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Abstract. In this paper, we study the split mixed equilibrium problem which includes the equilibrium problem, split

convex minimization problem and split equilibrium problem, to mention a few. In addition, we propose a Halpern

iterative method for solving split mixed equilibrium problem with multiple output sets and fixed point of a finite

family of multi-valued strictly pseudo-contractive mappings in the framework of real Hilbert spaces. We prove a strong

convergence theorem without imposing any compactness condition. Lastly, we present some consequences and give

applications of our main result to split mixed variational inequality and split convex minimization problems. The result

discussed in this article extends and complements many related results in literature.

1. Introduction

Let K be a nonempty, closed and convex subset of a real Hilbert space H with inner product 〈., .〉

and induced norm ||.||. Let F : K ×K → R be a bifunction, the Equilibrium Problem (EP) is to find

x ∈ K such that

F(x, y) ≥ 0, ∀ y ∈ K. (1.1)

The solution set of EP is denoted by EP(F). The EP was first introduced by Fan [20] in 1972, then

Blum and Oetlli [9], Noor and Oettli [30], and Abass [1] made significant contributions to this

problem. The EP has a great impact in the development of several branches of pure and applied

sciences and it provides a natural and unified framework for solving several problems arising in

physics, economics, game theory, transportation network and elasticity. The EP can be applied

to solve other different mathematical problems such as convex feasibility problem, variational
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inequality problem, minimization problem and fixed point problem to mention a few, the reader

may consult ( [4], [5], [39]). More so, the EP can be generalize into other optimization problems.

For instance, the Mixed Equilibrium Problem (MEP), which is to find x ∈ K such that

F(x, y) +ψ(y) −ψ(x) ≥ 0, ∀ y ∈ K, (1.2)

where ψ : K→ R is a function. In particular, if ψ = 0, MEP (1.2) reduces to EP (1.1). We denote by

MEP(F,ψ) the solution set of MEP (1.2), for more generalizations of EP, the reader may consult [12].

Let H1 and H2 be real Hilbert spaces and A : H1 → H2 be a bounded linear operator. The Split

Feasibility Problem (SFP) is to find a point

x∗ ∈ K1 such that Ax∗ ∈ K2, (1.3)

where K1 ⊆ H1 and K2 ⊆ H2 are nonempty, closed and convex sets. The SFP in finite dimensional

Hilbert spaces was first introduced by Censor and Elfving [15] for modeling inverse problems

which arise from phase retrievals and in medical image reconstruction [8]. Motivated by SFP (1.3)

and EP (1.1), Kazmi and Rizvi [25] studied the following Split Equilibrium Problem (SEP): Let K1

and K2 be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2, F1 : K1 ×K1 → R

and F2 : K2 ×K2 → R be nonlinear bifunctions with A : H1 → H2 being a bounded linear operator.

The SEP is to find x∗ ∈ K1 such that

F1(x∗, x) ≥ 0, ∀ x ∈ K1 (1.4)

and such that

y∗ = Ax∗ ∈ K2 solves F2(y∗, y) ≥ 0, ∀ y ∈ K2. (1.5)

We denote by SEP(F1, F2) the solution set of (1.4)-(1.5).

Recently, Suantai et al. [38] introduced the following iterative algorithm to approximate a common

elements of the set of solution of SEP (1.4)-(1.5) and fixed point of a nonspreading multi-valued

mappings: Given a sequence {xn} generated by
x1 ∈ K1 arbitrarily,

un = TF1
rn
(I − γA∗(I − TF2

rn
)A)xn,

xn+1 = αnxn + (1− αn)Sun, ∀ n ∈N,

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1
L ) such that L is the spectral radius of A∗A and

S : K1 → CB(K1) is a 1
2− nonspreading multi-valued mappings. The authors proved that under

some mild conditions, the sequence {xn} converges weakly to an element of Fix(S) ∩ SEP(F1, F2),

readers can consult [41]. In 2018, Abass et al. [6] considered a viscosity iterative method for

approximating a common element of the set of solutions of SEP(F1, F2) and fixed point of an

infinite family of quasi-nonexpansive multi-valued mappings in the framework of real Hilbert

spaces. The authors proved that under some mild conditions, the sequence {xn} converges strongly

to an element of Fix(S) ∩ SEP(F1, F2), readers can as well consult ( [2], [3], [7], [11], [25], [38], [44])

for convergence analysis of SEP.
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The Split Mixed Equilibrium Problem (SMEP) is known to contain the EP, SEP and MEP. It is to

find x∗ ∈ K1 such that

F1(x∗, x) +ψ1(x) −ψ1(x∗) ≥ 0, ∀ x ∈ K1 (1.6)

and such that

y∗ = Ax∗ ∈ K2 solves F2(y∗, y) +ψ2(y) −ψ2(y∗) ≥ 0, ∀ y ∈ K2, (1.7)

