Digital Transformation in Taiwan’s Insurance Industries for MABAC Technology Based on Circular Modified Fuzzy Choquet Frank Network Data Envelopment Analysis

Main Article Content

Zeeshan Ali, Dragan Pamucar

Abstract

Fuzzy set theory has significant and dominant applications in Taiwan’s insurance industry, especially in fields involving decision-making, uncertainty, and risk assessment. Providing the complexity and problems in assessing factors, for instance, natural disaster risks, customer creditworthiness, or health conditions, traditional binary logic often falls short. Taiwanese insurers have adopted fuzzy logic systems to enhance fraud detection, premium pricing, and privilege evaluations by catching the indistinctness characteristic in human ruling and imperfect data. The Taiwan insurance industry is a dynamic and spirited module of the commercial sector, contributing meaningfully to risk management and economic stability. For this, we study to propose an assessment of the proficiency of insurance enterprises using Network Data Envelopment Analysis. Toward this end, the frank operational laws for circular Pythagorean fuzzy (CPF) uncertainty are applied. Moreover, the CPF Choquet Frank averaging (CPFCFA) operator and CPF Choquet Frank geometric (CPFCFG) operator with three dominant properties for each operator have been studied. The study deliberates the multi-attributive border approximation area comparison (MABAC) model and verifies it with the help of numerical examples. This study enhances the industry’s efficiency to offer adapted insurance products and handle risks precisely, aligning with Taiwan’s push toward intelligent financial services and digital transformation. In the following, we establish the decision-making performance for assessing the proficiency of insurance enterprises using the network data envelopment analysis (NDEA) technique. Finally, we examine the ranking values of offered representations to compare them with the ranking values of prevailing models to show the capability and efficacy of the originated approaches.

