Solving Split Mixed Equilibrium With Multiple Output Sets and Fixed Point of Certain Multi-Valued Mappings

Main Article Content

Francis M. Nkwuda, James A. Oguntuase, Hammed A. Abass, Maggie Aphane

Abstract

In this paper, we study the split mixed equilibrium problem which includes the equilibrium problem, split convex minimization problem and split equilibrium problem, to mention a few. In addition, we propose a Halpern iterative method for solving split mixed equilibrium problem with multiple output sets and fixed point of a finite family of multi-valued strictly pseudo-contractive mappings in the framework of real Hilbert spaces. We prove a strong convergence theorem without imposing any compactness condition. Lastly, we present some consequences and give applications of our main result to split mixed variational inequality and split convex minimization problems. The result discussed in this article extends and complements many related results in literature.

Article Details

References

  1. H.A. Abass, Halpern Inertial Subgradient Extragradient Algorithm for Solving Equilibrium Problems in Banach Spaces, Appl. Anal. 104 (2024), 314–335. https://doi.org/10.1080/00036811.2024.2360507.
  2. H. Abass, C. Izuchukwu, O. Mewomo, Q. Dong, Strong Convergence of an Inertial Forward-Backward Splitting Method for Accretive Operators in Real Banach Space, Fixed Point Theory 21 (2020), 397–412. https://doi.org/10.24193/fpt-ro.2020.2.28.
  3. H.A. Abass, C.C. Okeke, O.T. Mewomo, on Split Equality Mixed Equilibrium and Fixed Point Problems of Generalized $k_i$-Strictly Pseudo-Contractive Multi-Valued Mappings, Dyn. Contin. Discret. Impuls. Syst. Ser. B: Appl. Algorithms 25 (2018), 369–395.
  4. F.M. Nkwuda, J.A. Oguntuase, H.A. Abass, M. Aphane, Approximating Solution of System of Variational Inequality Constrained Split Common Fixed Point Problem in Hilbert Spaces, Asia Pac. J. Math. 11 (2024), 57. https://doi.org/10.28924/apjm/11-57.
  5. F.M. Nkwuda, J.A. Oguntuase, H.A. Abass, A Modified Inertial Extragradient Algorithm for Some Class of Split Variational Inequality Problem, MATHEMATICA 67 (90) (2025), 91–111. https://doi.org/10.24193/mathcluj.2025.1.08.
  6. H.A. Abass, F.U. Ogbuisi, O.T. Mewomo, Common Solution of Split Equilibrium Problem and Fixed Point Problem With No Prior Knowledge of Operator Norm, U. P. B Sci. Bull. Ser. A 80 (2018), 175–190.
  7. F. Akutsah, N. Kumar, A. Anuoluwapo, A. Mebawondu, Shrinking Approximation Method for Solution of Split Monotone Variational Inclusion and Fixed Point Problems in Banach Spaces, Int. J. Nonlinear Anal. Appl. 12 (2021), 825–842. https://doi.org/10.22075/ijnaa.2021.22634.2393.
  8. C. Byrne, Iterative Oblique Projection Onto Convex Sets and the Split Feasibility Problem, Inverse Probl. 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310.
  9. E. Blum, W. Oettli, From Optimization and Variational Inequalities to Equilibrium Problems, Math. Student 63 (1994), 123-145.
  10. L. Ceng, J. Yao, A Hybrid Iterative Scheme for Mixed Equilibrium Problems and Fixed Point Problems, J. Comput. Appl. Math. 214 (2008), 186–201. https://doi.org/10.1016/j.cam.2007.02.022.
