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Abstract: Fuzzy set theory has significant and dominant applications in Taiwan’s insurance industry, especially in 

fields involving decision-making, uncertainty, and risk assessment. Providing the complexity and problems in 

assessing factors, for instance, natural disaster risks, customer creditworthiness, or health conditions, traditional binary 

logic often falls short. Taiwanese insurers have adopted fuzzy logic systems to enhance fraud detection, premium 

pricing, and privilege evaluations by catching the indistinctness characteristic in human ruling and imperfect data. The 

Taiwan insurance industry is a dynamic and spirited module of the commercial sector, contributing meaningfully to 

risk management and economic stability. For this, we study to propose an assessment of the proficiency of insurance 

enterprises using Network Data Envelopment Analysis. Toward this end, the frank operational laws for circular 

Pythagorean fuzzy (CPF) uncertainty are applied. Moreover, the CPF Choquet Frank averaging (CPFCFA) operator 

and CPF Choquet Frank geometric (CPFCFG) operator with three dominant properties for each operator have been 

studied. The study deliberates the multi-attributive border approximation area comparison (MABAC) model and 

verifies it with the help of numerical examples. This study enhances the industry’s efficiency to offer adapted insurance 

products and handle risks precisely, aligning with Taiwan’s push toward intelligent financial services and digital 

transformation. In the following, we establish the decision-making performance for assessing the proficiency of 

insurance enterprises using the network data envelopment analysis (NDEA) technique. Finally, we examine the 

ranking values of offered representations to compare them with the ranking values of prevailing models to show the 

capability and efficacy of the originated approaches. 
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1. Introduction 

Taiwan’s insurance industry, which represents a global market or global platform for 

businessmen, is experiencing a thoughtful digital transformation theme to enhance capability, 

regulation responsiveness, customer service, and product innovation. This technique contains the 

adoption of technologies, for instance, blockchain for secure information sharing, mobile 

applications for customer engagement, big data analytics for risk modeling, and artificial 

intelligence-driven underwriting, and cloud computing for operations scalability. NDEA gives a 

meaningful and well-structured technique to design the multi-stage efficiency of insurance firms 

by selecting their internal structure. NDEA is a modified and general form of traditional Data 

Envelopment Analysis (DEA) [1] that integrates a network structure of shape to address the 

validity and proficiency of decision-making units with interdependent procedures [2]. It is very 

famous, especially in sectors where operations involve various stages, for instance, healthcare, 

insurance, and manufacturing [3]. The decision-making model is also very famous for 

discovering your required decision or results from the collection of information [4, 5]. Further, 

we know that vagueness and convolution are part of life, and because of this reason, various 

decision-makers have failed to cope with it. For instance, before 1965, each expert has just two 

types of information like zero and one, nether more; for example, when we talk about the 

intelligent peoples, so we have different types of range or scale, if the people have done their 

master, we will include in intelligent (assigned 1), but the people have not educated, then we will 

include in the not intelligent (assigned 0), but what about those peoples, they have just failed 

completed their Bachler or they will be completing their master after studying their one or two 

more course, to cope with this types of problems, the classical information has been failed. For 

this, Zadeh [6] designed the fuzzy sets (FSs) model. FSs are a mathematical model that modifies 

crisp set theory to cope with the concept of partial membership. In the occurrence of traditional 

sets, an element either contains or does not, but in the case of FSs, we have a partial function or 

partial degree with zero or one. Every information in FSs has a truth function ranging from zero 

to one. FS theory is used in numerous fields, including control systems, image processing, neural 

language processing, and decision-making procedures in uncertain environments. 

