shown in the table below:

Figure 5. Table showing the variation of the mass M(t), energy E(t) and the relative

energy E(t)/E(0) over time at α = 1/2, q = 2 for γ = 1, β = 0.1.

The result shows less significant variation in the mass and energy evolutions.

• Case II For α = 0.5 and q = 4, we have the following results:
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Figure 6. Table showing the variation of the mass M(t), energy E(t) and the relative

energy E(t)/E(0) over time at α = 1/2, q = 2 but γ = 1, β = 0.1.

One notices some variations in the H2-norms even-though the mass and the energy

evolution appear somewhat stable, Fig. 6. This is noted from the ratio of the H2-norm. The

behaviour occurs due to the increased in the non-linearity exponent q for small dispersion

coefficient β.

• Case III: As we notice what increase in q could result to, let us vary α. For α = 1 and q = 6,

we have:

Figure 7. The variation of the mass M(t), energy E(t) and the relative energy

E(t)/E(0) over time at α = 1, q = 6 but γ = 1, β = 0.1.
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• Case IV: For α = 1 and q = 8, we have noticed a slight change in the H2 norm, particularly

its relative quantity to the H2-norm of the initial data. Consequently, as will be seen in the

Case IV, by increasing the value of α. This change can be controlled as α/q slightly gets

closer to 1. This confirms stable evolution of u(t, x) in time t.

Figure 8. Table showing the variation of the mass M(t), energy E(t) and the relative

energy E(t)/E(0) over time at α = 1, q = 8 but γ = 1, β = 0.1.

• Case V: For α = 4 and q = 8, we have α/q = 0.5 but somewhat stable H2-norm:

Figure 9. Table showing the variation of the mass M(t), energy E(t) and the relative

energy E(t)/E(0) over time at α = 4, q = 2 but γ = 8, β = 0.1.
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This indicate that as when α/q → 1, then u(t) tends to stable solutions as t increases.

That is to say dispersion takes over. And nonlinearity takes control whenever α/q→ 0 as

shown in the Figure of case II, Fig. 6.

5.2. Dispersive effects. For the dispersive effect, the time t, mass M(t), energy E(t) and the relative

energy E(t)/E(0) are computed. We track the value of the energy and its relative variations over

time t. The result is shown while the dispersive parameters β and γ vary.

For fixed nonlinear parameters α = 1 and q = 2, we perform the variation of the dispersive

parameters β and γ as follows for β ∈ (0.1, 1) and γ ∈ (0.1, 1).

• Case I: With the fixed values of α and q, we vary the values of β and track the ratio β/γ.

Here, we take β = 0.1 and γ = 0.1, mass evolution undergoes slight deviation away from

the initial mass but the energy indicates significant variation from the initial energy. The

H2-norm exhibits significant deviation as well, however, finite.

Figure 10. Mass M(t), energy E(t) and the relative energy E(t)/E(0) over time for

β = 0.1,γ = 0.1.

• Case II: For β = 0.1 and γ = 0.5, the H2-norm behaves well for a short time t but shows

significant change as t increases. Similar behaviour is observed as in the case I. However,

the mass and the evolutions exhibit slight deviation . Therefore, increase the value of γ

lead to significant change in the associated conserved quantities.
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Figure 11. Evolution of the mass M(t), energy E(t) and the relative energy

E(t)/E(0) over time at β = 0.1,γ = 0.5.

• Case III: For α = 1 and q = 2, β = 0.3 and γ = 0.1, we have the following results:

Figure 12. The variation of the mass M(t), energy E(t) and the relative energy

E(t)/E(0) over time at β = 0.3,γ = 0.1.

• Case IV: For β = 0.5 and γ = 0.7, there is significant increase in the conserved quantities

as well as the associated norms.
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Figure 13. Variation of the mass M(t), energy E(t) and the relative energy E(t)/E(0)
over time at β = 0.5,γ = 0.7.

• Case V For α = 1 and q = 2, β = 0.9 and γ = 0.9, we have the following results:

Figure 14. Variation of the mass M(t), energy E(t) and the relative energy

H2(t)/H2(0) over time at α = 0.9,γ = 0.9.

