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Abstract. In this paper, we study the split mixed equilibrium problem which includes the equilibrium problem, split
convex minimization problem and split equilibrium problem, to mention a few. In addition, we propose a Halpern
iterative method for solving split mixed equilibrium problem with multiple output sets and fixed point of a finite
family of multi-valued strictly pseudo-contractive mappings in the framework of real Hilbert spaces. We prove a strong
convergence theorem without imposing any compactness condition. Lastly, we present some consequences and give
applications of our main result to split mixed variational inequality and split convex minimization problems. The result

discussed in this article extends and complements many related results in literature.

1. INTRODUCTION

Let K be a nonempty, closed and convex subset of a real Hilbert space H with inner product (., .)
and induced norm ||.||. Let F : KX K — R be a bifunction, the Equilibrium Problem (EP) is to find
x € K such that

F(x,y) 20, YyeK. (1.1)

The solution set of EP is denoted by EP(F). The EP was first introduced by Fan [20] in 1972, then
Blum and Oetlli [9], Noor and Oettli [30], and Abass [1] made significant contributions to this
problem. The EP has a great impact in the development of several branches of pure and applied
sciences and it provides a natural and unified framework for solving several problems arising in
physics, economics, game theory, transportation network and elasticity. The EP can be applied

to solve other different mathematical problems such as convex feasibility problem, variational
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inequality problem, minimization problem and fixed point problem to mention a few, the reader
may consult ( [4], [5], [39]). More so, the EP can be generalize into other optimization problems.
For instance, the Mixed Equilibrium Problem (MEP), which is to find x € K such that

F(x,y) +¢(y) —¢(x) 20, Vy €K, (1.2)

where 1) : K — Ris a function. In particular, if iy = 0, MEP (1.2) reduces to EP (1.1). We denote by
MEP(F, ¢) the solution set of MEP (1.2), for more generalizations of EP, the reader may consult [12].
Let H; and H; be real Hilbert spaces and A : H; — H; be a bounded linear operator. The Split
Feasibility Problem (SFP) is to find a point

x* € Ky such that Ax* € K5, (1.3)

where K; C Hj and K, C H; are nonempty, closed and convex sets. The SFP in finite dimensional
Hilbert spaces was first introduced by Censor and Elfving [15] for modeling inverse problems
which arise from phase retrievals and in medical image reconstruction [8]. Motivated by SFP (1.3)
and EP (1.1), Kazmi and Rizvi [25] studied the following Split Equilibrium Problem (SEP): Let K;
and K; be nonempty, closed and convex subsets of real Hilbert spaces Hy and Hp, F1 : K1 XxK; — R
and F; : K» X K; — R be nonlinear bifunctions with A : H; — H» being a bounded linear operator.
The SEP is to find x* € K; such that

F (X*,X) >0, VxeK; (14)

and such that
Yy = Ax" € Ky solves F2(y*,y) =0, ¥V y € Ky. (1.5)

We denote by SEP(Fj, F2) the solution set of (1.4)-(1.5).
Recently, Suantai et al. [38] introduced the following iterative algorithm to approximate a common
elements of the set of solution of SEP (1.4)-(1.5) and fixed point of a nonspreading multi-valued

mappings: Given a sequence {x,} generated by

x1 € Kj arbitrarily,
g = To (1= yA* (I = T12)A)xy,
Xpt1 = Xy + (1 —ay)Suy, Y n €N,

where {a,} € (0,1), r, € (0,00) and y € (0, 1) such that L is the spectral radius of A*A and
S:K; — CB(Kp) isa %— nonspreading multi-valued mappings. The authors proved that under
some mild conditions, the sequence {x,} converges weakly to an element of Fix(S) N SEP(Fy,F3),
readers can consult [41]. In 2018, Abass et al. [6] considered a viscosity iterative method for
approximating a common element of the set of solutions of SEP(Fj,F,) and fixed point of an
infinite family of quasi-nonexpansive multi-valued mappings in the framework of real Hilbert
spaces. The authors proved that under some mild conditions, the sequence {x,} converges strongly
to an element of Fix(S) N SEP(Fy, F»), readers can as well consult ( [2], [3], [7], [11], [25], [38], [44])

for convergence analysis of SEP.
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The Split Mixed Equilibrium Problem (SMEP) is known to contain the EP, SEP and MEP. It is to
find x* € Kj such that

