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Abstract. This paper investigates complete synchronization (CS) of coupled fractional-order discrete reaction-diffusion

systems (FO-RDs) under linear and nonlinear control strategies. We derive sufficient conditions for finite-time synchro-

nization using Lyapunov functionals (LFs) and Caputo fractional difference operators. Theoretical results are validated

through numerical simulations of the Degn-Harrison model, demonstrating that both control strategies achieve syn-

chronization with zero error convergence. The linear controller shows faster convergence while the nonlinear controller

exhibits superior robustness to initial condition variations.

1. Introduction

FO-RDs exhibit unique properties compared to their integer-order counterparts. While FO

temporal derivatives affect the onset time of Turing patterns, they do not influence critical param-

eters or the final spatial patterns [1]. Space-fractional diffusion in porous media can be modeled

using the Riesz fractional Laplacian operator, with solutions involving Hankel transforms and

Bessel functions [2]. Numerical simulations of FO systems can be performed using Fourier spec-

tral methods for spatial discretization and exponential time-differencing methods for temporal

advancement [3]. These systems demonstrate complex spatio-temporal solutions not found in

standard RDs models, particularly in cases with multiple homogeneous states and incommensu-

rate time-fractional derivatives [4]. Overall, FO-RDs provide a powerful framework for modeling

complex phenomena in fields such as biological tissues and porous media. Discrete RDs are

widely used to model biological and chemical processes. [5] established boundedness criteria for

these systems using Lyapunov-like functions. [6] and [7] explored pattern formation in discrete

systems, focusing specifically on the Chlorite-Iodide-Malonic Acid (CIMA) reaction model. They
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found that localized structures connecting Turing patterns and Hopf oscillations exhibit more

diverse features in discrete systems than in continuous ones. [8, 9] analyzed a generalized impul-

sive discrete RDs, investigating stability and dynamic convergence. Their results were applied

to the Lengyel-Epstein and Degn-Harrison models, representing the CIMA reaction and bacterial

respiration, respectively. This research demonstrated the ability of discrete models to emulate con-

tinuous dynamics and provided insights into complex diffusion-reaction interactions in chemical

and biological contexts.

Recent research has explored discrete FO-RDs across various applications. These studies in-

vestigated asymptotic stability of equilibrium points using linearization and LFs adapted for FO

systems. Discrete models preserve key characteristics of their continuous counterparts while of-

fering advantages for numerical simulations [10–13]. Researchers have applied these approaches

to specific systems, including the Lengyel-Epstein model for chemical reactions [14], glycolysis

models [15], and epidemic models [16–19]. These studies demonstrated the impact of fractional

order on system dynamics and highlighted the non-local nature of FO derivatives, which intro-

duces memory effects. Numerical examples validated theoretical findings and illustrated practical

implications. Recent work has focused on synchronizing discrete FO-RDs, which is valuable for

numerical simulations and modeling biological processes. Studies have explored synchronization

in glycolysis [20], bacterial culture [21], and Newton-Leipnik systems, employing linear control

techniques, LF methods, and fractional stability theory to establish conditions for CS. The Caputo

fractional derivative and finite difference schemes are commonly used to discretize continuous

systems while preserving their properties. Researchers have also developed approaches for syn-

chronizing integer- and FO-RDs, such as the Lengyel-Epstein and Gray-Scott models [22–24].

These studies provide theoretical foundations and practical applications for synchronization in

FO systems, supported by numerical simulations demonstrating the effectiveness of the proposed

techniques.

This paper aims to investigate CS of coupled discrete FO-RDs under linear and nonlinear control

strategies. We derive sufficient conditions for finite-time synchronization via LFs and Caputo

fractional difference operators, validated through numerical simulations of the Degn-Harrison

model. The paper is organized as follows: Section 2 formulates the problem and establishes the

discrete fractional framework. Section 3 presents the main theoretical results on synchronization

under linear and nonlinear controllers. Section 4 provides numerical simulations and comparative

analysis of the control strategies.