where K1 and K2 are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,

respectively, F1 : K1 ×K1 → R and F2 : K2 ×K2 → R are bifunctions satisfying F1(x, x) = 0, ∀ x ∈ K1

and F2(y, y) = 0, ∀ y ∈ K2, ψ1 : K1 → R ∪ {+∞} and ψ2 : K2 → R ∪ {+∞} being proper lower

semicontinuous and convex functions such that K1 ∩ domψ1 , ∅ and K2 ∩ domψ2 , ∅. We denote

by SMEP(F1,ψ1, F2,ψ2) := {x∗ ∈ K1 : x∗ ∈ MEP(F1,ψ1) and Ax∗ ∈ MEP(F2,ψ2)} the solution set of

(1.6)-(1.7).

Recently, Onjai-uea and Phuengrattana [31] introduced the following iterative method for finding a

solution of SMEP for λ-hybrid multi-valued mappings. They proved that the sequence generated

by their iterative algorithm converges weakly to a common solution of fixed point problem of

λ-hybrid multi-valued mappings and SMEP (1.6)-(1.7). Given a sequence {xn} generated by
un = TF1

rn
(I − γA∗(I − TF2

rn
)A)xn,

yn = αnun + (1− αn)wn, wn ∈ Sun,

xn+1 = βnwn + (1− βn)zn, zn ∈ Syn, n ∈N,

where TF1
rn

and TF2
rn

denotes the resolvents of bifunctions F1 and F2, respectively.

In this paper, we introduce the following SMEP with multiple output sets and fixed point of

multi-valued strictly pseudo-contractive mappings as follows: find

x∗ ∈
m⋂

i=1

Fix(Si)∩MEP(F,ψ) (1.8)

and

y∗ = A jx∗ ∈
N⋂

j=1

MEP(F j,ψ j). (1.9)

Remark 1.1. (1) If S = I, where I is an identity operator and j = 1, then we obtain SMEP (1.6)-(1.7).
(2) If (1) above holds and ψ = 0, then we obtain SEP (1.4)-(1.5).

Questions:

(1) We observed that in ( [38], [31]) and other problems related to SEP and SMEP, there are

always two resolvents TF1
rn

and TF2
rn

respectively. Can we solve SMEP with just one of the

aforementioned resolvents?
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(2) Can we prove a strong convergence result of (1.8)-(1.9) as this is desirable to the weak

convergence obtained in [31, 38].

(3) Is it possible to prove a strong convergence result without imposing the compactness

conditions on our class of mappings ? (see [3, 17]).

Inspired by the results of ( [6], [31], [38]) and other related results in literature, we propose a Halpern

iterative method for approximating a common solution of (1.8)-(1.9). A strong convergence result

was proved without imposing any compactness conditions. Consequences and applications of

our main results were discussed. The result present in this paper extends and complements some

related results in literature.

2. Preliminaries

We state some known and useful results which will be needed in the proof of our main theorem.

In the sequel, we denote strong and weak convergence by "→" and "⇀" respectively.

Let K be a nonempty, closed and convex subset of a real Hilbert space H and T : H → 2H be a

multi-valued mapping. A vector p ∈ K is called a fixed point of T, if p ∈ Tp. We denote the set of

fixed point of T by Fix(T). Let CB(K) denote the family of nonempty closed bounded subset of K,

the Hausdorff metric on CB(K) is defined by

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

for A, B ∈ CB(K),

where d(x, K) = inf{||x− y|| : y ∈ K}.
A multi-valued mapping T is said to be L-Lipschitzian if there exists L > 0 such that

H(Tx, Ty) ≤ L||x− y||, x, y ∈ C. (2.1)

In (2.1), if L ∈ (0, 1), then T is called a contraction while T is called nonexpansive if L = 1.

T : K→ CB(K) is said to be

(i) quasi-nonexpansive, if Fix(T) , ∅ and

H(Tx, Ty) ≤ ||x− y||, ∀ x ∈ C, y ∈ Fix(T),

(ii) k-strictly pseudocontractive in the sense of [18] if there exists k ∈ (0, 1) such that ∀x, y ∈ K and

u ∈ Tx there exists v ∈ Ty such that

H
2(Tx, Ty) ≤ ||x− y||2 + k||x− y− (u− v)||2.

Remark 2.1. If k = 0 in (ii), we have (i).

The metric projection PK is a map defined on H onto K which assign to each x ∈ H, the unique

point in K, denoted by PKx such that

‖x− PKx‖ = inf{‖x− y‖ : y ∈ K}.
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It is well known that PKx is characterized by the inequality 〈x− PKx, z− PKx〉 ≤ 0, ∀ z ∈ K and PK

is a firmly nonexpansive mapping. For more information on metric projections, (see [22]) and the

references therein.