  11. J.N. Ezeora, P.C. Jackreece, Iterative Solution of Split Equilibrium and Fixed Point Problems in Real Hilbert Spaces, J. Nonlinear Sci. Appl. 14 (2021), 359–371. https://doi.org/10.22436/jnsa.014.05.06.
  12. T. Sow, A New Fixed Point Technique for Equilibrium Problem with a Finite Family of Multivalued Quasi-Nonexpansive Mappings, Gen. Math. 30 (2022), 119–134. https://doi.org/10.2478/gm-2022-0009.
  13. Y. Censor, A. Gibali, S. Reich, Algorithms for the Split Variational Inequality Problem, Numer. Algorithms 59 (2011), 301–323. https://doi.org/10.1007/s11075-011-9490-5.
  14. Y. Censor, A. Segal, The Split Common Fixed Point Problem for Directed Operators, J. Convex Anal. 16 (2009), 587–600.
  15. Y. Censor, T. Elfving, A Multiprojection Algorithm Using Bregman Projections in a Product Space, Numer. Algorithms 8 (1994), 221–239. https://doi.org/10.1007/bf02142692.
  16. C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer, London, 2009. https://doi.org/10.1007/978-1-84882-190-3.
  17. C.E. Chidume, M.E. Okpala, Fixed Point Iteration for a Countable Family of Multi-Valued Strictly Pseudo-Contractive-Type Mappings, SpringerPlus 4 (2015), 506. https://doi.org/10.1186/s40064-015-1280-4.
  18. C.E. Chidume, C.O. Chidume, N. Djitté, M.S. Minjibir, Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces, Abstr. Appl. Anal. 2013 (2013), 629468. https://doi.org/10.1155/2013/629468.
  19. J. Deepho, P. Thounthong, P. Kumam, S. Phiangsungnoen, A New General Iterative Scheme for Split Variational Inclusion and Fixed Point Problems of k-Strict Pseudo-Contraction Mappings with Convergence Analysis, J. Comput. Appl. Math. 318 (2017), 293–306. https://doi.org/10.1016/j.cam.2016.09.009.
  20. K. Fan, A Minimax Inequality and Applications, in: O. Shisha, (ed.) Inequalities, vol. III, pp 103–113, Academic Press, New York, (1972).
  21. G. Fichera, Problemi Elastostatici con Vincoli Unilaterali: Il Problema di Signorini con Ambigue Condizioni al Contorno, Atti. Acad. Naz. Lincei. Mem. Cl. Sci. Nat. 8 (1964), 91–140.
  22. K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
  23. C. Izuchukwu, H.A. Abass, O.T. Mewomo, Viscosity Approximation Method for Solving Minimization Problem and Fixed Point Problem for Nonexpansive Multi-Valued Mappings in CAT(0) Spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl. 11 (2019), 130–157.
  24. I. Karahan, L.O. Jolaoso, An Iterative Algorithm for the System of Split Mixed Equilibrium Problem, Demonstr. Math. 53 (2020), 309–324. https://doi.org/10.1515/dema-2020-0027.
  25. K. Kazmi, S. Rizvi, Iterative Approximation of a Common Solution of a Split Equilibrium Problem, a Variational Inequality Problem and a Fixed Point Problem, J. Egypt. Math. Soc. 21 (2013), 44–51. https://doi.org/10.1016/j.joems.2012.10.009.
  26. A. Latif, M. Eslamian, The Split Common Fixed Point Problem for Set-Valued Operators, J. Nonlinear Convex Anal. 17 (2016), 967–986.
  27. W. Laowang, B. Panyanak, Strong and Convergence Theorems for Multivalued Mappings in Spaces, J. Inequal. Appl. 2009 (2009), 730132. https://doi.org/10.1155/2009/730132.
  28. B. Martinet, Regularisation d'Inequations Varaiationnelles par Approximations Successives, Rev. Fr. Inform. Rec. Oper. 4 (1970), 154–158.
