Linear and Nonlinear Control for Complete Synchronization of Fractional-Order Discrete Reaction-Diffusion Systems

Main Article Content

Iqbal H. Jebril

Abstract

This paper investigates complete synchronization (CS) of coupled fractional-order discrete reaction-diffusion systems (FO-RDs) under linear and nonlinear control strategies. We derive sufficient conditions for finite-time synchronization using Lyapunov functionals (LFs) and Caputo fractional difference operators. Theoretical results are validated through numerical simulations of the Degn-Harrison model, demonstrating that both control strategies achieve synchronization with zero error convergence. The linear controller shows faster convergence while the nonlinear controller exhibits superior robustness to initial condition variations.

Article Details

References

  1. T.A.M. Langlands, B.I. Henry, S.L. Wearne, Turing Pattern Formation with Fractional Diffusion and Fractional Reactions, J. Phys.: Condens. Matter 19 (2007), 065115. https://doi.org/10.1088/0953-8984/19/6/065115.
  2. D. Prodanov, First-Order Reaction-Diffusion System with Space-Fractional Diffusion in an Unbounded Medium, in: Lecture Notes in Computer Science, Springer, Cham, 2022, pp. 65–70. https://doi.org/10.1007/978-3-030-97549-4_7.
  3. K.M. Owolabi, A. Atangana, Numerical Simulation of Noninteger Order System in Subdiffusive, Diffusive, and Superdiffusive Scenarios, J. Comput. Nonlinear Dyn. 12 (2016), 031010. https://doi.org/10.1115/1.4035195.
  4. B. Datsko, Y. Luchko, v. Gafiychuk, Pattern Formation in Fractional Reaction–diffusion Systems with Multiple Homogeneous States, Int. J. Bifurc. Chaos 22 (2012), 1250087. https://doi.org/10.1142/s0218127412500873.
  5. J.M. Wentz, D.M. Bortz, Boundedness of a Class of Spatially Discrete Reaction-Diffusion Systems, SIAM J. Appl. Math. 81 (2021), 1870–1892. https://doi.org/10.1137/20m131850x.
  6. I.H. Lee, U.I. Jo, Pattern Formations With Turing and Hopf Oscillating Pattern in a Discrete Reaction-Diffusion System, Bull. Korean Chem. Soc. 21 (2000), 1213–1216.
  7. I. Bendib, M.A. Hammad, A. Ouannas, G. Grassi, The Discrete Sir Epidemic Reaction–diffusion Model: Finite‐time Stability and Numerical Simulations, Comput. Math. Methods 2025 (2025), 9597093. https://doi.org/10.1155/cmm4/9597093.
  8. S. Abdelmalek, S. Bendoukha, The Lengyel–Epstein Reaction Diffusion System, in: Applied Mathematical Analysis: Theory, Methods, and Applications, Springer, Cham, 2019: pp. 311–351. https://doi.org/10.1007/978-3-319-99918-0_10.
  9. F. Yi, J. Wei, J. Shi, Global Asymptotical Behavior of the Lengyel–epstein Reaction–diffusion System, Appl. Math. Lett. 22 (2009), 52–55. https://doi.org/10.1016/j.aml.2008.02.003.
  10. M. Rivero, S.V. Rogosin, J.A. Tenreiro Machado, J.J. Trujillo, Stability of Fractional Order Systems, Math. Probl. Eng. 2013 (2013), 356215. https://doi.org/10.1155/2013/356215.
  11. M.S. Tavazoei, M. Haeri, A Note on the Stability of Fractional Order Systems, Math. Comput. Simul. 79 (2009), 1566–1576. https://doi.org/10.1016/j.matcom.2008.07.003.
  12. M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, R. Castro-Linares, Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 650–659. https://doi.org/10.1016/j.cnsns.2014.10.008.
  13. Z. Wang, D. Yang, T. Ma, N. Sun, Stability Analysis for Nonlinear Fractional-Order Systems Based on Comparison Principle, Nonlinear Dyn. 75 (2013), 387–402. https://doi.org/10.1007/s11071-013-1073-7.
  14. T. Azizi, G. Kerr, Application of Stability Theory in Study of Local Dynamics of Nonlinear Systems, J. Appl. Math. Phys. 08 (2020), 1180–1192. https://doi.org/10.4236/jamp.2020.86089.