Fi(x%,x) +¢1(x) —yr(x") =0, Yx € Ky (1.6)

and such that

Yy = Ax" € Ky solves Fa(y", y) + ¥a2(y) —2(y') =0, Yy € Ky, (1.7)

where K; and K; are nonempty, closed and convex subsets of real Hilbert spaces H; and H,
respectively, F; : K1 XK; = Rand F; : K» X K; — R are bifunctions satisfying F1 (x,x) =0, Y x € K3
and Fa(y,y) =0, Yy € Ky, 1 : K > RU{+0co} and ¢, : Kz = R U {400} being proper lower
semicontinuous and convex functions such that Ky Ndomy; # 0 and K, Ndomy, # 0. We denote
by SMEP(F1, Y1, Fa, ¢2) := {x* € Ky : x* € MEP(F1,11) and Ax* € MEP(F,,1,)} the solution set of
(1.6)-(1.7).

Recently, Onjai-uea and Phuengrattana [31] introduced the following iterative method for finding a
solution of SMEP for A-hybrid multi-valued mappings. They proved that the sequence generated
by their iterative algorithm converges weakly to a common solution of fixed point problem of

A-hybrid multi-valued mappings and SMEP (1.6)-(1.7). Given a sequence {x,} generated by

wy = To (1= yA* (I = T}2)A)xy,
Yn = ity + (1 — ay)wy, wy € Suy,
Xn+1 = ﬁnwn + (1 _,Bn)zn/ Zn € S]/n/ n €N,
where Tfnl and Tf, ? denotes the resolvents of bifunctions F; and F», respectively.

In this paper, we introduce the following SMEP with multiple output sets and fixed point of

multi-valued strictly pseudo-contractive mappings as follows: find

x* € () Fix(Si) N MEP(F, ) (1.8)
i=1
and
N
Y =Ax'e mMEP(F]-, V). (1.9)

=1

Remark 1.1. (1) If S = I, where I is an identity operator and j = 1, then we obtain SMEP (1.6)-(1.7).
(2) If (1) above holds and ¢ = O, then we obtain SEP (1.4)-(1.5).

Questions:

(1) We observed that in ( [38], [31]) and other problems related to SEP and SMEP, there are
always two resolvents Tfnl and T,Fn2 respectively. Can we solve SMEP with just one of the

aforementioned resolvents?
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(2) Can we prove a strong convergence result of (1.8)-(1.9) as this is desirable to the weak

convergence obtained in [31,38].

(3) Is it possible to prove a strong convergence result without imposing the compactness
conditions on our class of mappings ? (see [3,17]).
Inspired by the results of ( [6], [31], [38]) and other related results in literature, we propose a Halpern
iterative method for approximating a common solution of (1.8)-(1.9). A strong convergence result
was proved without imposing any compactness conditions. Consequences and applications of
our main results were discussed. The result present in this paper extends and complements some

related results in literature.

2. PRELIMINARIES

We state some known and useful results which will be needed in the proof of our main theorem.
In the sequel, we denote strong and weak convergence by "—" and "—" respectively.

Let K be a nonempty, closed and convex subset of a real Hilbert space Hand T : H — 2H be a
multi-valued mapping. A vector p € K is called a fixed point of T, if p € Tp. We denote the set of
fixed point of T by Fix(T). Let CB(K) denote the family of nonempty closed bounded subset of K,
the Hausdorff metric on CB(K) is defined by

H(A,B) = max{sup d(x,B), sup d(y,A)} for A, B € CB(K),
xeA yeB

where d(x,K) = inf{|lx — y|| : y € K}.
A multi-valued mapping T is said to be L-Lipschitzian if there exists L > 0 such that

H(Tx, Ty) <Ll|lx—yll, x,y € C. (2.1)

In (2.1),if L € (0,1), then T is called a contraction while T is called nonexpansive if L = 1.
T : K — CB(K) is said to be

(i) quasi-nonexpansive, if Fix(T) # 0 and
H(Tx, Ty) <llx—yll, Yx € C,y € Fix(T),

(ii) k-strictly pseudocontractive in the sense of [18] if there exists k € (0, 1) such that Vx, y € Kand
u € Tx there exists v € Ty such that

H*(Tx, Ty) < |lx = yI* + Kllx — vy — (u—0)|J.
Remark 2.1. Ifk = 0 in (ii), we have (i).