Article Details

References

  1. C. Kao, Network Data Envelopment Analysis: A Review, Eur. J. Oper. Res. 239 (2014), 1-16. https://doi.org/10.1016/j.ejor.2014.02.039.
  2. J. Zhu, Dea Under Big Data: Data Enabled Analytics and Network Data Envelopment Analysis, Ann. Oper. Res. 309 (2020), 761-783. https://doi.org/10.1007/s10479-020-03668-8.
  3. C. Kao, A Classification of Slacks-Based Efficiency Measures in Network Data Envelopment Analysis with an Analysis of the Properties Possessed, Eur. J. Oper. Res. 270 (2018), 1109-1121. https://doi.org/10.1016/j.ejor.2018.04.036.
  4. O.T. Joel, V.U. Oguanobi, Navigating Business Transformation and Strategic Decision-Making in Multinational Energy Corporations with Geodata, Int. J. Appl. Res. Soc. Sci. 6 (2024), 801-818. https://doi.org/10.51594/ijarss.v6i5.1103.
  5. O.A. Odejide, T.E. Edunjobi, AI in Project Management: Exploring Theoretical Models for Decision-Making and Risk Management, Eng. Sci. Technol. J. 5 (2024), 1072-1085. https://doi.org/10.51594/estj.v5i3.959.
  6. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  7. K.T. Atanassov, Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 20 (2016), S1-S6.
  8. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96
  9. R.R. Yager, Pythagorean Fuzzy Subsets, in: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, 2013. https://doi.org/https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375.
  10. K.T. Atanassov, Circular Intuitionistic Fuzzy Sets, J. Intell. Fuzzy Syst. 39 (2020), 5981-5986. https://doi.org/10.3233/jifs-189072.
  11. M.C. Bozyigit, M. Olgun, M. Ünver, Circular Pythagorean Fuzzy Sets and Applications to Multi-Criteria Decision Making, Informatica 34 (2023), 713-742. https://doi.org/10.15388/23-infor529.
  12. D. Pamučar, G. Ćirović, The Selection of Transport and Handling Resources in Logistics Centers Using Multi-Attributive Border Approximation Area Comparison (MABAC), Expert Syst. Appl. 42 (2015), 3016-3028. https://doi.org/10.1016/j.eswa.2014.11.057.
  13. P.E. Klement, R. Mesiar, Triangular Norms, Tatra Mt. Math. Publ. 13 (1997), 169-193.
  14. M.J. Frank, On the Simultaneous Associativity of F(x,y) and x+y-F(x,y), Aequ. Math. 18 (1978), 266-267. https://doi.org/10.1007/bf01844082.
  15. M.J. Frank, On the Simultaneous Associativity of F(x, y) and x+y−F(x, y), Aequ. Math. 19 (1979), 194-226. https://doi.org/10.1007/bf02189866.
  16. G. Choquet, Theory of Capacities, Ann. Inst. Fourier 5 (1954), 131-295.
  17. Z. Xu, Choquet Integrals of Weighted Intuitionistic Fuzzy Information, Inf. Sci. 180 (2010), 726-736. https://doi.org/10.1016/j.ins.2009.11.011.
  18. C. Tan, X. Chen, Intuitionistic Fuzzy Choquet Integral Operator for Multi-Criteria Decision Making☆, Expert Syst. Appl. 37 (2010), 149-157. https://doi.org/10.1016/j.eswa.2009.05.005.
  19. C. Tan, X. Chen, Induced Intuitionistic Fuzzy Choquet Integral Operator for Multicriteria Decision Making, Int. J. Intell. Syst. 26 (2011), 659-686. https://doi.org/10.1002/int.20489.
  20. Z. Xu, R.R. Yager, Some Geometric Aggregation Operators Based on Intuitionistic Fuzzy Sets, Int. J. Gen. Syst. 35 (2006), 417-433. https://doi.org/10.1080/03081070600574353.
  21. X. Yang, T. Mahmood, Z. Ali, K. Hayat, Identification and Classification of Multi-Attribute Decision-Making Based on Complex Intuitionistic Fuzzy Frank Aggregation Operators, Mathematics 11 (2023), 3292. https://doi.org/10.3390/math11153292.
  22. X. Zhang, P. Liu, Y. Wang, Multiple Attribute Group Decision Making Methods Based on Intuitionistic Fuzzy Frank Power Aggregation Operators, J. Intell. Fuzzy Syst. 29 (2015), 2235-2246. https://doi.org/10.3233/ifs-151699.
  23. Y. Xing, R. Zhang, J. Wang, X. Zhu, Some New Pythagorean Fuzzy Choquet-Frank Aggregation Operators for Multi-Attribute Decision Making, Int. J. Intell. Syst. 33 (2018), 2189-2215. https://doi.org/10.1002/int.22025.
  24. Z. Ali, M. Yang, Circular Pythagorean Fuzzy Hamacher Aggregation Operators with Application in the Assessment of Goldmines, IEEE Access 12 (2024), 13070-13087. https://doi.org/10.1109/access.2024.3354823.
  25. H. Garg, M. Waqas, Z. Ali, W. Emam, EDAS Method for Circular Pythagorean Fuzzy with Improved Dombi Power Aggregation Operators and Their Application in Policy Analysis and Decision Support Systems, Alex. Eng. J. 106 (2024), 172-193. https://doi.org/10.1016/j.aej.2024.06.062.