Intuitionistic fuzzy sets (IFSs) are a reform of FSs that incorporate the model of uncertainty in a 

massive, nuanced way. Developed by Atanassov [7, 8] in the 1980s, IFSs describe a third 

dimension to the truth function, falsity function, and refusal function. Each element in IFSs is 

denoted and defined in the form, for instance, the representation of the positive or truth function 

is 𝜇𝛧: 𝒳 → [0,1] and the representation of the negative or falsity function is 𝜂𝛧:𝒳 → [0,1] with 0 ≤
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𝜇𝛧 + 𝜂𝛧 ≤  1. Further, the refusal function is defined and defined by: 𝜋𝛧 = 1 − (𝜇𝛧 + 𝜂𝛧), where 

𝜇𝛧, 𝜂𝛧 ∈  [0, 1]. IFSs were particularly useful in various areas, such as decision-making models 

where data is incomplete or uncertain. Further, Pythagorean fuzzy sets (PFSs) [9] are a reformed 

version of FSs and IFSs that incorporate the model of uncertainty in a massive, nuanced way. The 

structure of PFSs and IFSs is the same; they also describe a third dimension to the truth function, 

falsity function, and refusal function, and each element in PFSs is denoted and defined in the 

form, for instance, the representation of the positive or truth function is 𝜇𝛧:𝒳 → [0,1] and the 

representation of the negative or falsity function is 𝜂𝛧:𝒳 → [0,1] with 0 ≤ (𝜇𝛧)
2 + (𝜂𝛧)

2 ≤  1 . 

Further, the refusal function is defined and defined by:  𝜋𝛧 = (1 − ((𝜇𝛧)
2 + (𝜂𝛧)

2))
1

2 , where 

𝜇𝛧, 𝜂𝛧 ∈  [0, 1]. PFSs are particularly useful in various areas, such as decision-making models 

where data is incomplete or uncertain, data mining, machine learning, and game theory. 

To broaden the notion of IFSs, Atanassov [10] expanded the notion and originated the circular 

IFSs (CIFSs) in 2020. A CIFS represents a circle with a radius 𝑟 that centers the truth and falsity 

function, where the representation of the truth function is 𝜇𝛧:𝒳 → [0,1] and the representation of 

the negative or falsity function is 𝜂𝛧:𝒳 → [0,1]  with 0 ≤ 𝜇𝛧 + 𝜂𝛧 ≤  1 . Further, the refusal 

function is defined and defined by:  𝜋𝛧 = 1 − (𝜇𝛧 + 𝜂𝛧) , where 𝜇𝛧, 𝜂𝛧 ∈  [0, 1]  with radius 

functions such as 𝜉𝛧: 𝒳 → [0,1]. Additionally, in 2022, Bozyigit et al. [11] identified the perfect 

technique of circular PFSs (CPFSs), because of ambiguity and complications that are part of 

genuine life problems, because the structure of CPFSs and CIFSs is the same, they also describe a 

fourth dimension to the truth function, falsity function, refusal function, and radius function, and 

each element in CPFSs is denoted and defined in the form, for instance, the representation of the 

positive or truth function is 𝜇𝛧:𝒳 → [0,1] and the representation of the negative or falsity function 

is 𝜂𝛧: 𝒳 → [0,1] with 0 ≤ (𝜇𝛧)
2 + (𝜂𝛧)

2 ≤  1. Further, the refusal function is defined and defined 

by: 𝜋𝛧 = (1 − ((𝜇𝛧)
2 + (𝜂𝛧)

2))
1

2, where 𝜇𝛧, 𝜂𝛧 ∈  [0, 1] with radius functions such as 𝜉𝛧:𝒳 → [0,1]. 

CPFSs are particularly useful in various areas, such as decision-making models where data is 

incomplete or uncertain, data mining, machine learning, and game theory. 

In 2015, Pamucar and Cirovic [12] diagnosed the MABAC technique for classical information as 

a perfect model for coping with vague and complex data. Furthermore, Klement et al. [13] offered 

a new version of the book based on triangular norms for the unit interval. These norms can help 

us in the construction of the aggregation, but they contain many limitations. For this, Frank [14, 

15] initiated new norms, called Frank t-norm (FTN) and Frank t-conorm (FTCN) for the unit 

interval, where the simple norms are a part of Frank norms. In 1953, Choquet [16] familiarized 

the model of the Choquet integral and fuzzy measures for unit intervals. Moreover, Xu [17] 
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diagnosed the Choquet integral for weighted IFSs. Tan and Chen [18] derived the intuitionistic 

fuzzy Choquet integral for decision support systems. Tan and Chen [19] exposed the Choquet 

integral for induced IFSs. Xu and Yager [20] designed the geometric operators for IFSs. Yang et 

al. [21] derived the Frank operators for IFSs. Zhang et al. [22] presented the Frank power operators 

for IFSs. Xing et al. [23] invented the Choquet Frank operators for PFSs. Ali and Yang [24] 

described the Hamacher operators for CPFSs. EDAS model and improved Dombi operators for 