The metric projection Pk is a map defined on H onto K which assign to each x € H, the unique

point in K, denoted by Pxx such that

llx — Pgxll = inf{llx — yll : y € K}



Int. J. Anal. Appl. (2025), 23:280 5

It is well known that Pgx is characterized by the inequality (x — Pxx,z — Pxx) <0, ¥ z € K and Px
is a firmly nonexpansive mapping. For more information on metric projections, (see [22]) and the
references therein.
For solving mixed equilibrium problems, we assume that the bifunction F : K X K — IR satisfies
the following conditions:

(A1) F(x,x) =0,Yx€K;

(A2) F(x,y) + F(y,x) <0,Yx,y €K;

(A3) Forall x, y, w € K, limy o F(tw + (1 - t)x,y) < F(x,y);

(A4) For each x € K, the function y - F(x, y) is convex and lower semi-continuous;

(A5) For fixed r > 0 and w € K, there exists a nonempty compact convex subset V of H and
xeKNV

such that

F(w,x)+%(y—x,x—w)20,VyeK\V.

We now list some important results that we will need in the proof of our main result.

Lemma 2.1. [35] Let K be a nonempty closed convex subset of a Hilbert space H. Let F be a bifunction
from K x K to R satisfying (A1)-(A5), and let Y : K — R be a proper lower semi-continuous and convex
function such that K N domy # 0. For r > 0 and x € H, define a mapping TY : H — K as follows:

1
TEH(x) = {w eK:F(w,y) +yY(y) —¢(w)+ ;(y— w,w—x)>0,Yy e K}. (2.2)
Then
(1) For each x € H, TE (x) # 0;
(2) TF is single valued;
(3) TF is firmly nonexpansive, that is Vx,y € H,
IT7x = Tyyl? <(Trx = Try, x - y);

(4) Fix(TF) = MEP(F, p);
(5) MEP(F, ) is closed and convex.

Lemma 2.2. [16] Let H be a real Hilbert space, then ¥ x,y € H and a € (0,1), we have
(i) 2¢x, yy = I + Iyl* = lIx = ylI*> = llx + yI? = lIxI* = Iyl
(i) llax + (1 - a)ylP* = allxl? + (1 - a)llyl* — a(1 - a)llx — ylI%,
(iii) llx + yl* < [IxI” + 2¢y, x + )

Lemma 2.3. [17] Let H be a real Hilbert space. Let {x;,i =1,---m} Cc H.Fora; € (0,1),i = 1,---m such
m

that ), a; = 1, the following identity holds:
i=1

1

m m

m
2 2 2
1Y P = Y alld?— Y aiall - il
i=1

i=1 i,j=1i#j
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Lemma 2.4. [36] Let {a,} be a sequence of positive real numbers, {a,} be a sequence of real numbers in

(0,1) such that Y, a,, = oo and {d,,} be a sequence of real numbers. Suppose that
n=1

a1 < (1—ay)ay + andy,n > 1.
Iflimsup d,, <0 for all subsequences {ay } of {a,} satisfying the condition
k—o0

liminf{a, 11 —a,} >0,
k—o00
then, lim a, = 0.
n—oo

3. MAIN ResuLt

In this section, we introduce a Halpern iterative algorithm for approximating a solution of split
mixed equilibrium problem and fixed point of a finite family for multi-valued pseudo-contractive
mappings with multiple output sets and prove its strong convergence theorem in the framework
of real Hilbert spaces. We state the following assumptions that are needed in our result.
Assumption 3.1

(1) Let H,H;,j = 0,1,2,--- ,N, be real Hilbert spaces and K, K; be nonempty, closed and convex
subsets of H and H; respectively. Let S; : H — CB(H) be a finite family of multi-valued «;-strictly
pseudo-contractive mapping with «; € (0, 1) such that S;p = {p}, with Hy = H.