Depending on how β/γ tends to 1, the evolutions tends to an unstable behaviour.

5.3. Effect of radiative initial data. These are initial conditions for which the underlying dynam-

ical equation posses the tendency to generate radiation. That is the solution carries the energy to

infinity dispersively. Theoretical background hinted having non-compactly supported radiative
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initial data decays slowly or algebraically. Such initial data include those with oscillatory decay:

sin(2x)/(1 + x2) or those partially localized but posses radiative tail: sech2(x) + ε cos(πx)e−x2
.

Figure 15. The evolution of the radiative initial data u0(x) = sech2(x) +
ε cos(πx)e−x2

.

In the table below, the dispersive effects of radiative initial data for β = 0.60, γ = 0.40, β/γ = 1.5

is shown for the radiative initial data sech2(x) + ε cos(πx)e−x2
. The See Fig.15.

The radiative initial data appears to evolved by the underlying Schrödinger equation into some

sort of breathers. To track the stability, we trace the evolution of the mass, energy as well as the H2-

norm and shows quasi-stable nature. Relative energy Er(t) is also computed thereby confirming

the relative errors encountered numerically.
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Time: t Mass: M(t) Energy: E(t) Rel. Energy: Er(t) H2(u(t)) H2(u0)/H2(u(t))

0.00100 0.88622 6.24201e+00 2.50470 3.70444e+00 1.00018
0.00200 0.88622 6.23350e+00 0.13990 3.70331e+00 1.00048
0.00300 0.88622 6.22307e+00 0.17124 3.70202e+00 1.00083
0.00400 0.88622 6.21251e+00 0.17329 3.70073e+00 1.00118
0.00500 0.88622 6.20241e+00 0.16600 3.69948e+00 1.00152
0.00600 0.88622 6.19263e+00 0.16061 3.69825e+00 1.00185
0.00700 0.88622 6.18198e+00 0.17481 3.69686e+00 1.00223
0.00800 0.88622 6.16940e+00 0.20653 3.69522e+00 1.00268
0.00900 0.88622 6.15483e+00 0.23937 3.69334e+00 1.00318
0.01000 0.88622 6.13910e+00 0.25821 3.69138e+00 1.00372

...
...

...
...

...
...

0.99000 0.88644 5.90902e+00 0.07954 3.65327e+00 1.01419
0.99100 0.88644 5.91254e+00 0.05777 3.65368e+00 1.01407
0.99200 0.88644 5.91550e+00 0.04862 3.65405e+00 1.01397
0.99300 0.88644 5.91888e+00 0.05560 3.65451e+00 1.01385
0.99400 0.88644 5.92341e+00 0.07429 3.65510e+00 1.01368
0.99500 0.88644 5.92902e+00 0.09211 3.65581e+00 1.01348
0.99600 0.88644 5.93436e+00 0.08772 3.65642e+00 1.01331
0.99700 0.88644 5.93790e+00 0.05815 3.65678e+00 1.01322
0.99800 0.88644 5.93887e+00 0.01600 3.65681e+00 1.01321
0.99900 0.88644 5.93739e+00 0.02442 3.65655e+00 1.01328
1.00000 0.88644 5.93463e+00 0.04525 3.65617e+00 1.01338

Likewise, the evolution of the mass and energy of the radiative initial data are described in the

Fig. 16. The evolution of both quantities reflects the radiative property.

Figure 16. The evolution of mass and energy of the radiative initial data u0(x) =
sech2(x) + ε cos(πx)e−x2

with β = 0.6,γ = 0.4.

5.4. Discussion. The ratio β/γ controls the dominance of high-order dispersion. Larger β values

lead to stronger smoothing effects, stabilizing the solution. The ratio α/q determines the nonlinear
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intensity. For moderate values, the energy functional remains conserved, ensuring bounded

growth. These results are shown in tabular form as described.

It’s been seen, in section 5.1, that stability of the solution is guaranteed as the ratio α/q → 1

(i.e. tends to 1). This is evident from the tables in the cases I, II, III, and IV, where the nonlinearity

related paramters α and q are varied. In these cases, the mass, energy and the H2-norms stays finite

with little significant deviation with increase in the time parameter. However, the case V where

α = 4 and q = 8 signals the tendency of singular solutions the conserved quantities as well as the

norms tend to increase significantly. As a result, stability of the solution cannot be affirmed when

α/q→ 0. This is due to the fact that the dispersion coefficients β and γ are kept small.