For solving mixed equilibrium problems, we assume that the bifunction F : K × K → R satisfies

the following conditions:

(A1) F(x, x) = 0,∀ x ∈ K;

(A2) F(x, y) + F(y, x) ≤ 0,∀ x, y ∈ K;

(A3) For all x, y, w ∈ K, limt↓0 F(tw + (1− t)x, y) ≤ F(x, y);
(A4) For each x ∈ K, the function y 7→ F(x, y) is convex and lower semi-continuous;

(A5) For fixed r > 0 and w ∈ K, there exists a nonempty compact convex subset V of H and

x ∈ K ∩V
such that

F(w, x) +
1
r
〈y− x, x−w〉 ≥ 0,∀ y ∈ K \V.

We now list some important results that we will need in the proof of our main result.

Lemma 2.1. [35] Let K be a nonempty closed convex subset of a Hilbert space H. Let F be a bifunction
from K × K to R satisfying (A1)-(A5), and let ψ : K → R be a proper lower semi-continuous and convex
function such that K ∩ domψ , ∅. For r > 0 and x ∈ H, define a mapping TF

r : H→ K as follows:

TF
r (x) =

{
w ∈ K : F(w, y) +ψ(y) −ψ(w) +

1
r
〈y−w, w− x〉 ≥ 0,∀y ∈ K

}
. (2.2)

Then
(1) For each x ∈ H, TF

r (x) , ∅;
(2) TF

r is single valued;
(3) TF

r is firmly nonexpansive, that is ∀x, y ∈ H,

||TF
r x− TF

r y||2 ≤ 〈TF
r x− TF

r y, x− y〉;

(4) Fix(TF
r ) = MEP(F,ψ);

(5) MEP(F,ψ) is closed and convex.

Lemma 2.2. [16] Let H be a real Hilbert space, then ∀ x, y ∈ H and α ∈ (0, 1), we have

(i) 2〈x, y〉 = ||x||2 + ||y||2 − ||x− y||2 = ||x + y||2 − ||x||2 − ||y||2,

(ii) ||αx + (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2,

(iii) ||x + y||2 ≤ ||x||2 + 2〈y, x + y〉

Lemma 2.3. [17] Let H be a real Hilbert space. Let {xi, i = 1, · · ·m} ⊂ H. For αi ∈ (0, 1), i = 1, · · ·m such

that
m∑

i=1
αi = 1, the following identity holds:

||

m∑
i=1

αixi||
2 =

m∑
i=1

αi||xi||
2
−

m∑
i, j=1,i, j

αiα j||xi − x j||
2.
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Lemma 2.4. [36] Let {an} be a sequence of positive real numbers, {αn} be a sequence of real numbers in

(0, 1) such that
∞∑

n=1
αn = ∞ and {dn} be a sequence of real numbers. Suppose that

an+1 ≤ (1− αn)an + αndn, n ≥ 1.

If lim sup
k→∞

dnk ≤ 0 for all subsequences {ank} of {an} satisfying the condition

lim inf
k→∞

{ank+1 − ank} ≥ 0,

then, lim
n→∞

an = 0.

3. Main Result

In this section, we introduce a Halpern iterative algorithm for approximating a solution of split

mixed equilibrium problem and fixed point of a finite family for multi-valued pseudo-contractive

mappings with multiple output sets and prove its strong convergence theorem in the framework

of real Hilbert spaces. We state the following assumptions that are needed in our result.

Assumption 3.1
(1) Let H, H j, j = 0, 1, 2, · · · , N, be real Hilbert spaces and K, K j be nonempty, closed and convex

subsets of H and H j respectively. Let Si : H → CB(H) be a finite family of multi-valued κi-strictly

pseudo-contractive mapping with κi ∈ (0, 1) such that Sip = {p}, with H0 = H.

(2) Let F : K × K → R, F j : K j × K j → R be bifunctions satisfying Assumption (A1)-(A5) and

ψ : K → R ∪ {+∞},ψ j : K j → R ∪ {+∞} be proper lower semicontinuous and convex functions

such that K∩ domψ , ∅ and K j ∩ domψ j , ∅, respectively. Suppose that F j is upper semicontinuous

in the first argument and A j : H → H j, j = 1, 2, · · ·N is a bounded linear operator then Ω := {x∗ ∈

MEP(F,ψ)∩
m⋂

i=1
Fix(Si) : A jx∗ ∈

N⋂
j=1

MEP(F j,ψ j)} , ∅.