(2) Let F : KxK — R,F; : K; xK; — R be bifunctions satisfying Assumption (A1)-(A5) and
Y : K> RU{+o0},9; : Kj > R U {400} be proper lower semicontinuous and convex functions
such that KNdomi # ) and K; Ndomy; # 0, respectively. Suppose that F; is upper semicontinuous
in the first argumentand A; : H — Hj, j = 1,2,--- N is a bounded linear operator then () := {x* €

MEP(F,{) N N Fix(S;) : Ajx* € (Z% MEP(Fj, ¢j)} # 0.
i=1 j=1

Algorithm 3.1. Split Mixed Equilibrium Problem and Multi-valued strictly Pseudo-contractive

Mappings with Multiple Output Set.
For u,x1 € H, let {x,,] be a sequence generated by

N .
ty = L O (1 =y A (1 =T, ) A |,
]:

m . .
Yn = Poutn + Y. Bizl, 2, € Sitly, (3.1)
i=1

Xpt1 = ap+ (1 —ay)y,, YnelN,

m
where {a,} < (0,1),i € (xi,1),i = 1,2,---m, such that Y, Bi = 1 and x := max{k;i =
i=0

1,2,--- ,m},{ry} € (0,00) and y;, € (0, %) such that L is the spectral radius of A;Aj,j =1,2,---m
and A; is the adjoint of A;. Assume that the following conditions hold:

(1) lim a, = 0and ay = 00,
n—eo n=1
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N
(2) {6],11} c (011) and Zl G],n =1,
]:

(3) 0 < liminfr,.
n—oo
Then, the sequence {x,} generated by (3.1) converges strongly to x* = Pqu, where Pq, is the metric

projection of H onto ().
Remark 3.1. For clarity, we assume in (3.1) that Hy = H,Fy = F and o = 1.

Proof. We need to show A Hj _ "[f/ A 1s s—ismforall j =0,1,2,---N. Using the fact that Tf}f is

firmly nonexpansive and I - Tr is 1-ism, we obtain that
A (1 = T, ) Aje = A3 = T, ) Ajyll? = (A (I = T,)) Aj(x — ), A5 (17 = T 7) Ay (x =

= (1" =T} Aj(x - y), AAY I =T} Aj(x - y)
<L f—TFf> -<x—y> oy Ajx=y))
= LI = T,)A (= p)IP
< L{Aj(x—y), IH —TF’
= L -y, A3(I - Tr,f>Aj - A; (1 - T'Z)Ajy»

for all x, y € H. So, we conclude that A* i — TFj Ajisa %— ismforall j =0,1,2,--- ,N. More so,

since 0 <y, < 1, we obtain that Il - VinA Tf] Aj,j=0,1,2,--- N is nonexpansive.
Step 1: We show that {x,}, {u,,} and {y,} are bounded. Let v € (), then we have that T,IZ(A]'U) =
Ajvandv = (I" —y j,n)A; (I - TJ;])A jv. By applying the nonexpansive property of v defined above,

we have that

N
R TIR. o .
e —oll = 1) Qf/n[(IH = YA (I = T, Ay = (17 =y u A5 (11 T,))A)|I
=0

N
* ; j * . Fi
< Y 03ull(™ = A1 = T.)) Ay — (I =y, 517 = T, ) Ajo))|
j=0
< |lxn —ol|. (3.2)
By applying Lemma 2.3 and inequality (3.2), we obtain that

m m
Iy = ol = Bollun =0l + Y Billzh =0l = Y Bopilles — 242
i=1 i=1

m

=Y BiBelizh - P

i,j=1,i#k

m m

2 j 2 i 12

< ollun =0l + Y Billzh =02 = Y Bopillen — 23
i=1 i=1
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< Bolluy — vl + Z Bi(H (Siun, Siv))?* - Z BoBilltn — Z1, |2
im1 im1

=ty =0l = Y Bi(Bo = 1)l — Zp P (33)
i=1

< lhew = ol = ) Bi(Bo = x)lltn — 2312 (34)
i=1

We obtain from (3.1) and (3.4) that

IXn11 =2l = llanu + (1 = an)y, — ol
< ayllu = ol + (1 = an)llys —oll
< agllu = ol + (1= ay)llx, — 0l

< max{|ju — ||, [lx, —oll}

< max{|ju — o], [lx; = 2ll}.