On the other hand, keeping the nonlinearity related parameters α = 1 and q = 2 fixed, varying

dispersive parameters β and γ could yield to uncontrolled quantities. As indicated in the section

5.2, the dispersive parameters effects depends on how β/γ approaches 1. Significant variation is

noticed when the quantity β/γ → 1 when both β and γ are bigger as can be seen in Case I and

V where the H2-norm relative ratio is much greater than 1. Hence, instability is bound to kick in

particularly in the case similar to the former (14) in comparison to the latter table (10). The only

case one gets stable behaviour in the mass, energy and the H2-norms is case II of (5.2). Unstable

behaviour is present in the other cases.

For radiative type of initial data, we observed the remarkable behaviour as shown in Fig. 15

where β > γ with q = 2 and these is maintained throughout the evolution as t → ∞. As it is

expected, when radiation is present, the associated conserved quantities such as mass and energy

may exhibit otherwise kind of behaviour. This can be seen in the Figures of Fig. 16 where the mass

and the energy posses non-constant evolutions.

6. Summary and Conclusion

This study presents the study effects of involved dispersive and nonlinearity parameters for

a a localized and radiative initial data for a general one dimensional fourth order nonlinear

Schrödinger equation numerically. An IMEX splitting method is used to solve the FNSE for

efficiency. IMEX split method involves splitting the equation into linear and nonlinear components.

We study establishes the balance between stability and efficiency of the solutions based on the

tracking the evolution of mass, energy and H2-norms. Stable and unstable behaviour are observed

in both effects of dispersion and nonlinearity for a localized type of initial data. On the other hand,

radiative initial data (localized wave with radiative tail) leads to the remarkable wave behaviour

known as breathers.

Future work will explore adaptive time-stepping and higher-order schemes for more complex

systems like two dimensional version. Such schemes if implemented would present clear and

reliable result especially in the higher dimensional problem. Such equations are important in ap-

plication, especially considering the origin of the main equation in the field of quantum mechanics

which later finds application in nonlinear optics.
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7. Appendix I: Preliminaries

We define the norms used:

• The Sobolev H2-norm:

‖u‖2H2 = ‖u‖2L2 + ‖∂xu‖2L2 + ‖∂
2
xu‖2L2 .

• The L∞-norm:

‖u‖L∞ = sup
x∈R
|u(x)|.

By Sobolev embedding, we know:

‖u‖L∞ ≤ C‖u‖H2 ,

where C > 0 is a constant dependent on the embedding.

Appendix II: Lagrangian Formulation of the Equation

The fourth-order Schrödinger equation is given as:

iut + β∂4
xu + γ∂2

xu + α|u|qu = 0.

Lagrangian Density. The associated Lagrangian density and its Hamiltonian density are:

L =
i
2
(u∗ut − uu∗t) + β|∂2

xu|2 − γ|∂xu|2 +
2α

q + 2
|u|q+2;

H = Π · u̇−L = ut
∂L
∂u∗t
−L = γ|ux|

2
− β|uxx|

2
−

2α
(q + 2)

|u|q+2.

where u∗ is the complex conjugate of u, |∂2
xu|2 = (∂2

xu)(∂2
xu∗), |∂xu|2 = (∂xu)(∂xu∗), and the nonlinear

term contributes − α
q+2 |u|

q+2. Here for the equation:

• The first term represents the dynamical evolution of the field.

• The second and third terms correspond to the fourth- and second-order spatial derivatives,

respectively.

• The fourth term represents the nonlinear interaction.

Appendix III

Consider the fourth-order Schrödinger equation:

iut +L4u + α|u|qu = 0, L4 = β∂4
x + γ∂2

x.

The energy functional for the main equation is as given in (2.2) Then one may rigorously prove

the boundedness of ‖u‖L∞ and ‖u‖H2 in terms of the energy functional E(u).
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Conservation ofMass and Energy

The mass function M(t) over time is defined by

M(t) =
∫

R

|u(t, x)|2 = ‖u‖

and the energy functional E(u) defined (2.2). If these two quantities are conserved over time t,
then we are bound to have:

dM(u(t))
dt

= 0,
dE(u)

dt
= 0.