  15. I. Bendib, A. Ouannas, M. Dalah, Mittag–leffler Synchronization of Fractional‐order Reaction–diffusion Systems, Asian J. Control. (2025). https://doi.org/10.1002/asjc.3702.
  16. A. S. Hussain, K. D. Pati, A. K. Atiyah, M. A. Tashtoush, Rate of Occurrence Estimation in Geometric Processes with Maxwell Distribution: a Comparative Study Between Artificial Intelligence and Classical Methods, Int. J. Adv. Soft Comput. Appl. 17 (2025), 1–15. https://doi.org/10.15849/ijasca.250330.01.
  17. M. Berir, Analysis of the Effect of White Noise on the Halvorsen System of Variable-Order Fractional Derivatives Using a Novel Numerical Method, Int. J. Adv. Soft Comput. Appl. 16 (2024), 294–306. https://doi.org/10.15849/ijasca.241130.16.
  18. P. Singh, N. Zade, P. Priyadarshi, A. Gupte, The Application of Machine Learning and Deep Learning Techniques for Global Energy Utilization Projection for Ecologically Responsible Energy Management, Int. J. Adv. Soft Comput. Appl. 17 (2025), 48–63. https://doi.org/10.15849/ijasca.250330.04.
  19. E.A. Mohammed, A. Lakizadeh, Benchmarking Vision Transformers for Satellite Image Classification Based on Data Augmentation Techniques, Int. J. Adv. Soft Comput. Appl. 17 (2025), 98–114. https://doi.org/10.15849/ijasca.250330.06.
  20. B. WANG, A. OUANNAS, Y. KARACA, W. XIA, H. JAHANSHAHI, A.F. ALKHATEEB, M. NOUR, A Hybrid Approach for Synchronizing Between Two Reaction–diffusion Systems of Integer- and Fractional-Order Applied on Certain Chemical Models, Fractals 30 (2022), 2240145. https://doi.org/10.1142/s0218348x22401454.
  21. I.M. Batiha, O. Ogilat, I. Bendib, A. Ouannas, I.H. Jebril, N. Anakira, Finite-time Dynamics of the Fractional-Order Epidemic Model: Stability, Synchronization, and Simulations, Chaos Solitons Fractals: X 13 (2024), 100118. https://doi.org/10.1016/j.csfx.2024.100118.
  22. C. Aguilar-Ibañez, M.S. Suárez-Castañón, O.O. Gutiérres-Frias, The Direct Lyapunov Method for the Stabilisation of the Furuta Pendulum, Int. J. Control. 83 (2010), 2285–2293. https://doi.org/10.1080/00207179.2010.520029.
  23. A.N. Anber, Z. Dahmani, The Laplace Decomposition Method for Solving Nonlinear Conformable Fractional Evolution Equations, Int. J. Open Probl. Comput. Math. 17 (2024), 67–81.
  24. A. Anber, Z. Dahmani, The LDM and the CVIM Methods for Solving Time and Space Fractional Wu-Zhang Differential System, Int. J. Open Probl. Comput. Math. 17 (2024), 1–18.
  25. R. Mezhoud, K. Saoudi, A. Zaraï, S. Abdelmalek, Conditions for the Local and Global Asymptotic Stability of the Time–fractional Degn–Harrison System, Int. J. Nonlinear Sci. Numer. Simul. 21 (2020), 749–759. https://doi.org/10.1515/ijnsns-2019-0159.
  26. H. Al-Taani, M.A. Hammad, O. Alomari, I. Bendib, A. Ouannas, Finite-time Control of the Discrete Sel’kov-Schnakenberg Model: Synchronization and Simulations, AIP Adv. 15 (2025), 025325. https://doi.org/10.1063/5.0257304.
  27. A. Abbad, S. Bendoukha, S. Abdelmalek, On the Local and Global Asymptotic Stability of the Degn‐harrison Reaction‐diffusion Model, Math. Methods Appl. Sci. 42 (2018), 567–577. https://doi.org/10.1002/mma.5362.
  28. R. Mezhoud, K. Saoudi, A. Zaraï, S. Abdelmalek, Conditions for the Local and Global Asymptotic Stability of the Time-Fractional Degn-Harrison System, Int. J. Nonlinear Sci. Numer. Simul. 21 (2020), 749–759. https://doi.org/10.1515/ijnsns-2019-0159.
  29. B. Lisena, Some Global Results for the Degn–harrison System with Diffusion, Mediterr. J. Math. 14 (2017), 91. https://doi.org/10.1007/s00009-017-0894-x.
  30. T.V. Hromadka, C. Lai, The Complex Variable Boundary Element Method in Engineering Analysis, Springer, New York, 2012. https://doi.org/10.1007/978-1-4612-4660-2.