Algorithm 3.1. Split Mixed Equilibrium Problem and Multi-valued strictly Pseudo-contractive
Mappings with Multiple Output Set.
For u, x1 ∈ H, let {xn} be a sequence generated by

un =
N∑

j=1
θ j,n

[
(IH
− γ j,nA∗j(I

H j − T
F j
rn
)A jxn)

]
,

yn = β0un +
m∑

i=1
βizi

n, zi
n ∈ Siun,

xn+1 = αnu + (1− αn)yn, ∀ n ∈N,

(3.1)

where {αn} ⊂ (0, 1), βi ∈ (κi, 1), i = 1, 2, · · ·m, such that
m∑

i=0
βi = 1 and κ := max{κi, i =

1, 2, · · · , m}, {rn} ⊂ (0,∞) and γ j,n ∈ (0, 1
L ) such that L is the spectral radius of A∗jA j, j = 1, 2, · · ·m

and A∗j is the adjoint of A j. Assume that the following conditions hold:

(1) lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞,
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(2) {θ j,n} ⊂ (0, 1) and
N∑

j=1
θ j,n = 1,

(3) 0 < lim inf
n→∞

rn.

Then, the sequence {xn} generated by (3.1) converges strongly to x∗ = PΩu, where PΩ is the metric
projection of H onto Ω.

Remark 3.1. For clarity, we assume in (3.1) that H0 = H, F0 = F and ψ0 = ψ.

Proof. We need to show A∗j(I
H j − T

F j
rn
)A j is 1

L− ism for all j = 0, 1, 2, · · ·N. Using the fact that T
F j
rn

is

firmly nonexpansive and I − T
F j
rn

is 1-ism, we obtain that

||A∗j(I
H j − T

F j
rn
)A jx−A∗j(I

H j − T
F j
rn
)A jy||2 = 〈A∗j(I

H j − T
F j
rn
)A j(x− y), A∗j(I

H j − T
F j
rn
)A j(x− y)〉

= 〈(IH j − T
F j
rn
)A j(x− y), A jA∗j(I

H j − T
F j
rn
)A j(x− y)〉

≤ L〈(IH j − T
F j
rn
)A j(x− y), (IH j − T

F j
rn
)A j(x− y)〉

= L||(IH j − T
F j
rn
)A j(x− y)||2

≤ L〈A j(x− y), (IH j − T
F j
rn
)A j(x− y)〉

= L〈x− y, A∗j(I
H j − T

F j
rn
)A j −A∗j(I

H j − T
F j
rn
)A jy〉,

for all x, y ∈ H. So, we conclude that A∗j(I
H j − T

F j
rn
)A j is a 1

L− ism for all j = 0, 1, 2, · · · , N. More so,

since 0 < γ j,n <
1
L , we obtain that IH

− γ j,nA j(IH j − T
F j
rn
)A j, j = 0, 1, 2, · · ·N is nonexpansive.

Step 1: We show that {xn}, {un} and {yn} are bounded. Let v ∈ Ω, then we have that T
F j
rn
(A jv) =

A jvandv = (IH
− γ j,n)A∗j(I

H j −T
F j
rn
)A jv. By applying the nonexpansive property of v defined above,

we have that

||un − v‖ = ||
N∑

j=0

θ j,n

[
(IH
− γ j,nA∗j(I

H j − T
F j
rn
)A jxn − (IH

− γ j,nA∗j(I
H j − T

F j
rn
)A jv))

]
‖

≤

N∑
j=0

θ j,n||(IH
− γ j,nA∗j(I

H j − T
F j
rn
)A jxn − (IH

− γ j,nA∗j(I
H j − T

F j
rn
)A jv))||

≤ ||xn − v||. (3.2)

By applying Lemma 2.3 and inequality (3.2), we obtain that

||yn − v||2 = β0||un − v||2 +
m∑

i=1

βi||zi
n − v||2 −

m∑
i=1

β0βi||un − zi
n||

2

−

m∑
i, j=1,i,k

βiβk||zi
n − zk

n||
2

≤ β0||un − v||2 +
m∑

i=1

βi||zi
n − v||2 −

m∑
i=1

β0βi||un − zi
n||

2
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≤ β0||un − v||2 +
m∑

i=1

βi(H(Siun, Siv))2
−

m∑
i=1

β0βi||un − zi
n||

2

= ||un − v||2 −
m∑

i=1

βi(β0 − κ)||un − zi
n||

2 (3.3)

≤ ||xn − v||2 −
m∑

i=1

βi(β0 − κ)||un − zi
n||

2. (3.4)

We obtain from (3.1) and (3.4) that

||xn+1 − v|| = ||αnu + (1− αn)yn − v||

≤ αn||u− v||+ (1− αn)||yn − v||

≤ αn||u− v||+ (1− αn)||xn − v||

≤ max{||u− v||, ||xn − v||}

...

≤ max{||u− v||, ||x1 − v||}.

Hence the sequence {xn} is indeed bounded as claimed. Consequently, it follows from (3.2)-(3.4)

that the sequence {un} and {yn} are also bounded.

Step 2: We show that {xn} converges strongly to x∗ ∈ Ω.