CPFSs were invented by Garg et al. [25]. Ali et al. [26] evaluated the Aczel-Alsina power operators 

for circular Pythagorean fuzzy linguistic sets. Jiang et al. [27] designed the Bonferroni mean 

operators and EDAS model for CPFSs. Verma [28] presented the MABAC model based on order-

alpha divergence measures for IFSs. Jia et al. [29] designed the extended MABAC model for 

intuitionistic fuzzy rough sets. Zhao et al. [30] explored the intuitionistic fuzzy MABAC 

information and its applications. Petchimuthu et al. [31] discussed the modified power operators 

for Yager norms based on generalized FSs. Zhang and Gao [32] described the TODIM technique 

with interpretable decision-making fuzzy models. Shahin et al. [33] exposed the renewable 

energy source analysis based on the fuzzy MARCOS technique. Jameel et al. [34] invented the 

sustainable development model for renewable energy and energy prioritized techniques. Sarfarz 

and Gul [35] designed the Hamacher operators for the evaluation of the medical college projects. 

Saqlain [36] presented the bibliometric analysis with fuzzy decision-making models. Bhowmik et 

al. [37] discussed the modified fuzzy TOPDIM approach with Schweizer-Sklar power green 

energy source. Kang et al. [38] developed the hydraulic converters in tidal stream turbines with 

comprehensive distance-based ranking techniques. Mishra and Rani [39] initiated the blockchain 

network with prioritized decision-making models for fuzzy information. Sandra et al. [40] 

derived the smart decision technique and sustainable management model for a modified fuzzy 

model. Li and Rong [41] designed the emergency logistics outsourcing suppliers with hybrid 

modified fuzzy models. Li et al. [42] invented the divergence measures and post-flood assessment 

for complex modified fuzzy information. Konur Bilgen et al. [43] studied the SWARA and Q-

ROF-EDAS technique for the shipyard industry. Finally, we concluded that the technique of 

CPFSs is very reliable, but to date, no one can derive any kind of information based on it. 

Therefore, we object to estimating the Choquet-frank operators and the MABAC model based on 

CPFSs will be proposed. The major influence of this article is listed below: 

1) To establish the operational laws based on Frank norms for CPF uncertainty with various 

dominant results.  
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2) To study the CPFCFA operator and the CPFCFG operator with three dominant properties 

for each operator.  

3) To assume the proposed models, we goal to discuss the MABAC model and also verify it 

with the help of numerical examples.  

4) To establish the decision-making performance for assessing the proficiency of insurance 

enterprises using the NDEA approach.  

5) To procedure the ranking values of proposed models for comparing them with the 

ranking values of existing models to show the capability and efficacy of the originated 

approaches. 

This article is arranged in the following ways: in Section 2, we discussed the information on 

CPFSs, secondly, we briefly discussed the idea of Frank norms and their related cases, and last, 

we reviewed the model of Choquet integral. In Section 3, we present the operational laws based 

on Frank norms for CPF uncertainty with various dominant results. In Section 4, we studied the 

CPFCFA operator and the CPFCFG operator with three dominant properties for each operator. 

In Section 5, to assume the proposed models, we goal to discuss the MABAC model and also 

verify it with the help of numerical examples. In Section 6, we established the decision-making 

performance for assessing the proficiency of insurance enterprises using the NDEA approach. In 

Section 7, we evaluated the ranking values of proposed models by comparing them with the 

ranking values of existing models to show the capability and efficacy of the proposed approaches. 

Some final data are discussed in Section 8. 

 

2. Preliminaries 

This section is divided into three major sub-sections. First, we discussed the information on 

CPFSs; secondly, we briefly discussed the idea of Frank norms and their related cases, and last, 

we reviewed the model of Choquet integral. 