The proof follows from multiplying the equation by u∗, integrating by parts, and using boundary

conditions.

7.1. Proof of Boundedness.

Proof. 1. Control of H2-norm: From the energy functional (2.2), one uses the Sobolev inequality

‖u‖L∞ ≤ C‖u‖H2 , it follows that:

‖u‖2H2 ≤ CE(u).

2. Control of L∞-norm: Again, using Sobolev embedding, we directly have:

‖u‖L∞ ≤ C′‖u‖H2 .

Since ‖u‖2
H2 ≤ CE(u), it follows that:

‖u‖L∞ ≤ C′E(u)1/2.

Thus, the solution is bounded in H2 and L∞. �

Appendix IV: Control Analysis Algorithm

Algorithm 1: Stability Tracking of Dispersive Effects (β/γ).

Mathematical Formulation. The stability of the dispersive effects is analyzed by monitoring the

H2-norm of the solution, which is bounded by the Sobolev embedding theorem:

‖u‖L∞ ≤ C‖u‖H2 . (7.1)

We decompose the equation into linear and nonlinear parts:

iut +L4u = 0, iut + α|u|qu = 0. (7.2)

The linear evolution is solved using a spectral method, which efficiently handles the dispersive

operators.
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Algorithm Steps.

(1) 1. Define the initial condition u0 and parameters β, γ, and domain size L.

(2) Compute the Fourier transform of u and the linear operators k2 and k4.

(3) Solve the linear evolution using a fourth-order Runge-Kutta (RK4) method.

(4) Track the H2-norm of the solution over time:

H2(u) = ‖u‖2 + ‖∂xu‖2 + ‖∂2
xu‖2. (7.3)

Algorithm 2: Nonlinear Growth Control (α/q).

Mathematical Formulation. The nonlinear term α|u|qu introduces growth that is controlled using the

energy functional (2.2). Then the energy conservation is monitored to ensure that:

dE[u]
dt

= 0. (7.4)

Sobolev embedding ensures control over the L∞-norm of u:

‖u‖qL∞ ≤ C‖u‖q
H2 . (7.5)

Algorithm Steps.

(1) Define the initial condition u0 and parameters α, q, β, and γ.

(2) Decompose the evolution into linear and nonlinear parts.

(3) Solve the nonlinear evolution using the Duhamel principle:

u(t) = e−iL4tu0 − i
∫ t

0
e−iL4(t−s)α|u|qu ds. (7.6)

(4) Track energy conservation and ensure that it remains constant.

MATLAB Codes

% MATLAB Script for IMEX Splitting To Solve Fourth-Order nonlinear

Schrodinger Equation

% i u_t+\beta *u_xxxx+\gamma *u_xx+ \alpha * u^q u = 0

% with Mass and Energy Conservation Tracking

%%%%% Typesetting parameters

FS = ’FontSize’; Intp =’Interpreter’; Ltx = ’Latex’;

% Physical Parameters involved

beta = 0.1; % Coefficient for u_xxxx term

gamma = 1; % Coefficient for u_xx term

% alpha = 1; % Coefficient for nonlinear term

% q = 2; % Power of the nonlinear term
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L = 4*pi; % Domain length

N = 2^10; % Number of spatial points

tmax = 4*0.5; % Final time

dt = 0.01; % Time step size

% Spatial grid and wavenumbers

x = linspace(-L/2, L/2, N)’; % spatial variables

dx = x(2) - x(1); % step size

kx = (2 * pi / (2 * L)) * [0:(N/2-1) -N/2:-1]’; % Fourier wavenumbers

% Initial condition (e.g., Schwartzian data)

%u0 = exp(-x.^2); % Schwartzian function

u0 = sech(x-1).^2; % Schwartzian function (initial data)

%A = 0.25; B = 0.25; u0 = 4*(A*sech(0.5*A^2*(x-4)).^2+B*sech(0.5*B^2*(x+4)