Let v ∈ Ω, we see from (3.1) that

||un − v||2 = ||
N∑

j=0

θ j,n

[
IH
− γ j,nA∗j(I

H j − T
F j
rn
)A jxn

]
− v||2

≤

N∑
j=0

θ j,n||(IH
− γ j,nA∗j(I

H j − T
F j
rn
)A jxn) − v||2

≤ ||xn − v||2 + γ2
j,n||A

∗

j(I − T
F j
rn
)A jxn||

2 + 2γ j,n〈v− xn, A∗j(I
H j − T

F j
rn
)A jxn〉

≤ ||xn − v||2 + γ j,n〈A jxn − T
F j
rn

A jxn, A jA∗j(I
H j − T

F j
rn
)A jxn〉

+ 2γ j,n〈A j(v− xn), A jxn − T
F j
rn

A jxn〉

≤ ||xn − v||2 + Lγ2
j,n〈A jxn − T

F j
rn

A jxn, A jxn − T
F j
rn

A jxn〉

+ 2γ j,n〈A j(v− xn) + (A jxn − T
F j
rn

A jxn) − (A jxn − T
F j
rn

A jxn), A jxn − T
F j
rn

A jxn〉

≤ ||xn − v||2 + Lγ2
j,n||A jxn − T

F j
rn

A jxn||
2 + 2γ j,n

[
〈A jv− T

F j
rn

A jxn, A jxn − T
F j
rn

A jxn〉

− ||A jxn − T
F j
rn

A jxn||
2
]

= ||xn − v||2 + Lγ2
j,n||A jxn − T

F j
rn

A jxn||
2 + 2γ j,n

[
1
2
||A jxn − T

F j
rn

A jxn||
2
− ||A jxn − T

F j
rn

A jxn||
2
]

≤ ||xn − v||2 + γ j,n(Lγ j,n − 1)||A jxn − T
F j
rn

A jxn||
2. (3.5)
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Hence, we have from (3.1) and (3.5) that

||un − v||2 = ||xn − v||2 +
N∑

j=0

θ j,nγ j,n(Lγ j,n − 1)||A jxn − T
F j
rn

A jxn||
2. (3.6)

From (3.1), we obtain

||xn+1 − v||2 = 〈αnu + (1− αn)yn − v, xn+1 − v〉

= (1− αn)〈yn − v, xn+1 − v〉+ αn〈u− v, xn+1 − v〉

≤
(1− αn)

2

(
||xn+1 − v||2 + ||yn − v||2

)
+ αn〈u− v, xn+1 − v〉. (3.7)

This implies from (3.3) and (3.6) that

||xn+1 − v||2 ≤ (1− αn)||un − v||2 − (1− αn)
m∑

i=1

βi(β0 − κ)||un − zi
n||

2 + 2αn〈u− v, xn+1 − v〉

= (1− αn)||xn − v||2 + (1− αn)
N∑

j=0

θ j,nγ j,n(Lγ j,n − 1)||A jxn − T
F j
rn

A jxn||
2

− (1− αn)
m∑

i=1

βi(β0 − κ)||un − zi
n||

2 + 2αn〈u− v, xn+1 − v〉. (3.8)

Following the approach in (3.7), (3.8) and applying (3.2) and (3.4), we obtain

||xn+1 − x∗||2 ≤ (1− αn)||yn − x∗||2 + αn(2〈u− x∗, xn+1 − x∗〉)

= (1− αn)||un − x∗||2 + αn(2〈u− x∗, xn+1 − x∗〉)

= (1− αn)||xn − x∗||2 + αndn, (3.9)

where dn = 2〈u− x∗, xn+1 − x∗〉. According to Lemma 2.4, to conclude our proof, it sufficies to show

that lim sup
k→∞

dnk ≤ 0 for every subsequence {||xnk − x∗||} satisfying the condition

lim inf
k→∞

(
||xnk+1 − x∗|| − ||xnk − x∗||

)
≥ 0. (3.10)

To show this, suppose that {||xnk − x∗||} is a subsequence of {||xn − x∗||} such that (3.10) holds. Then

lim inf
k→∞

(
||xnk+1 − x∗||2 − ||xnk − x∗||2

)
= lim inf

k→∞

(
(||xnk+1 − x∗|| − ||xnk − x∗||)(||xnk+1 − x∗||+ ||xnk − x∗||)

)
≥ 0. (3.11)

From (3.8), we obtain that

lim sup
k→∞

(
− (1− αnk)

N∑
j=0

θ j,nkγ j,nk(Lγ j,nk − 1)||A jxnk − T
F j
rnk

A jxnk ||
2
)