2.1. CPFSs: Circular Pythagorean Fuzzy Sets [11] 

In this subsection, we reviewed the old model of CPFSs and their fundamental laws. 

Definition 1: Consider 𝒳 to be a fixed ordinary set. The model of CPFS 𝛧 based on 𝒳 is illustrated 

and defined in the following form such as 

𝛧 = {〈𝜊, 𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉|𝜊 ∈ 𝒳} 

The representation of the positive function and negative function with radius is as follows such 

as 𝜇𝛧, 𝜂𝛧:𝒳 → [0,1]  and 𝜉𝛧:𝒳 → [0,1] , such as 𝜇𝛧, 𝜂𝛧, 𝜉𝛧 ∈  [0, 1] . The prominent technique of 

CPFS is as follows such as 0 ≤ (𝜇𝛧)
2 + (𝜂𝛧 )

2 ≤  1, where the mathematical form of the neutral 
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function is defined as: 𝜋𝛧 = √1 − (𝜇𝛧)
2 − (𝜂𝛧 )

2. For simplicity, the triplet 〈𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉 represents 

the CPF numbers (CPFNs), such as 𝛧 = 〈𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉. 

Definition 2: Let 𝛧 = 〈𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉 be any CPFN. Then 

Ṩ(𝛧) = {
√((𝜇𝛧)

2 − (𝜂𝛧 )
2) ∗ (𝜉𝛧 )

2 𝜇𝛧 ≥ 𝜂𝛧

−√((𝜂𝛧 )
2 − (𝜇𝛧)

2) ∗ (𝜉𝛧 )
2 𝜇𝛧 ≤ 𝜂𝛧

 

𝒽(𝛧) = √((𝜇𝛧)
2 + (𝜂𝛧 )

2) ∗ (𝜉𝛧 )
2 

Called the score value and accuracy value, such as Ṩ(𝛧) ∈ [−1, 1], 𝒽(𝛧)  ∈  [0, 1]. Further, we 

consider any CPFNs, 𝛧1 = 〈𝜇𝛧1, 𝜂𝛧1, 𝜉𝛧1〉 and 𝛧2 = 〈𝜇𝛧2, 𝜂𝛧2, 𝜉𝛧2〉, thus when Ṩ(𝛧1) > Ṩ(𝛧2), thus 

𝛧1 > 𝛧1; when Ṩ(𝛧1) = Ṩ(𝛧2), thus when 𝒽(𝛧1) ≻ 𝒽(𝛧2), then 𝛧1 > 𝛧2; and when 𝒽(𝛧1) = 𝒽(𝛧2), 

then 𝛧1 = 𝛧1. 

Definition 3: Consider any three CPFNs 𝛧 = 〈𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉 , 𝛧1 = 〈𝜇𝛧1, 𝜂𝛧1, 𝜉𝛧1〉 , and 𝛧2 =

〈𝜇𝛧2, 𝜂𝛧2, 𝜉𝛧2〉 with parameter 𝜓 ≥ 1, thus 

(𝛧1⨁ℱ𝛧2)𝑇𝑁 = (√𝜇𝓟𝟏
2 + 𝜇𝛧2

2 − 𝜇𝛧1
2 ∗ 𝜇𝛧2

2, 𝜂𝛧1 ∗ 𝜂𝛧2, √𝜉𝛧1
2 + 𝜉𝛧2

2 − 𝜉𝛧1
2 ∗ 𝜉𝛧2

2) 

(𝛧1⨁ℱ𝛧2)𝑇𝐶𝑁 = (√𝜇𝛧1
2 + 𝜇𝛧2

2 − 𝜇𝛧1
2 ∗ 𝜇𝛧2

2, 𝜂𝛧1 ∗ 𝜂𝛧2, 𝜉𝛧1 ∗ 𝜉𝛧2) 

(𝛧1⨂ℱ𝛧2)𝑇𝑁 = (𝜇𝛧1 ∗ 𝜇𝛧2, √𝜂𝛧1
2 + 𝜂𝛧2

2 − 𝜂𝛧1
2 ∗ 𝜂𝛧2

2, 𝜉𝛧1 ∗ 𝜉𝛧2) 