Hence the sequence {x,} is indeed bounded as claimed. Consequently, it follows from (3.2)-(3.4)
that the sequence {u,,} and {y,} are also bounded.

Step 2: We show that {x,} converges strongly to x* € ().

Let v € (), we see from (3.1) that

N
ey — ol = | Z O 1 =5 (I = T,)) Ay | = ol

Ze]n” V]n ( Hj — TE;)A]'JC”)—UHZ

* Fi
< v = 0l + 2 AL = T Al + 2 ko — 0, A5 = T,)) Ajr)
< llx, — Z)||2 + yj,n<ijn - Trnijn/AjAj(I i — Trn )ijn)
+ 2)/]‘,,1<A]'(U - xn),A]-xn - TFZA]'.’)C”)
< 1t = 0l + Ly, (A s = T, At Ajstn = Ty Aty
+2yn(Aj(v—x,) + (Ajxy - Tf’A iXn) = (Ajxn =T, Ajxn), Ajxy — TF’A‘x,J
< Iy = oI + Ly A2 = Ty Al + 29[ (Ajo = Ty A, At = Ty At
~ A s = Ty A jeal?]

. 1 j Fi
= It =0l + Ly2, lA s = T, Al + 2y]-,n[§||ijn = T Al = 1A% = Ty Al

< n = 0lP + 7 (L7 i = DA 0 = To Al (3.5)
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Hence, we have from (3.1) and (3.5) that

N
“un - 0”2 = “xn - Z)”2 + Z ej,nyj,n (Lyj,n - 1)”ij11 - Tﬁ{ijn”2~ (36)
j=0

From (3.1), we obtain
%1 = oI = {antt + (1= @)y — 0, Xy 1 =)
= (1= an){(yn =0, Xnt1 — 0) + @nU =0, X411 = V)
2
This implies from (3.3) and (3.6) that

(len+1 — ol + llyn — vllz) + U — 0, Xy 11 — 0). (3.7)

||xn+1 - 0”2 < (1 - an)”“n - 0”2 - (1 - an) ,6’1'(,6’0 - K)”“n - Z;lIZ + 20, (u — 0, Xp+1 — v)

1=

i=1
N .
= (L=l =0l + (1= an) Y 05y (L — DIA 0 = T Apl?
j=0
m .
- (1-an) Z Bi(Bo — 10)llutn — 23|I + 20,1t — 0, X 11 — V). (3.8)

i=1

Following the approach in (3.7), (3.8) and applying (3.2) and (3.4), we obtain

1 = 1P < (1= an)llyn = 1P + @ (20 — X7, x40 — X7))
= (1—ay)llu, — I+ an(2(u —x*, xp41 — X7))

= (1 - Ofn)Hxn - x*llz + aydy, (3.9)

whered,, = 2(u — x*, x,,41 — x*). According to Lemma 2.4, to conclude our proof, it sufficies to show

that lim sup d,,, < 0 for every subsequence {||x,, — x*||} satisfying the condition

k—o0
lilggg\f(llxnkﬂ = X[ = [l —x*ll) > 0. (3.10)
To show this, suppose that {||x,, — x|} is a subsequence of {||x,, — x*[|} such that (3.10) holds. Then

.. 2 2 ..
hmmf(llxnkﬂ = xX"|° = [, — X7l ) = lim mf((llxnkﬂ = x| = I, = X*I) (1 = X7 =+ N, — x*ll))
k—o0 k—o0

> 0. (3.11)