≤ lim sup
k→∞

(
(1− αnk)||xnk − x∗||2 − ||xnk+1 − x∗||2

)
+ lim sup

k→∞

(
2αnk〈u− x∗, xnk+1 − x∗〉

)
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≤ lim sup
k→∞

(
||xnk − x∗||2 − ||xnk+1 − x∗||2

)
+ lim sup

k→∞

(
2αnk〈u− x∗, xnk+1 − x∗〉

)
= − lim inf

k→∞

(
||xnk+1 − x∗||2 − ||xnk − x∗||2

)
≤ 0. (3.12)

Since γ j,nk(Lγ j,nk − 1) < 0, it follows from (3.12) that

lim
k→∞
||A jxnk − T

F j
rnk

A jxnk || = 0. (3.13)

Also, from (3.8), we have that

lim sup
k→∞

(
(1− αnk)

m∑
i=1

βi(β0 − κ)||unk − zi
nk
||

2
)

≤ lim sup
k→∞

(
(1− αnk)||xnk − x∗||2 − ||xnk+1 − x∗||2

)
+ lim sup

k→∞

(
2αnk〈u− x∗, xnk+1 − x∗〉

)
≤ lim sup

k→∞

(
||xnk − x∗||2 − ||xnk+1 − x∗||2

)
+ lim sup

k→∞

(
2αnk〈u− x∗, xnk+1 − x∗〉

)
= − lim inf

k→∞

(
||xnk+1 − x∗||2 − ||xnk − x∗||2

)
≤ 0. (3.14)

Thus, since βi ∈ (κ, 1), we obtain that

lim
k→∞
||unk − zi

nk
|| = 0, i = 1, 2, · · ·m. (3.15)

Since zi
nk
∈ Siunk , i = 1, 2, · · ·m, we have 0 ≤ d(unk , Siunk) ≤ ||unk − zi

nk
|| and so

lim
k→∞

d(unk , Siunk) = 0. (3.16)

From (3.1) and (3.15), we obtain the following

lim
k→∞
||unk − xnk || = 0,

lim
k→∞
||ynk − unk || = 0,

lim
k→∞
||xnk+1 − ynk || = 0,

lim
k→∞
||ynk − xnk || = 0,

lim
k→∞
||xnk+1 − xnk || = 0.

(3.17)

Since {xnk} is bounded, there exists a subsequence {xnkl
} of {xnk} such that xnkl

⇀ x∗. Also, from

(3.17) that there exist subsequences {unkl
} of {unk} and {ynkl

} of {ynk} which converge weakly to

x∗, respectively. Moreover, by continuity of Si, i = 1, 2, · · ·m and (3.16), we obtain that x∗ ∈
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i=1 Fix(Si). Also, since A j is a bounded linear operator, we have that A jxnkl

⇀ A jx∗. Then, it

follows from (3.13) that

T
F j
rnkl

A jxnkl
⇀ A jx∗, as l→∞. (3.18)

By the definition of T
F j
rnkl

A jxnkl
, we have

F j(T
F j
rnkl

A jxnkl
, y) +ψ j(y) −ψ j(T

F j
rnkl

A jxnkl
) +

1
rnkl

〈y− T
F j
rnkl

A jxnkl
, T

F j
rnkl

A jxnkl
−A jxnkl

〉 ≥ 0, ∀ y ∈ K.

Since F j is upper semicontinuous in the first argument, it implies from (3.18) that

F j(A jx∗, y) +ψ j(y) −ψ j(A jx∗) ≥ 0, ∀ y ∈ K.

This shows that A jx∗ ∈ MEP(F j,ψ j) for j = 0, 1, 2, · · ·N. Hence A jx∗ ∈ ∩N
j=0MEP(F j,ψ j), that is

A jx∗ ∈ Ω. Let x∗ = PΩu, suppose that {xnkl
} is a subsequence of {xnk} such that {xnkl

}⇀ v ∈ Ω, then

we obtain

lim sup
k→∞

〈u− x∗, xnk − x∗〉 = lim
l→∞
〈u− x∗, xnkl

− x∗〉

= 〈u− x∗, v− x∗〉

≤ 0. (3.19)

On substituting (3.19) into (3.9), we obtain that lim sup
k→∞

dnk ≤ 0. Thus by applying Lemma 2.4 to

(3.9), we conclude that ||xn − x∗|| → 0 as n→∞. Therefore, {xn} converges strongly to x∗ = PΩu. �

Corollary 3.1.

Algorithm 3.2. Split Mixed Equilibrium Problem and Multi-valued Nonexpansive Mappings
with Multiple Output Set.
For u, x1 ∈ H, let {xn} be a sequence generated by

un =
N∑

j=1
θ j,n

[
(IH
− γ j,nA∗j(I

H j − T
F j
rn
)A jxn)

]
yn = β0un +

m∑
i=1
βizi

n, zi
n ∈ Siun

xn+1 = αnu + (1− αn)yn, ∀ n ∈N,

(3.20)

where {αn} ⊂ (0, 1), βi ∈ (0, 1), i = 1, 2, · · ·m, such that
m∑

i=0
βi = 1 and {rn} ⊂ (0,∞) and γ j,n ∈ (0, 1

L ) such

that L is the spectral radius of A∗jA j, j = 1, 2, · · ·m and A∗j is the adjoint of A j. Assume that the following
conditions hold:

(1) lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞,

(2) {θ j,n} ⊂ (0, 1) and
N∑

j=1
θ j,n = 1,
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(3) 0 < lim inf
n→∞

rn.