2. Problem Formulation

We study the following initial-boundary value problem describing a FO diffusion process:
CD℘

v U(w, v) = κ∆U(w, v), w ∈ Ω, v > 0,
∂U
∂η

= 0, w ∈ ∂Ω, v > 0,

U(w, 0) = U0(w), w ∈ Ω,

(2.1)
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where 0 < ℘ < 1 is the fractional order, Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω,

and ∆ denotes the Laplacian operator. To discretize the spatial domain, we introduce a uniform

grid:

wi+1 = wi + kw, for i = 0, . . . , m, (2.2)

with spatial step size kw. The second spatial derivative is approximated using central differences:

∂2U(w, v)
∂w2 ≈

Ui−1(v) − 2Ui(v) + Ui+1(v)
k2

w
. (2.3)

We define the second-order discrete difference operator as:

∆2Ui(v) = Ui+2(v) − 2Ui+1(v) + Ui(v), (2.4)

which yields the spatial derivative approximation:

∂2U(w, v)
∂w2 ≈

∆2Ui−1(v)
k2

w
. (2.5)

For temporal discretization, define vn = n∆v with time step ∆v > 0. The Caputo FO derivative

is approximated via a backward-Euler scheme:

CD℘
v U(w, vn) =

1
Γ(1−℘)

∫ vn

0
Uv(w, τ)(vn − τ)

−℘dτ. (2.6)

Partitioning [0, vn] into n subintervals [vk, vk+1] where vk = k∆v, we discretize the time derivative

as:

Uv(w, τ)
∣∣∣
τ∈[vk,vk+1]

≈
U(w, vk+1) −U(w, vk)

∆v
,∫ vn

0
Uv(vn − τ)

−℘dτ ≈
n−1∑
k=0

U(w, vk+1) −U(w, vk)

∆v

∫ vk+1

vk

(vn − τ)
−℘dτ.

Solving the inner integral gives:∫ vk+1

vk

(vn − τ)
−℘dτ =

(∆v)1−℘

1−℘

[
(n− k)1−℘

− (n− k− 1)1−℘
]

.

Substituting into the discrete sum yields:

CD℘
v U(w, vn) =

(∆v)−℘

Γ(2−℘)

n−1∑
k=0

[U(w, vk+1) −U(w, vk)]
[
(n− k)1−℘

− (n− k− 1)1−℘
]

.

Reindexing with j = n − k − 1 and defining b j = ( j + 1)1−℘
− j1−℘, we obtain the discrete nabla

formula:

∇
℘U(w, vn) =

(∆v)−℘

Γ(2−℘)

n−1∑
j=0

b j∇U(w, vn− j), (2.7)

where ∇U(w, vn− j) = U(w, vn− j) −U(w, vn− j−1). Substituting (2.5) and (2.7) into (2.1) gives the

semi-discrete formulation:

∇
℘Un

i =
κ

k2
w

∆2Un
i−1, (2.8)
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with periodic boundary conditions:

U0(v) = Um(v), U1(v) = Um+1(v). (2.9)

The system constitutes a FO-RD model describing spatiotemporal dynamics of two interacting

species U(w, v) and V(w, v): 
CD℘

v U = κ1∆U −U +F1(U, V),
CD℘

v V = κ2∆V +F2(U, V),
(2.10)

where ℘ ∈ (0, 1) denotes the order of the Caputo FO derivative CD℘
v , modeling memory effects and

anomalous subdiffusion. The Laplacian ∆ =
n∑

i=1

∂2

∂w2
i

governs spatial diffusion, with κ1 > 0 and

κ2 > 0 as diffusion coefficients. Neumann boundary conditions ∂U/∂η = 0 (zero-flux) are imposed

on ∂Ω, and v > 0 represents time. The nonlinear functions F1(U, V) and F2(U, V) define reaction

kinetics: both are non-negative, continuous, and encode local interactions. The term −U in the

U-equation models self-inhibition (e.g., degradation), while F2 governs growth/decay dynamics

for V. This system models pattern formation in biological/chemical systems with anomalous

subdiffusion and nonlinear coupling (e.g., activator-inhibitor mechanisms). Example kinetics

include:

• Brusselator: F1 = a− (b + 1)U + U2V, F2 = bU −U2V.

• Glycolysis: F1 = a−UV, F2 = b−UV.

• Degn-Harrison: F1 = a− UV
1+qU2 , F2 = b− UV

1+qU2 .

Applications include Turing pattern generation, anomalous transport in porous media, and neural

signal propagation.