  26. Z. Ali, M. Ali, S. Yin, M. Yang, Novel Aczel-Alsina Power Aggregation Operators for Circular Pythagorean Fuzzy Linguistics with Application to Waste Reduction and Recycling in Green Supply Chain Management, IEEE Access 12 (2024), 151710-151727. https://doi.org/10.1109/access.2024.3474178.
  27. W. Jiang, Z. Ali, M. Waqas, P. Liu, Decision Methods Based on Bonferroni Mean Operators and Edas for the Classifications of Circular Pythagorean Fuzzy Meta-Analysis, AIMS Math. 9 (2024), 28273-28294. https://doi.org/10.3934/math.20241371.
  28. R. Verma, On Intuitionistic Fuzzy Order-α Divergence and Entropy Measures with Mabac Method for Multiple Attribute Group Decision-Making, J. Intell. Fuzzy Syst. 40 (2021), 1191-1217. https://doi.org/10.3233/jifs-201540.
  29. F. Jia, Y. Liu, X. Wang, An Extended MABAC Method for Multi-Criteria Group Decision Making Based on Intuitionistic Fuzzy Rough Numbers, Expert Syst. Appl. 127 (2019), 241-255. https://doi.org/10.1016/j.eswa.2019.03.016.
  30. M. Zhao, G. Wei, X. Chen, Y. Wei, Intuitionistic Fuzzy Mabac Method Based on Cumulative Prospect Theory for Multiple Attribute Group Decision Making, Int. J. Intell. Syst. 36 (2021), 6337-6359. https://doi.org/10.1002/int.22552.
  31. S. Petchimuthu, B. Palpandi, K. Rajakumar, F. Banu M, Sustainable Urban Development: q-Rung Orthopair Fuzzy MCDM with Generalized Power Prioritized Yager Aggregation, Spectr. Oper. Res. 3 (2025), 275-309. https://doi.org/10.31181/sor31202649.
  32. W. Zhang, H. Gao, Interpretable Robust Multicriteria Ranking with TODIM in Generalized Orthopair Fuzzy Settings, Spectr. Oper. Res. 3 (2025), 14-28. https://doi.org/10.31181/sor31202632.
  33. V. Shahin, M. Alimohammadlou, D. Pamucar, An Interval-Valued Circular Intuitionistic Fuzzy Marcos Method for Renewable Energy Source Selection, Spectr. Decis. Mak. Appl. 3 (2025), 243-268. https://doi.org/10.31181/sdmap31202645.
  34. T. Jameel, Y. Yasin, M. Riaz, An Integrated Hybrid MCDM Framework for Renewable Energy Prioritization in Sustainable Development, Spectr. Decis. Mak. Appl. 3 (2025), 124-150. https://doi.org/10.31181/sdmap31202640.
  35. M. Sarfraz, R. Gul, Evaluating Medical College Projects with Hamacher Aggregation Operators Under the Interval-Valued Complex T-Spherical Fuzzy Environment, Manag. Sci. Adv. 2 (2025), 69-90. https://doi.org/10.31181/msa21202511.
  36. M. Saqlain, Half a Century of Fuzzy Decision Making in Italy: A Bibliometric Analysis, Manag. Sci. Adv. 2 (2025), 133-143. https://doi.org/10.31181/msa21202521.
  37. C. Bhowmik, D. Zindani, P. Chatterjee, D. Marinkovic, J. Šliogerienė, Evaluation of Green Energy Sources: An Extended Fuzzy-Todim Approach Based on Schweizer-Sklar and Power Averaging Operators, Facta Univ. Ser.: Mech. Eng. (2024). https://doi.org/10.22190/fume240711042b.
  38. D. Kang, K. Suvitha, S. Narayanamoorthy, Comprehensive Distance-Based Ranking Method for Evaluating Hydraulic Converters in Tidal Stream Turbines Utilizing Picture Fermatean Fuzzy Set, Facta Univ. Ser.: Mech. Eng. (2024). https://doi.org/10.22190/fume240730046k.
  39. A.R. Mishra, P. Rani, Evaluating and Prioritizing Blockchain Networks Using Intuitionistic Fuzzy Multi-Criteria Decision-Making Method, Spectr. Mech. Eng. Oper. Res. 2 (2025), 78-92. https://doi.org/10.31181/smeor21202527.
  40. S. Narayanamoorthy, M. Sandra, N. Almakayeel, A Smart Decision Framework for Sustainable Managementof C&D Waste Using Picture Fuzzy Decision Model, Spectr. Mech. Eng. Oper. Res. 2 (2025), 130-146. https://doi.org/10.31181/smeor21202533.
  41. D. Li, Y. Rong, A Hybrid Quadripartitioned Single-Valued Neutrosophic Method and Its Application for the Selection of Emergency Logistics Outsourcing Suppliers, J. Oper. Intell. 3 (2025), 130-148. https://doi.org/10.31181/jopi31202548.
  42. , Application of New Divergence Measure in Complex Fermatean Fuzzy Sets for Post-Flood Assessment, J. Intell. Decis. Mak. Granul. Comput. 1 (2025), 127-142. https://doi.org/10.31181/jidmgc1120258.
  43. M.K. Bilgen, B. Guneri, S. Baldıran, Integrated Fermatean Fuzzy SWARA and Q-ROF-EDAS Methodology for Supplier Evaluation in the Shipyard Industry, J. Intell. Decis. Mak. Granul. Comput. 1 (2025), 48-75. https://doi.org/10.31181/jidmgc1120257.