).^2); % Schwartzian function

% Precompute linear operator in Fourier space

L4x = (beta * kx.^4 - gamma * kx.^2); % spatial linear operator in Fourier

space

L4 = 1i * L4x; % Complete Linear part

% Time-stepping loop using IMEX splitting

u = u0; % Initialize solution

u_hat = fft(u); % Fourier transform of initial condition

t = 0:dt:tmax; % Time vector

% Initialize mass and energy trackers

mass = zeros(1, length(t));

energy = zeros(1, length(t));

% Store solution for visualization

solution = zeros(N, length(t));

solution(:, 1) = u;

% Define the range of alppha and q

alpha_values = [0.5, 1,2,4];
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q_values = [2,4,6,8];

labels ={’Time’ ’Mass’ ’Energy’ ’Rel. Energy’};

% Loop over alpha/q values

for alpha = alpha_values

for q = q_values

% initialize the solutoion and compute initial mass and initial

% energy

% Compute initial mass and energy

mass(1) = sum(abs(u).^2) * dx; % Mass: ||u||_2^2

energy(1) = sum(-beta * abs(ifft(1i*kx.*fft(ifft(1i*kx.*fft(u))))).^2 ...

+ gamma * abs(ifft(1i*kx.*fft(u))).^2 ...

- 2 * (alpha/(q+2)) * abs(u).^(q+2)) * dx; % Energy

fprintf(’Controlling nonlinear Growth for alpha =%.2f, q =%.2f, alpha/q = 

%.4f\n’, alpha,q, alpha/q);

fprintf(’%-6s   %-6s   %-5s  %-5.5s\n’, labels{:});

for n = 2:length(t)

% Implicit linear step (solve exactly in Fourier space)

u_hat = exp(dt * L4) .* u_hat;

% Transform back to physical space for nonlinear step

u = ifft(u_hat);

% Explicit nonlinear step

u = u - 1i * dt * alpha * u .* abs(u).^q;

% Transform back to Fourier space for the next step

u_hat = fft(u);

% Compute mass and energy at this time step

mass(n) = sum(abs(u).^2) * dx; % Mass: ||u||_2^2

energy(n) = sum(-beta * abs(ifft(1i*kx.*fft(ifft(1i*kx.*fft(u))))).^2 ...

+ gamma * abs(ifft(1i*kx.*fft(u))).^2 ...

- (2 * alpha/(q+2)) * abs(u).^(q+2)) * dx; % Energy

% Store solution

solution(:, n) = (u);
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% fprintf(’Time: %.2f, Mass: %.2f, Energy: %.2f, Rel. Energy: %.2f\n’, t(n

), mass(n), abs(energy(n)), abs(energy(n)/energy(1)));

fprintf(’%- .4f  %-.4f  %-.4f %-.4f\n’, [t(n), mass(n), abs(energy(n)),

abs(energy(n)/energy(1))]);

end

fprintf(’\n’);

end

% Visualization of the solution

[X, T_grid] = meshgrid(x, t);

figure(1);

surf(X, T_grid, real(solution.’), ’EdgeColor’, ’none’);

colormap jet;

xlabel(’$x$’, Intp, Ltx);

ylabel(’$t$’, Intp, Ltx);

zlabel(’$u(x, t)$’, Intp, Ltx);

title(’$iu_t+\mathcal{L}_4u+N[u]=0, \quad \alpha = 2, \beta =0.1, \gamma =

 1$’, Intp, Ltx);

view([-30, 70]);

colorbar;

axis tight;

% Plot mass and energy over time

figure(2);

plot(t, abs(mass), ’b’, ’LineWidth’, 2);

%hold on;