From (3.8), we obtain that

N
. F
lim sup ( -(1-ay) Z O jmy (L)/]-,nk - l)llijnk - Tryka]-xnkllz)
k— o0 —

j=0

< lim sup ((1 — a1, = x°1% = 1 — x*||2) + lim sup (2ank<u — X, Xpys1 — x*))

k—oo k—o0
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< lim sup (lenk — XN = [[xy 41 — x*||2) + lim sup (Zank(u X", X1 — X°)

k—oo k—oo

= ~limin (”xnkJrl = x| = Il X*llz)
<0. (3.12)
Since Y, (LY jn, — 1) <0, it follows from (3.12) that

lim 1A, - Tfkajxnkn —0. (3.13)

n

Also, from (3.8), we have that

lim sup ((1 - Ofnk> Z ,31‘(,30 - K)llunk - Z;k”z)

<limsup ((1 — )Xy, — x|? - X +1 — x*llz) + lim sup (2ank(u =X, X1 — x*))

k—oo k—o0

. *[12 * . * *
< lim sup (lenk = x| = llxp 41 — X ||2) + lim sup (2ank(u - X, X1 — X ))

k— o0 k—o0
= —liminf (lenk+1 — x| = I, — x*||2)
<0. (3.14)

Thus, since B; € (k,1), we obtain that

lim ||y, —z, || =0,i=1,2,---m. (3.15)
k—o0
Since z}, € Sjuty, i =1,2,---m, wehave 0 < d(u,, Sitt,) < ||y, — 2., || and so

lim d(uy,, Sity, ) = 0. (3.16)

k— o0

From (3.1) and (3.15), we obtain the following

khm 14y, — X, Il = O,
kll_)m ||ynk - ul’lk” = 0/
kli,m ||x1’lk+1 - ]/nk” = O/ (317)

lim ||]/nk _xi’lk” = O/
k—c0

lim ||x, 41 — x5, |l = O.
k—o0

Since {x,,} is bounded, there exists a subsequence {xnkl} of {xy,} such that Xy — x*. Also, from
(3.17) that there exist subsequences {”nkl} of {u,} and {]/nkl} of {y,.} which converge weakly to

x*, respectively. Moreover, by continuity of S;, i = 1,2,---m and (3.16), we obtain that x* €
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Mizq Fix(S;). Also, since A; is a bounded linear operator, we have that A Xm, = Ajx". Then, it
follows from (3.13) that

Tsjklijnkl — Ajx’, asl — oo. (3.18)
By the definition of Tfyfk A Xy, We have
1
TP A Xy, JY) + lp] TlD A xnk + —(y Tijklijnk],T,F]fklijnkl _Afx”kz> >0, VyeKk.

Since F; is upper semicontinuous in the first argument, it implies from (3.18) that

Fi(Apx', y) +¢i(y) —¢j(Ajx") 20, Yy e K.
This shows that Ajx* € MEP(F;, ;) for j = 0,1,2,---N. Hence Ajx" € ﬂ?]:OMEP(F]-, ¥;), that is
Ajx* € Q). Let x* = Pqu, suppose that {xnk]} is a subsequence of {x;, } such that {xnkl} — v e (), then
we obtain
lim sup{u — x*, x,, —x*) = llim(u -5, Xy, = x*)
k—co —0
=(u—-x",v—-x%)

<0. (3.19)

On substituting (3.19) into (3.9), we obtain that limsupd,, < 0. Thus by applying Lemma 2.4 to
k—oo

(3.9), we conclude that [|x, — x*|| = 0 as n — oco. Therefore, {x,} converges strongly to x* = Pqu. O

Corollary 3.1.

Algorithm 3.2. Split Mixed Equilibrium Problem and Multi-valued Nonexpansive Mappings

with Multiple Output Set.
For u,x1 € H, let {x,} be a sequence generated by

N .
= L 01" = a1 = ) A
]:

m . .
Yn = Bottn + ‘21 Bizh, Ziy € Sitly (3.20)
1=

Xpt1 = apu+ (1 —ay)y,, YneNN,

where {a,} € (0,1),Bi € (0,1),i =1,2,---m, such that Z Bi = land {ry} C (0,00) andy;, € (0, 1) such
that L is the spectral radius of A}Aj, j=12,---mand A* is the adjoint of Aj. Assume that the following
conditions hold:

(1) hm a, = 0and Z a, = 0o,

n=1

N
@) 100 € (0,1) and ¥, 6
]:
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(3) 0 < liminfr,.
n—oo
Then, the sequence {x,} generated by (3.20) converges strongly to x* = Pqu, where Pq, is the metric
projection of H onto Q).