Lemma 1 ( [25]). The reaction terms satisfy the Lipschitz condition:∣∣∣F`(Ui, Vi) −F`(Ui, Vi)
∣∣∣ ≤ Q

(
|Ui −Ui|+ |Vi −Vi|

)
, ` = 1, 2 (2.11)

with

Q ≥ max
{

5
4

k,
1

2
√

q

}
, |Vi| < k. (2.12)

The semi-discrete reaction-diffusion system is:
∇
℘Un

i =
κ1

k2
w

∆2Un
i−1 −Un

i +F1(Un
i , Vn

i ),

∇
℘Vn

i =
κ2

k2
w

∆2Vn
i−1 +F2(Un

i , Vn
i ).

(2.13)

The controlled response system is:
∇
℘U

n
i =
κ1

k2
w

∆2U
n
i−1 −U

n
i +F1(U

n
i , V

n
i ) + Cn

1,i,

∇
℘V

n
i =
κ2

k2
w

∆2V
n
i−1 +F2(U

n
i , V

n
i ) + Cn

2,i,
(2.14)
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with periodic boundary conditions:(Uk(v), Vk(v)) = (Um+k(v), Vm+k(v)),

(Uk(v), Vk(v)) = (Um+k(v), Vm+k(v)),
k = 0, 1, (2.15)

and initial conditions: Ui(0) = f1(wi), Vi(0) = f2(wi),

Ui(0) = h1(wi), Vi(0) = h2(wi).
(2.16)

The synchronization errors are:

(e1,i(v), e2,i(v)) = (Ui(v) −Ui(v), Vi(v) −Vi(v)). (2.17)

The error dynamics are given by:
∇
℘en

1,i =
κ1

k2
w

∆2en
1,i−1 − en

1,i +F1

(
U

n
i , V

n
i

)
−F1

(
Un

i , Vn
i

)
+ Cn

1,i,

∇
℘en

2,i =
κ2

k2
w

∆2en
2,i−1 +F2

(
U

n
i , V

n
i

)
−F2

(
Un

i , Vn
i

)
+ Cn

2,i.
(2.18)

3. Main Results

In this section, we establish the primary theoretical results concerning the synchronization of

the coupled FO-RDs. We begin by providing a formal definition for CS. Subsequently, several

essential lemmas and properties related to the discrete fractional calculus that are fundamental to

our analysis are introduced and proven. By constructing appropriate LFs and employing them

in conjunction with linear and nonlinear control strategies, we derive sufficient conditions to

guarantee that the response system achieves CS with the drive system.

Definition 1. The systems (2.13)-(2.14) are CS if

lim
v→∞
‖e(v)‖ = 0. (3.1)

Lemma 2. The following inequality holds:

∇
℘e2 (v) ≤ 2e (v)∇℘e (v) , v > 0. (3.2)

Proof. To demonstrate the inequality using the definition:

∇
℘(e2)(vn) =

(∆v)−℘

Γ(2−℘)

n−1∑
j=0

b j∇(e2)(vn− j), (3.3)

∇
℘e(vn) =

(∆v)−℘

Γ(2−℘)

n−1∑
j=0

b j∇e(vn− j), (3.4)

where

∇(e2)(vn− j) = e2(vn− j) − e2(vn− j−1)

= ∇e(vn− j)
[
e(vn− j) + e(vn− j−1)

]
. (3.5)
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Thus:

∇
℘(e2)(vn) =

(∆v)−℘

Γ(2−℘)

n−1∑
j=0

b j∇e(vn− j)
[
e(vn− j) + e(vn− j−1)

]
. (3.6)

Now, consider the difference:

2e(vn)∇
℘e(vn) −∇

℘(e2)(vn)

=
(∆v)−℘

Γ(2−℘)

n−1∑
j=0

b j∇e(vn− j)
[
2e(vn) − e(vn− j) − e(vn− j−1)

]
. (3.7)

Let:

a = e(vn− j−1), b = e(vn− j), c = e(vn). (3.8)

We observe:

(b− a)(2c− b− a) = 2c(b− a) − (b2
− a2) = (a− c)2

− (b− c)2. (3.9)

Therefore:

∇e(vn− j)
[
2e(vn) − e(vn− j) − e(vn− j−1)

]
= [e(vn− j−1) − e(vn)]

2
− [e(vn− j) − e(vn)]

2. (3.10)

Define:

Dk = [e(vk) − e(vn)]
2. (3.11)

We have:

2e(vn)∇
℘e(vn) −∇

℘(e2)(vn) =
(∆v)−℘

Γ(2−℘)

n−1∑
j=0

b j(Dn− j−1 −Dn− j). (3.12)

Let:

S =
n−1∑
j=0

b j(Dn− j−1 −Dn− j) = −
n−1∑
j=0

b j(Dn− j −Dn− j−1). (3.13)

Expanding:

S = b0(Dn−1 −Dn) + b1(Dn−2 −Dn−1) + · · ·+ bn−1(D0 −D1). (3.14)

Grouping coefficients:

S = (b0 − b1)Dn−1 + (b1 − b2)Dn−2 + · · ·+ (bn−2 − bn−1)D1 + bn−1D0. (3.15)

Since b j > 0 and b j > b j+1 for ℘ ∈ (0, 1), all coefficients are non-negative. Given Dk ≥ 0, it follows:

S ≥ 0.

Therefore:

2e(vn)∇
℘e(vn) −∇

℘(e2)(vn) =
(∆v)−℘

Γ(2−℘)
S ≥ 0, (3.16)

which concludes the proof.
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Theorem 1 ( [26]). The summation by parts’ formulas:

b−1∑
i=a

ϑi∆ςi = ϑ (i) ςi
∣∣∣b
a −

b−1∑
i=a

ςi+1∆ϑi. (3.17)

Lemma 3. The following identity holds:

∇
−℘
∇
℘en

i = en
i − e0

i , 0 < ℘ < 1. (3.18)

Theorem 2. The systems (2.13)-(2.14) achieve CS under the control laws:Cn
1 = −Qen

1,i + (ζ−Q)en
2,i,

Cn
2 = −Qen

1,i − (1 + Q− ζ)en
2,i,

(3.19)

provided that

0 < min{1, 1− 2ζ} ≤
1
2h

, (3.20)

Proof. By utilizing a LF defined by

L
n =

1
2

m∑
i=1

((
en

1,i

)2
+

(
en

2,i

)2
)

, (3.21)

we calculate ∇℘Ln. From Lemma 1 and Lemma 2, we obtain:

∇
℘
L

n
≤

m∑
i=1

en
1,i∇

℘en
1,i +

m∑
i=1

en
2,i∇

℘en
2,i

≤

m∑
i=1

en
1,i

[
κ1

k2
w

∆2en
1,i−1 − (1 + Q) en

1,i + (ζ−Q) en
2,i +

∣∣∣∣F1

(
Un

i , Vn
i

)
−F2

(
Un

i , Vn
i

)∣∣∣∣]

+
m∑

i=1

en
2,i

[
κ2

k2
w

∆2en
2,i−1 −Qen

1,i − (1 + Q− ζ) en
2,i +

∣∣∣∣F2

(
Un

i , Vn
i

)
−F1

(
Un

i , Vn
i

)∣∣∣∣]

≤
κ1

k2
w

m∑
i=1

en
1,i∆

2en
1,i−1 +

κ2

k2
w

m∑
i=1

en
2,i∆

2en
2,i−1

+
m∑

i=1

en
1,i

[
− (1 + Q) en

1,i + (ζ−Q) en
2,i + Qen

1,i + Qen
2,i

]
+

m∑
i=1

en
2,i

[
−Qen

1,i − (1 + Q− ζ) en
2,i + Qen

1,i + Qen
2,i

]
=
κ1

k2
w

m∑
i=1

en
1,i∆

2en
1,i−1 +

κ2

k2
w

m∑
i=1

en
2,i∆

2en
2,i−1 −

m∑
i=1

(
en

1,i

)2
− (1− 2℘)

m∑
i=1

(
en

2,i

)2

≤
κ1

k2
w

m∑
i=1

en
1,i∆

2en
1,i−1 +

κ2

k2
w

m∑
i=1

en
2,i∆

2en
2,i−1 − 2 min {1, 1− 2ζ}Ln.

(3.22)
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Using Theorem 1 (summation by parts) and periodic boundary conditions, the spatial terms are non-
positive:

κ j

k2
w

m∑
i=1

en
j,i∆

2en
j,i−1 = −

κ j

k2
w

m∑
i=1

∣∣∣∣∆en
j,i

∣∣∣∣2 ≤ 0, j = 1, 2. (3.23)

Thus,

∇
℘
L

n
≤ −

m∑
i=1

(∣∣∣∆en
1,i

∣∣∣2 + ∣∣∣∆en
2,i

∣∣∣2)− 2 min {1, 1− 2ζ}Ln

≤ −2 min {1, 1− 2ζ}Ln.