%legend(’Mass’, ’Energy’);

xlabel(’$t$’, Intp, Ltx);

ylabel(’$M(t)$’, Intp, Ltx);

title(’Mass Conservation’);

grid on;

figure(3)

plot(t, abs(energy), ’r’, ’LineWidth’, 2);

xlabel(’$t$’, Intp, Ltx);
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ylabel(’$E(t)$’, Intp, Ltx);

title(’Energy Conservation’);

grid on;

end

% MATLAB Script for IMEX Splitting To Solve Fourth-Order nonlinear

Schrdinger Equation

% i u_t+\beta *u_xxxx+\gamma *u_xx+ \alpha * u^q u = 0

% with Mass and Energy Conservation Tracking

%%%%% Typesetting parameters

FS = ’FontSize’; Intp =’Interpreter’; Ltx = ’Latex’;

format shortG

% Physical Parameters involved

%beta = 0.1; % Coefficient for u_xxxx term

%gamma = 1; % Coefficient for u_xx term

beta_values = 0.1:0.2:1;

gamma_values = 0.1:0.2:1;

alpha = 1; % Coefficient for nonlinear term

q = 2; % Power of the nonlinear term

L = 4*pi; % Domain length

N = 2^10; % Number of spatial points

tmax = 4*0.5; % Final time

dt = 0.01; % Time step size

% Spatial grid and wavenumbers

x = linspace(-L/2, L/2, N)’; % spatial variables

dx = x(2) - x(1); % step size

kx = (2 * pi / (2 * L)) * [0:(N/2-1) -N/2:-1]’; % Fourier wavenumbers

k2 = kx.^2; k4 = kx.^4;

% Initial condition (e.g., Schwartzian data)

%u0 = exp(-x.^2); % Schwartzian function

u0 = sech(x-1).^2; % Schwartzian function (initial data)
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%A = 0.25; B = 0.25; u0 = 4*(A*sech(0.5*A^2*(x-4)).^2+B*sech(0.5*B^2*(x+4)

).^2); % Schwartzian function

% Time-stepping loop using IMEX splitting

u = u0; % Initialize solution

% H2_norm of the initial data

H2_0 = sqrt(sum((abs(u).^2 + abs(k2.*u).^2 + abs(k4.*u).^2) * dx));

u_hat = fft(u); % Fourier transform of initial condition

t = 0:dt:tmax; % Time vector

% Initialize mass and energy trackers

mass = zeros(1, length(t));

energy = zeros(1, length(t));

% Store solution for visualization

solution = zeros(N, length(t));

solution(:, 1) = u;

% Define the range of alppha and q

% alpha_values = [0.5, 1,2,4];

% q_values = [2,4,6,8];

labels ={’Time’ ’Mass’ ’Energy’ ’Rel. Energy ’ ’ H^2(u(t))’ ’H^2(t)/H^2(

u_0)’};

% Loop over gamma/beta

for beta = beta_values

for gamma = gamma_values

% initialize the solutoion and compute initial mass and initial

% energy

% Compute initial mass and energy

mass(1) = sum(abs(u).^2) * dx; % Mass: ||u||_2^2

energy(1) = sum(-beta * abs(ifft(1i*kx.*fft(ifft(1i*kx.*fft(u))))).^2 ...

+ gamma * abs(ifft(1i*kx.*fft(u))).^2 ...

- 2 * (alpha/(q+2)) * abs(u).^(q+2)) * dx; % Energy
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fprintf(’Controlling Dispersive effectsfor beta =%.2f, gamma =%.2f, beta/

gamma = %.4f\n’, beta,gamma, beta/gamma); %, H2_norm, H2_norm/H2_0

fprintf(’%-6s   %-6s  %-6s %-6s   %-6s  %-6s \n’, labels{:});

% Precompute linear operator in Fourier space

L4 = 1i * (beta * kx.^4 - gamma * kx.^2);

for n = 2:length(t)

% Implicit linear step (solve exactly in Fourier space)

u_hat = exp(dt * L4) .* u_hat;

% Transform back to physical space for nonlinear step

u = ifft(u_hat);

% Explicit nonlinear step

u = u - 1i * dt * alpha * u .* abs(u).^q;

% Transform back to Fourier space for the next step

u_hat = fft(u);

% Compute mass and energy at this time step

mass(n) = sum(abs(u).^2) * dx; % Mass: ||u||_2^2

energy(n) = sum(-beta * abs(ifft(1i*kx.*fft(ifft(1i*kx.*fft(u))))).^2 ...

+ gamma * abs(ifft(1i*kx.*fft(u))).^2 ...