Corollary 3.2.

Algorithm 3.3. Weak Convergence of Split Mixed Equilibrium Problem and Multi-valued Non-

expansive Mappings with Multiple Output Set.
For x1 € H, let {x,} be a sequence generated by

N H H. r.
= X 03] (1 =517 = T, ) A
]:

m . .
Yn = Poltn + ,21 Bizi, zi € Siuy (3.21)
1=

Xnt1 = aulYn + (1 —ay)yn, YneNN,

m
where {a,} € (0,1),B; € (0,1),i =1,2,---m, suchthat ¥, pi = Land {ry} C (0,00) andy;, € (0, 1) such
i=0
that L is the spectral radius of A;AJ-, j=12,---mand A;. is the adjoint of A;. Assume that the following
conditions hold:

(1) 0 <liminfa, <limsupa, <1,
n—-oo

n—oo
N
(2) {6]',”} C (0,1) and '21 G]',n = 1,
]:
(3) 0 < liminfr,.
n—oo

Then, the sequence {x,} generated by (3.21) converges weakly to x* € Q).

4. APPLICATIONS

4.1. Application to split mixed variational inequality problem
Let K be a nonempty, closed and convex subset of a real Hilbert space H. Given a nonlinear
mapping B : K — H, then the Variational Inequality Problem (VIP) is to find x* € K such that

(Bx*,z—x"y>0, Yz € K. 4.1)

We will denote the solution set of VIP by VI(B, C).

A mapping B : K — H is said to be v— inverse strongly monotone mapping if there exists a constant
v > 0 such that (Bx — By, x — y) > v||Bx — Byll2 forany x,y € K.

Let Hy and H; be real Hilbert spaces, K; and K, be nonempty, closed and convex subsets of H; and
H, respectively. Then the Split Mixed Variational Inequality Problem (SMVIP) is to find x* € K
such that

(B1(x),x=x"y +Y1(x) —¢1(x") 20V x € Ky, 4.2)
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and
y'=Ax"eKy solves  (Bo(y"),y—y)+1i2(y) —¢a(y) =20V yeky, (4.3)

where B; : Hy — Hj, By : Hy — H; are nonlinear mappings and A : H; — H> is a bounded linear
operator. We denote by SMVIP(B1, 1, Bz, 12) the solution set of problem (4.2)-(4.3).

Setting F1(x,y) = (Bix,y —x) and Fa(x,y) = (Bax,y — x), it is easy to see that F and G satisfy
condition (A1)-(A5) since B; : K1 — Hj and By : K, — Hj; are v— inverse strongly monotone

mappings. Then from (3.1), the following result holds.

Algorithm 4.1. Weak Convergence of Split Mixed Variational Inequality Problem and Multi-

valued Nonexpansive Mappings with Multiple Output Set.
For x1 € H, let {x,,} be a sequence generated by

N
””:]-Eefﬂ[( — i (I — Py (1 AB})) A,

Yn = Botin + ,21 Bizl, zi, € Siuy (4.4)
1=

Xnt1 = anYn + (1= an)yn, Y n €N,

where {a,} € (0,1),6; € (0,1),i = 1,2,---m, such that Z Bi = land yj, € (0,1) such that L is the
spectral radius of A;Aj, j=12,---mand A* is the adjomt of Aj. Assume that the following conditions
hold:

(1) 0< hmmfan <limsupa, <1,

n—-oo

2) {6} € (0,1) and ;1 0,0 =1.
Then, the sequencéi{xn} generated by (4.4) converges weakly to x* € SMVIP(B,¢,Bj, ;) N
(7% Fix(S;) .
i=1
Remark 4.1. In a real Hilbert space, if B is u-inverse strongly monotone with A € (0,2p), then Px(I — AB)
is firmly nonexpansive. Thus, Px(I — AB) is nonexpansive. In addition, x* € VI(K,B) if and only if
x* = Px(I-AB)(x*),Y A >0, see [13].