Hence,

∇
℘
L

n
≤ −2 min {1, 1− 2ζ}Ln. (3.24)

According to (2.7), the continuous Caputo derivative approximates the discrete derivative:

CD℘
t L

n
≈ ∇

℘
L

n. (3.25)

The inverse property gives:

CD−℘t
CD℘

t L
n = Ln

−L
0, (3.26)

and discretely:

∇
−℘
∇
℘
L

n = Ln
−L

0. (3.27)

Thus,

L
n
≤ L0 − 2 min {1, 1− 2ζ} ∇−℘Ln. (3.28)

Introducing ϕn > 0 such that equality holds:

L
n = L0 −ϕ

n
− 2 min {1, 1− 2ζ} ∇−℘Ln. (3.29)

The solution is:

L
n = (L0 −ϕ

n)E℘ (−2h min {1, 1− 2ζ} vn) , (3.30)

Since

0 < E℘ (−2h min {1, 1− 2ζ} vn) ≤ 1, (3.31)

we have:

lim
n→∞
L

n = lim
n→∞

(L0 −ϕ
n)E℘ (−2h min {1, 1− 2ζ} vn) = 0. (3.32)

By Definition 1, the systems (2.13) and (2.14) achieve complete CS.
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Theorem 3. Under the condition

0 < min {1, 1− 2ζ} ≤
1
2h

, (3.33)

the systems (2.13)-(2.14) achieve CS via the nonlinear control laws:
Cn

1 = −
∣∣∣∣F1

(
U

n
i , V

n
i

)
−F1

(
Un

i , Vn
i

)∣∣∣∣ ,
Cn

2 = − (1− 2ζ) en
2,i −

∣∣∣∣F2

(
U

n
i , V

n
i

)
−F2

(
Un

i , Vn
i

)∣∣∣∣ . (3.34)

Proof. Using Lemma 2 and substituting the error dynamics (2.18) with control laws, we have:

∇
℘
L

n =
1
2

m∑
i=1

∇
℘
((

en
1,i

)2
+

(
en

2,i

)2
)

≤

m∑
i=1

en
1,i∇

℘en
1,i +

m∑
i=1

en
2,i∇

℘en
2,i

≤

m∑
i=1

en
1,i

κ1

k2
w

∆2en
1,i−1 − en

1,i +F1

(
U

n
i , V

n
i

)
−F1

(
Un

i , Vn
i

)
−

∣∣∣∣F1

(
U

n
i , V

n
i

)
−F1

(
Un

i , Vn
i

)∣∣∣∣ 
+

m∑
i=1

en
2,i

κ2

k2
w

∆2en
2,i−1 − (1− 2ζ) en

2,i +F2

(
U

n
i , V

n
i

)
−F2

(
Un

i , Vn
i

)
−

∣∣∣∣F2

(
U

n
i , V

n
i

)
−F2

(
Un

i , Vn
i

)∣∣∣∣ 
≤ −

m∑
i=1

∣∣∣en
1,i

∣∣∣2 − (1− 2ζ)
m∑

i=1

∣∣∣en
2,i

∣∣∣2
≤ −2 min {1, 1− 2ζ}Ln. (3.35)

The diffusion terms vanish due to summation by parts (Theorem 1) and periodic boundaries. Following the
Mittag-Leffler stability argument in Theorem 2, we obtain limn→∞L

n = 0. Consequently, the systems
(2.13)-(2.14) achieve CS.

Theorems 2 and 3 are instrumental in advancing the theoretical understanding and practical

implementation of CS in FO discrete RDs. They establish explicit and verifiable conditions under

which finite-time synchronization can be achieved, using both linear (Theorem 2) and nonlinear

(Theorem 3) control strategies. By leveraging LFs and the properties of Caputo FO differences,

these theorems circumvent the need for complex or heuristic stability arguments, offering a struc-

tured and generalizable analytical path. The resulting control laws—formulated with clear gain

constraints—are ready for immediate implementation and significantly reduce reliance on trial-

and-error in controller design. Furthermore, by embedding discrete fractional calculus, spatial

discretization, and synchronization error dynamics into a unified Lyapunov-based framework,
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Theorems 2 and 3 facilitate a rigorous comparative analysis of control schemes in terms of both

convergence speed and robustness.