- (2 * alpha/(q+2)) * abs(u).^(q+2)) * dx; % Energy

% Store solution

solution(:, n) = (u);

sol_u = solution(:,n);

H2_norm = sqrt(sum((abs(sol_u).^2 + abs(k2.*u).^2 + abs(k4.*u).^2) * dx));

% fprintf(’Time: %.2f, Mass: %.2f, Energy: %.2f, Rel. Energy: %.2f\n’, t(n

), mass(n), abs(energy(n)), abs(energy(n)/energy(1)));

fprintf(’%-.5f  %-.5f %-.5f %-0.5f %-0.5f %-0.5f\n’, ...

[t(n), mass(n), abs(energy(n)), abs(energy(n)/energy(1)),H2_norm, H2_0/

H2_norm]);

% energy ratio should be relatively 1 (~ 1)

% H2 norm ratio should be finite
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end

fprintf(’\n’);

end

% Visualization of the solution

[X, T_grid] = meshgrid(x, t);

figure(1);

surf(X, T_grid, real(solution.’), ’EdgeColor’, ’none’);

colormap jet;

xlabel(’$x$’, Intp, Ltx);

ylabel(’$t$’, Intp, Ltx);

zlabel(’$u(x, t)$’, Intp, Ltx);

title(’$iu_t+\mathcal{L}_4u+N[u]=0, \quad \alpha = 2, \beta =0.1, \gamma =

 1$’, Intp, Ltx);

view([-30, 70]);

colorbar;

axis tight;

% Plot mass and energy over time

figure(2);

plot(t, abs(mass), ’b’, ’LineWidth’, 2);

%hold on;

%legend(’Mass’, ’Energy’);

xlabel(’$t$’, Intp, Ltx);

ylabel(’$M(t)$’, Intp, Ltx);

title(’Mass Conservation’);

grid on;

figure(3)

plot(t, abs(energy), ’r’, ’LineWidth’, 2);

xlabel(’$t$’, Intp, Ltx);

ylabel(’$E(t)$’, Intp, Ltx);

title(’Energy Conservation’);

grid on;

end
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Appendix V: Lie Symmetries of the equation

Investigating the lie symmetry groups of the FSE involves identifying continous symmetry of

the equation.

Lie symmetry analysis focuses on finding transformation that leaves the PDE invariant. These

transformations form a lie group, and the association infinitesimal generators form a lie algebra.

To find the lie symmetry of the FSE, we perform an infinitesimal transformation on the dependent

variable U(x, t) and the independent variable x and t as follows:

u′ = u + εη(x, t, u) (7.7)

x′ = x + εζ(x, t, u), t′ = t + ετ(x, t, u) (7.8)

where ε is an infinitesimal parameter, and ζ, τ and η are the infinitesimal generators.

The generators ζ(x, t, u), τ(x, t, u) and η(x, t, u) must satisfy the condition that the transformtion

or the transformed FSE remained invariant. using the lie symmetry method, we can identify the

following symmetries.

7.2. Infinitesimal generators. According to the symmetry of the equation, the following vector

fields are generated

• Time translation: X1 = ∂
∂t ;

• Space translation: X2 = ∂
∂x ;

• Phase symmetry: X3 = iu ∂
∂u ;

• Galilean symmetry: X4 = t ∂∂x + i( x
2 + it)u ∂

∂u ;

• Scaling symmetry:

x′ = λax, t′ = λbt, u′(x′, t′) = λcu(x, t)

with the generator

X5 = x
∂
∂x

+ 2t
∂
∂t
−

u
2
∂
∂u

(7.9)

Definition 7.1 (Lie Algebra of the symmetries). The associated symmetries form a lie algebra of gener-
ators:

(X1, X2, X3, X4, X5)

The commutator of these generators provide the structure constants of the lie algebra.

[X1, X2] = 0, [X1, X5] = −2X1, [X2, X4] = X1

Utilizing these Lie symmetries one may simplify the equation by reducing the number of

independent variables it may have which in turn would lead to to the symmetry reduced solutions.

It is known that equations that are Galilean invariant admits travelling wave solutions, scale invariant
has self-similar solutions where the solutions shape is preserved while it grows or shrink over time.

Likewise, for phase-invariance, the symmetry can lead to the identification of stationary solutions.
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