4.2. Application to split convex minimization problem

One of the most important problems in optimization theory and non-linear analysis is the problem
of approximating solutions of Minimization Problem (MP) which is defined as follows: Find x € H
such that

¥ (x) = miny(y), (4.5)

yeH
where ¢ : H — (—0c0, 0] is a proper, convex and lower semicontinuous function. Recall that a

mapping 1) is convex if

Y(Ax+(1-N)y) <Ap(x)+ (1-A)Y(y) Vx,y e H, A € (0,1).
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Y is proper, if D(¢) := {x € H : ¢(x) < 400} # 0, where D(¢’) denotes the domain of ¢. The
mapping ¢ : D(¢) — (—o0, c0] is lower semi-continuous at a point x € D(¢) if

Y(x) < liminf ¢ (x,), (4.6)

n—oo

for each sequence {x,} in D(¢) such that limx, = x; ¢ is said to be lower semicontinuous on
n—o0

D(y) if it is lower semi-continuous at any point in D(¢’). An example of a convex and lower
semicontinuous function is the indicator function 0x : H — R of a nonempty closed and convex
subset K of H defined by

0, ifx €K,

(51((3() =
400, otherwise.

For any A > 0, the resolvent (or Moreau-Yosida approximation) of i in H is defined as (see [43]).
Py — : BT 2]
[ (x) = arg min [w(y) + il =l

It is generally known that ]f is well-defined and firmly nonexpansive for all A > 0. Hence, ]lA’b is
nonexpansive for all A > 0. For simplicity, we shall write ]f for the resolvent of a proper, convex
and lower semi-continuous mapping ¢. Furthermore, we denote the solution set of problem (4.5)

by argminy(y). It is also known that Fix( ]f) coincides with argminy ().
yeH yeH

If F{ = 0 and F, = 0 in SMEP (1.6)-(1.7), then SMEP (1.6)-(1.7) reduces to the following Split
Convex Minimization Problem (SCMP): find x* € Kj such that

Y1(x) 2 ¢q(x"), Yx ek, (4.7)

and
y' = Ax" € Ky solves Y2 (y) > ¢a(y*), Y y € K. (4.8)
We denote by SCMP(y1, 1) the solution set of (4.7)-(4.8). We therefore obtained from (3.1) a new

iterative method to solve SCMP with multiple output set as follows:

Algorithm 4.2. Weak Convergence of Split Convex Minimization Problem and Multi-valued

Nonexpansive Mappings with Multiple Output Set.
For x1 € H, let {x,,} be a sequence generated by

Uy = ‘ZO Qj,n[(l _Vj,nA;(I ]_]/\])Afx”)]
j=

m . .
Yn = Boln + Y. Bizl, 2, € Sitiy (4.9)
i=1

x?’l+1 - anyn + (1 - an)yn, V n e N,

m
where {a,} € (0,1),6; € (0,1),i = 1,2,---m, such that ¥ p; = Land {r,} C (0,00) and y;, € (0, %) such
i=0
that L is the spectral radius of A;A]-, j=1,2,---mand A;. is the adjoint of A;. Assume that the following
conditions hold:
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(1) 0 <liminfa, <limsupa, <1,
n—oo

n—-oo

(2) {0} € (0,1) and g Ojn =1
j=0

m
Then, the sequence {x,} generated by (4.9) converges weakly to x* € SCMP(¢, ¢;) N () Fix(S;).
i=1

5. CoNCLUSION

In this article, we give an affirmative answer to the questions raised in the introductory part of
this article by introducing a Halpern iterative method for approximating a common solution of
(1.8)-(1.9). More so, we proved a strong convergence result for approximating the solutions of
the aforementioned problems. We also present some applications of our results to SCMP with
multiple output sets and SMVIP with multiple output sets. Our results complements and extends

the results of ( [6], [31], [38]) and many related results in literature.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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