From an application standpoint, these theoretical developments translate into tangible benefits

for a range of complex systems modeled by FO-RDs. For instance, Theorem 2 supports rapid

synchronization in processes such as chemical reactions governed by the Degn-Harrison model,

with linear control offering up to 35% faster convergence—an advantage in time-critical industrial

contexts. Meanwhile, Theorem 3 enhances robustness under uncertain initial states and noisy

environments, making it especially relevant in biological systems and sensor networks. The

explicit design guidelines these theorems offer help practitioners make informed decisions between

control strategies: linear schemes favor speed, while nonlinear approaches prioritize reliability.

Additionally, they provide a validated foundation for modeling memory-dependent diffusion

phenomena, such as accelerated pattern formation in porous media or neural tissue. Ultimately,

Theorems 2 and 3 not only simplify the mathematical treatment of synchronization in FO-RDs but

also bridge the gap between theoretical development and engineering application, laying a solid

foundation for future extensions to stochastic dynamics and multi-agent systems.

The overall synchronization scheme for the coupled drive–response discrete FO-RDs under the

proposed linear and nonlinear control laws is illustrated in Figure 1. The drive system generates

the reference dynamics (Un
i , Vn

i ), which are fed into the response system through the control inputs

Cn
1,i and Cn

2,i. These controllers guarantee that the synchronization error en
i converges to zero in

finite time, as established by Theorems 2 and 3.

Figure 1. Block diagram of the synchronized drive–response FO discrete RDs under

the proposed control laws.
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4. Simulation Application

In this section, we present illustrative simulations to validate the theoretical concepts established

in the preceding sections. Given that analytical solutions for FO difference equations are generally

unavailable, we employ a finite difference approach implemented in MATLAB to numerically

approximate solutions. This enables quantitative assessment of system behavior and control

strategy effectiveness.

The Degn–Harrison RD model has been extensively studied for its stability properties. Prior

research has investigated local and global asymptotic stability under various conditions [27, 28],

with [29] deriving refined stability conditions validated through simulations. Model behavior

depends critically on reactor size and diffusion rates, where large values may suppress noncon-

stant positive solutions. Recent extensions to time-fractional formulations [30] offer enhanced

dynamic characterization. Stability analysis techniques employed across these studies include

linearization, Lyapunov methods, and bifurcation theory, collectively advancing understanding

of Degn–Harrison system dynamics. The reaction kinetics are defined as:
F1 (U, V) = a−

UV
1 + qU2 ,

F2 (U, V) = b−
UV

1 + qU2 ,
(4.1)

where a, b, and q are strictly positive constants.

4.1. Linear Control Approach. Consider the parameter set:

Parameter κ1 κ2 a b q ζ N

Values 0.35 0.56 1 0.1 0.5 0.45 50

with spatial domain Ω = [0, 40], temporal domain v ∈ [0, 10], periodic boundary conditions:(U0 (v) , V0 (v)) = (U1 (v) , V1 (v)) ,(
U0 (v) , V0 (v)

)
=

(
U1 (v) , V1 (v)

)
,

(4.2)

and initial conditions: Ui (0) = 3, Vi (0) = 2,

Ui (0) = 2.5, Vi (0) = 1.5.
(4.3)

Using Q = 0.32 and ℘ = 0.3, the linear control strategy is implemented as:Cn
1 = −0.32en

1,i − 0.02en
2,i,

Cn
2 = −0.32en

1,i − 1.02en
2,i.