Then, the sequence {xn} generated by (3.20) converges strongly to x∗ = PΩu, where PΩ is the metric
projection of H onto Ω.

Corollary 3.2.

Algorithm 3.3. Weak Convergence of Split Mixed Equilibrium Problem and Multi-valued Non-
expansive Mappings with Multiple Output Set.
For x1 ∈ H, let {xn} be a sequence generated by

un =
N∑

j=1
θ j,n

[
(IH
− γ j,nA∗j(I

H j − T
F j
rn
)A jxn)

]
yn = β0un +

m∑
i=1
βizi

n, zi
n ∈ Siun

xn+1 = αnyn + (1− αn)yn, ∀ n ∈N,

(3.21)

where {αn} ⊂ (0, 1), βi ∈ (0, 1), i = 1, 2, · · ·m, such that
m∑

i=0
βi = 1 and {rn} ⊂ (0,∞) and γ j,n ∈ (0, 1

L ) such

that L is the spectral radius of A∗jA j, j = 1, 2, · · ·m and A∗j is the adjoint of A j. Assume that the following
conditions hold:

(1) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(2) {θ j,n} ⊂ (0, 1) and
N∑

j=1
θ j,n = 1,

(3) 0 < lim inf
n→∞

rn.

Then, the sequence {xn} generated by (3.21) converges weakly to x∗ ∈ Ω.

4. Applications

4.1. Application to split mixed variational inequality problem
Let K be a nonempty, closed and convex subset of a real Hilbert space H. Given a nonlinear

mapping B : K→ H, then the Variational Inequality Problem (VIP) is to find x∗ ∈ K such that

〈Bx∗, z− x∗〉 ≥ 0, ∀z ∈ K. (4.1)

We will denote the solution set of VIP by VI(B, C).
A mapping B : K→ H is said to be ν− inverse strongly monotone mapping if there exists a constant

ν > 0 such that 〈Bx− By, x− y〉 ≥ ν||Bx− By||2 for any x, y ∈ K.

Let H1 and H2 be real Hilbert spaces, K1 and K2 be nonempty, closed and convex subsets of H1 and

H2 respectively. Then the Split Mixed Variational Inequality Problem (SMVIP) is to find x∗ ∈ K1

such that

〈B1(x∗), x− x∗〉+ψ1(x) −ψ1(x∗) ≥ 0 ∀ x ∈ K1, (4.2)
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and

y∗ = Ax∗ ∈ K2 solves 〈B2(y∗), y− y∗〉+ψ2(y) −ψ2(y∗) ≥ 0 ∀ y ∈ K2, (4.3)

where B1 : H1 → H1, B2 : H2 → H2 are nonlinear mappings and A : H1 → H2 is a bounded linear

operator. We denote by SMVIP(B1,ψ1, B2,ψ2) the solution set of problem (4.2)-(4.3).

Setting F1(x, y) = 〈B1x, y − x〉 and F2(x, y) = 〈B2x, y − x〉, it is easy to see that F and G satisfy

condition (A1)-(A5) since B1 : K1 → H1 and B2 : K2 → H2 are ν− inverse strongly monotone

mappings. Then from (3.1), the following result holds.

Algorithm 4.1. Weak Convergence of Split Mixed Variational Inequality Problem and Multi-
valued Nonexpansive Mappings with Multiple Output Set.
For x1 ∈ H, let {xn} be a sequence generated by

un =
N∑

j=1
θ j,n

[
(IH
− γ j,nA∗j(I

H j − PK j(I − λB j))A jxn)
]

yn = β0un +
m∑

i=1
βizi

n, zi
n ∈ Siun

xn+1 = αnyn + (1− αn)yn, ∀ n ∈N,

(4.4)

where {αn} ⊂ (0, 1), βi ∈ (0, 1), i = 1, 2, · · ·m, such that
m∑

i=0
βi = 1 and γ j,n ∈ (0, 1

L ) such that L is the

spectral radius of A∗jA j, j = 1, 2, · · ·m and A∗j is the adjoint of A j. Assume that the following conditions
hold:

(1) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(2) {θ j,n} ⊂ (0, 1) and
N∑

j=1
θ j,n = 1.

Then, the sequence {xn} generated by (4.4) converges weakly to x∗ ∈ SMVIP(B,ψ, B j,ψ j) ∩
m⋂

i=1
Fix(Si) .