(𝛧1⨂ℱ𝛧2)𝑇𝐶𝑁 = (𝜇𝛧1 ∗ 𝜇𝛧2, √𝜂𝛧1
2 + 𝜂𝛧2

2 − 𝜂𝛧1
2 ∗ 𝜂𝛧2

2, √𝜉𝛧1
2 + 𝜉2 − 𝜉𝛧1

2 ∗ 𝜉𝛧2
2) 

(𝜓𝛧)𝑇𝑁 = (√1 − (1 − 𝜇𝛧
2)𝜓, 𝜂𝔭

𝜓, √1 − (1 − 𝜉𝛧
2)
𝜓
) 

(𝜓𝛧)𝑇𝐶𝑁 = (√1 − (1 − 𝜇𝛧
2)𝜓, 𝜂𝛧

𝜓, 𝜉𝛧
𝜓) 

(𝛧𝜓)
𝑇𝑁

= (𝜇𝛧
𝜓, √1 − (1 − 𝜂𝛧

2)𝜓, 𝜉𝛧
𝜓) 

(𝛧𝜓)
𝑇𝐶𝑁

= (𝜇𝛧
𝜓, √1 − (1 − 𝜂𝛧

2)𝜓, √1 − (1 − 𝜉𝛧
2)
𝜓
) 

2.2. Frank t-norm and t-conorm [14, 15] 

In this subsection, we briefly reviewed the model of FTN and FTCN based on any two 𝜊,𝛹 ∈

[0,1] with parameters ϜℲ ∈ (1,+∞), such as 

₸₢(𝜊,𝛹) = LogϜℲ (1 +
(ϜℲ𝜊 − 1)(ϜℲ𝛹 − 1)

ϜℲ − 1
) , ∀𝜊,𝛹 ∈ [0, 1] , ϜℲ ∈ (1,+∞) 

Ṩ₢(𝜊,𝛹) = 1 − LogϜℲ (1 +
(ϜℲ1−𝜊 − 1)(ϜℲ1−𝛹 − 1)

ϜℲ − 10
) , ∀𝜊,𝛹 ∈ [0, 1] , ϜℲ ∈ (1,+∞) 

With some necessary properties, for both norms, such as where ₸₢(𝜊,𝛹) used a t-conorm, if they 

satisfy the following properties, such as: (i) ₸₢(1,1) = 1, ₸₢(𝜊, 0) = ₸₢(0, 𝜊 ) = 𝜊; (ii) when 𝜊1 ≤ 𝜊2 
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and 𝛹1 ≤ 𝛹2, thus ₸₢(𝜊1, 𝜊2) ≤ ₸₢(𝛹1, 𝛹2); (iii) ₸₢(𝜊1, 𝜊2) = ₸₢(𝜊2, 𝜊1); and (iv) ₸₢(𝜊1, ₸₢(𝜊2, 𝜊3)) =

₸₢(₸₢(𝜊1, 𝜊2), 𝜊3) . Similarly, where Ṩ₢(𝜊,𝛹)  used is a t-norm, if they satisfy the following 

properties, such as: (i) Ṩ₢(0, 0) = 0, Ṩ₢(𝜊, 1) = 𝜊; (ii) when 𝜊1 ≤ 𝜊2 and 𝛹1 ≤ 𝛹2, thus Ṩ₢(𝜊1, 𝜊2) ≤

Ṩ₢(𝛹1, 𝛹2); (iii) Ṩ₢(𝜊1, 𝜊2) = Ṩ₢(𝜊2, 𝜊1); and (iv) Ṩ₢(𝜊1, Ṩ₢(𝜊2, 𝜊3)) = Ṩ₢(Ṩ₢(𝜊1, 𝜊2), 𝜊3). Further, we 

stated some special parts of the Frank norms based on different values of parameter, such as: 

when ϜℲ → 1, thus the basic idea of Frank norms will be reduced into algebraic norms, such as 

₸₢(𝜊,𝛹) → 𝜊 𝛹 and Ṩ₢(𝜊,𝛹) → 𝜊 + 𝛹 −  𝜊𝛹, when ϜℲ →  ∞, thus the basic idea of Frank norms 

will be reduced into Lukasiewicz norms, such as ₸₢(𝜊,𝛹) → 𝑚𝑎𝑥(0, 𝜊 + 𝛹 − 1) and 𝑆₢ (𝑥, 𝑦) →

𝑚𝑖𝑛(𝜊 + 𝛹, 1). 