  29. A. Moudafi, The Split Common Fixed-Point Problem for Demicontractive Mappings, Inverse Probl. 26 (2010), 055007. https://doi.org/10.1088/0266-5611/26/5/055007.
  30. M.A. Noor, W. Oetlli, On General Nonlinear Complementarity Problems and Quasi Equilibria, Matematiche 49 (1994), 313–331.
  31. N. Onjai-uea, W. Phuengrattana, On Solving Split Mixed Equilibrium Problems and Fixed Point Problems of Hybrid-Type Multivalued Mappings in Hilbert Spaces, J. Inequal. Appl. 2017 (2017), 137. https://doi.org/10.1186/s13660-017-1416-x.
  32. O.K. Oyewole, H.A. Abass, O.T. Mewomo, A Strong Convergence Algorithm for a Fixed Point Constrained Split Null Point Problem, Rend. Circ. Mat. Palermo II, 70 (2020), 389–408. https://doi.org/10.1007/s12215-020-00505-6.
  33. S. Reich, T.M. Tuyen, Two New Self-Adaptive Algorithms for Solving the Split Common Null Point Problem with Multiple Output Sets in Hilbert Spaces, J. Fixed Point Theory Appl. 23 (2021), 16. https://doi.org/10.1007/s11784-021-00848-2.
  34. J. Pang, Asymmetric Variational Inequality Problems Over Product Sets: Applications and Iterative Methods, Math. Program. 31 (1985), 206–219. https://doi.org/10.1007/bf02591749.
  35. J. Peng, Y. Liou, J. Yao, An Iterative Algorithm Combining Viscosity Method with Parallel Method for a Generalized Equilibrium Problem and Strict Pseudocontractions, Fixed Point Theory Appl. 2009 (2009), 794178. https://doi.org/10.1155/2009/794178.
  36. S. Saejung, P. Yotkaew, Approximation of Zeros of Inverse Strongly Monotone Operators in Banach Spaces, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 742–750. https://doi.org/10.1016/j.na.2011.09.005.
  37. G. Stampacchia, Formes Bilinearieres Coerc. sur les Ensembles Convexes, C. R. Acad. Sci. Paris 258 (1964), 4413–4416.
  38. S. Suantai, P. Cholamjiak, Y.J. Cho, W. Cholamjiak, On Solving Split Equilibrium Problems and Fixed Point Problems of Nonspreading Multi-Valued Mappings in Hilbert Spaces, Fixed Point Theory Appl. 2016 (2016), 35. https://doi.org/10.1186/s13663-016-0509-4.
  39. S. Rathee, M. Swami, Algorithm for Split Variational Inequality, Split Equilibrium Problem and Split Common Fixed Point Problem, AIMS Math. 7 (2022), 9325–9338. https://doi.org/10.3934/math.2022517.
  40. S. Suantai, P. Cholamjiak, Y.J. Cho, W. Cholamjiak, On Solving Split Equilibrium Problems and Fixed Point Problems of Nonspreading Multi-Valued Mappings in Hilbert Spaces, Fixed Point Theory Appl. 2016 (2016), 35. https://doi.org/10.1186/s13663-016-0509-4.
  41. S.A.K. Khan, K.R. Kazmi, W. Cholamjiak, H. Dutta, Convergence Analysis for Combination of Equilibrium Problems and K-Nonspreading Set-Valued Mappings, Proyecciones Antofagasta 39 (2020), 599–619. https://doi.org/10.22199/issn.0717-6279-2020-03-0037.
  42. H. Xu, Iterative Algorithms for Nonlinear Operators, J. Lond. Math. Soc. 66 (2002), 240–256. https://doi.org/10.1112/s0024610702003332.
  43. R. Rockafellar, R. Wets, Variational Analysis, Springer, Berlin, (1988).
  44. Y. Li, C. Zhang, Y. Wang, On Solving Split Equilibrium Problems and Fixed Point Problems of $alpha$-Nonexpansive Multi-Valued Mappings in Hilbert Spaces, Fixed Point Theory 24 (2023), 641–660. https://doi.org/10.24193/fpt-ro.2023.2.12.