Remark 4.1. In a real Hilbert space, if B is µ-inverse strongly monotone with λ ∈ (0, 2µ), then PK(I−λB)
is firmly nonexpansive. Thus, PK(I − λB) is nonexpansive. In addition, x∗ ∈ VI(K, B) if and only if
x∗ = PK(I − λB)(x∗),∀ λ > 0, see [13].

4.2. Application to split convex minimization problem
One of the most important problems in optimization theory and non-linear analysis is the problem

of approximating solutions of Minimization Problem (MP) which is defined as follows: Find x ∈ H
such that

ψ(x) = min
y∈H

ψ(y), (4.5)

where ψ : H → (−∞,∞] is a proper, convex and lower semicontinuous function. Recall that a

mapping ψ is convex if

ψ(λx + (1− λ)y) ≤ λψ(x) + (1− λ)ψ(y) ∀x, y ∈ H, λ ∈ (0, 1).
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ψ is proper, if D(ψ) := {x ∈ H : ψ(x) < +∞} , ∅, where D(ψ) denotes the domain of ψ. The

mapping ψ : D(ψ)→ (−∞,∞] is lower semi-continuous at a point x ∈ D(ψ) if

ψ(x) ≤ lim inf
n→∞

ψ(xn), (4.6)

for each sequence {xn} in D(ψ) such that lim
n→∞

xn = x; ψ is said to be lower semicontinuous on

D(ψ) if it is lower semi-continuous at any point in D(ψ). An example of a convex and lower

semicontinuous function is the indicator function δK : H → R of a nonempty closed and convex

subset K of H defined by

δK(x) =

0, if x ∈ K,

+∞, otherwise.

For any λ > 0, the resolvent (or Moreau-Yosida approximation) of ψ in H is defined as (see [43]).

Jψ
λ
(x) = arg min

y∈H

[
ψ(y) +

1
2λ
||y− x||2

]
.

It is generally known that Jψ
λ

is well-defined and firmly nonexpansive for all λ > 0. Hence, Jψ
λ

is

nonexpansive for all λ > 0. For simplicity, we shall write Jψ
λ

for the resolvent of a proper, convex

and lower semi-continuous mapping ψ. Furthermore, we denote the solution set of problem (4.5)

by argmin
y∈H

ψ(y). It is also known that Fix(Jψ
λ
) coincides with argmin

y∈H
ψ(y).

If F1 = 0 and F2 = 0 in SMEP (1.6)-(1.7), then SMEP (1.6)-(1.7) reduces to the following Split

Convex Minimization Problem (SCMP): find x∗ ∈ K1 such that

ψ1(x) ≥ ψ1(x∗), ∀ x ∈ K1, (4.7)

and

y∗ = Ax∗ ∈ K2 solves ψ2(y) ≥ ψ2(y∗), ∀ y ∈ K2. (4.8)

We denote by SCMP(ψ1,ψ2) the solution set of (4.7)-(4.8). We therefore obtained from (3.1) a new

iterative method to solve SCMP with multiple output set as follows:

Algorithm 4.2. Weak Convergence of Split Convex Minimization Problem and Multi-valued
Nonexpansive Mappings with Multiple Output Set.
For x1 ∈ H, let {xn} be a sequence generated by

un =
N∑

j=0
θ j,n

[
(IH
− γ j,nA∗j(I

H j − J
ψ j

λ
)A jxn)

]
yn = β0un +

m∑
i=1
βizi

n, zi
n ∈ Siun

xn+1 = αnyn + (1− αn)yn, ∀ n ∈N,

(4.9)

where {αn} ⊂ (0, 1), βi ∈ (0, 1), i = 1, 2, · · ·m, such that
m∑

i=0
βi = 1 and {rn} ⊂ (0,∞) and γ j,n ∈ (0, 1

L ) such

that L is the spectral radius of A∗jA j, j = 1, 2, · · ·m and A∗j is the adjoint of A j. Assume that the following
conditions hold:



Int. J. Anal. Appl. (2025), 23:280 15

(1) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(2) {θ j,n} ⊂ (0, 1) and
N∑

j=0
θ j,n = 1.

Then, the sequence {xn} generated by (4.9) converges weakly to x∗ ∈ SCMP(ψ,ψ j)∩
m⋂

i=1
Fix(Si).

5. Conclusion

In this article, we give an affirmative answer to the questions raised in the introductory part of

this article by introducing a Halpern iterative method for approximating a common solution of

(1.8)-(1.9). More so, we proved a strong convergence result for approximating the solutions of

the aforementioned problems. We also present some applications of our results to SCMP with

multiple output sets and SMVIP with multiple output sets. Our results complements and extends

the results of ( [6], [31], [38]) and many related results in literature.
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publication of this paper.
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