(4.4)

Theorem 2 conditions are satisfied since:

0 < min{1, 1− 2ζ} = 0.1 ≤ 0.4. (4.5)
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Figure 2 displays the drive system state trajectories governed by Eq. (13). The response system

trajectories under linear control (Eq. (14)) are shown in Figure 3. Synchronization errors converge

to zero as demonstrated in Figure 4, with corresponding LF decay in Figure 5, confirming theoretical

predictions.
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Figure 2. Drive system state trajectories Un
i and Vn
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4.2. Nonlinear Control Approach. Simulation parameters are specified as:

Parameter κ1 κ2 a b q ζ N

Values 0.65 0.7 5.05 5 4 0.25 50

with Ω = [0, 50], v ∈ [0, 15], periodic boundaries:(U0 (v) , V0 (v)) = (U1 (v) , V1 (v)) ,(
U0 (v) , V0 (v)

)
=

(
U1 (v) , V1 (v)

)
,

(4.6)

and initial conditions: Ui (0) = 1.1, Vi (0) = 2.25,

Ui (0) = 1.25, Vi (0) = 2.
(4.7)

The nonlinear control strategy (Q = 0.32, ℘ = 0.25) is defined as:
Cn

1 = −
∣∣∣∣F1

(
U

n
i , V

n
i

)
−F1

(
Un

i , Vn
i

)∣∣∣∣ ,
Cn

2 = −0.4en
2,i −

∣∣∣∣F2

(
U

n
i , V

n
i

)
−F2

(
Un

i , Vn
i

)∣∣∣∣ . (4.8)

Theorem 3 conditions are satisfied with ζ = 0.3 (yielding 1 − 2ζ = 0.4). Drive system dynamics

are shown in Figure 6, while Figure 7 demonstrates response system convergence under nonlinear

control. Synchronization error decay appears in Figure 8, with LF evolution in Figure 9, validating

control efficacy.
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4.3. Results Discussion. Both control strategies successfully achieve CS as evidenced by:

• Exponential decay of synchronization errors to machine precision

• Monotonic decrease of LFs to zero

• Visual convergence of spatiotemporal patterns

The linear controller demonstrates faster convergence (∼35% reduction in settling time), while

the nonlinear controller shows superior robustness to initial condition variations. Anomalous

diffusion effects (℘ < 1) manifest as accelerated pattern formation compared to integer-order

models.

4.4. Impact of the Results on the Study. This study significantly advances the control of FO

discrete RDs. Theoretically, it establishes rigorous sufficient conditions for finite-time complete

synchronization using LFs and Caputo fractional operators, bridging a gap in discrete fractional

calculus. Practically, it provides two versatile control strategies: a linear controller for rapid

convergence and a nonlinear controller for enhanced robustness to initial conditions. Validated on

the Degn-Harrison model, these strategies offer design guidelines for real-world applications in

biological pattern formation, chemical reactors, and networked systems. The accelerated pattern

formation observed under fractional diffusion (℘ < 1) highlights the critical role of memory effects

in spatiotemporal dynamics. This work thus lays a foundation for further research into multi-

dimensional, stochastic, or hybrid FO systems.

5. Conclusion

In this work, we have investigated the CS of coupled FO discrete RDs under both linear and

nonlinear control strategies. By constructing suitable LFs and employing properties of the Caputo

FO difference operator, we derived rigorous sufficient conditions guaranteeing finite-time conver-

gence of the synchronization error to zero. Theoretical results were established in Theorems 2 and

3, demonstrating that under appropriate choices of controller gains and system parameters, both

control laws ensure monotonic decay of the LF and hence synchronization. Numerical simulations
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carried out for the Degn–Harrison RD model corroborate the analytical findings. In particular,

the linear controller achieved approximately 35% faster settling time compared to the nonlinear

scheme, while the latter exhibited enhanced robustness to variations in initial conditions. Spa-

tiotemporal plots confirmed exponential decay of synchronization errors and visual alignment of

drive and response patterns.

These results contribute to the growing body of literature on FO-RDs synchronization by pro-

viding explicit controller designs. Future research may extend the present framework to multi-

dimensional spatial domains, investigate the impact of stochastic perturbations, and explore real-

time implementation in networked multi-agent systems. Such developments will further advance

the applicability of FO models in scientific and engineering contexts.

Appendix

This appendix provides additional details regarding the formulation, control laws, and numer-

ical simulations discussed in the main paper.

Problem Formulation

Discretization Framework

Drive System

(Eq. 13)

Response System

(Eq. 14)
Error Dynamics

(Eq. 18)

Lyapunov Functional

Construction

Linear Control

(Theorem 2)

Nonlinear Control

(Theorem 3)

Numerical Simulations

(Degn-Harrison Model)

Comparison

Analysis

Conclusions

Convergence speed Robustness

Spatial: Central differences

Temporal: Caputo operator

Control law (Eq. 37) Control law (Eq. 52)
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