2.3. Choquet Integral Operator [16, 17] 

In this subsection, we revised the technique of fuzzy measure, the Choquet integral operator, and 

their related ideas. 

Definition 4: The model of fuzzy measure based on fixed set 𝒳 is a collection of mappings, such 

as ∆𝛻 ∶ 𝛤(𝜊) → [0, 1], with two important properties, such as: (i) ∆𝛻(𝜙) = 0, ∆𝛻(𝒳) = 1, called 

boundary condition, (ii) 𝜕, ℬ ∈ 𝒳, and 𝜕 ⊆ ℬ, then ∆𝛻(𝜕) ≤ ∆𝛻(ℬ), called monotonicity. Further, 

we discussed the model of 𝜌 − fuzzy measure, such as: 

∆𝛻(𝜕 ∪ ℬ) = ∆𝛻(𝜕) + ∆𝛻(ℬ) + 𝜌∆𝛻(𝜕)∆𝛻(ℬ) 

Further, when 𝜌 = 0, thus we have 

∆𝛻(𝜕 ∪ ℬ) = ∆𝛻(𝜕) + ∆𝛻(ℬ) 

Additionally, when all the values in 𝒳 are independent, thus 

∆𝛻(𝜕) = ∑ ∆𝛻(𝜊𝜏)

𝜊𝜏∈𝜕

 

When all values in 𝒳 are finite, thus 

∆𝛻(𝜕) = ∆𝛻(⋃𝜊𝜏

Å

𝜏=1

) =

{
 
 

 
 1

𝜌
[∏(1 + 𝜓∆𝛻(𝜊𝜏)) − 1

Å

𝜏=1

] 𝜌 ≠ 0

∑ ∆𝛻(𝜊𝜏)

𝜊𝜏∈𝜕

𝜌 = 0

 

Moreover, 𝜊𝜏 ∩ 𝜊𝒿 = 𝜙, for 𝜏, 𝒿 = 1,2…Å, and 𝜏 ≠ 𝒿, when 𝜌 ≻ 0, thus ∆𝛻(𝜕 ∪ ℬ) ≻ ∆𝛻(𝜕) +

∆𝛻(ℬ), when −1 ≤ 𝜌 ≺ 0, thus ∆𝛻(𝜕 ∪ ℬ) ≺ ∆𝛻(𝜕) + ∆𝛻(ℬ). 

Definition 5: A real-valued mapping ℊ based on a fixed set 𝒳 with fuzzy measure ∆𝛻, thus 

∫ℊ𝒹∆𝛻 =∑[∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1))]

Å

𝜏=1

ℊ∅(𝜏) 
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Called the discrete Choquet integral of ℊ concerning ∆𝛻, where the representation of the 

permutation is as follows, such as ∅(𝜏) of (1, 2⋯𝑛) with ℊ∅(1) ≥ ℊ∅(2) ≥ ⋯ ≥ ℊ∅(Å), and 𝜕∅(0) =

𝜙, 𝜕∅(𝜏) = {𝒢∅(1), … 𝒢∅(𝜏)}. 

 

3. Frank Operational Laws for CPFNs 

In this section, we develop a novel model of frank operational laws based on the collection of 

CPFNs. Further, we also simplify some major properties for the proposed operational laws.  

Definition 6: Consider any two CPFNs 𝛧1 = 〈𝜇𝛧1, 𝜂𝛧1, 𝜉𝛧1〉, and 𝛧2 = 〈𝜇𝛧2, 𝜂𝛧2, 𝜉𝛧2〉. The frank 

operational laws are described in the following form such as 

(𝛧1⨁ℱ𝛧2)𝑇𝑁

=

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧1
2
− 1)(ϜℲ1−𝜇𝛧2

2
− 1)

ϜℲ − 1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧1
2
− 1)(ϜℲ𝜂𝛧2

2
− 1)

ϜℲ − 1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧1

2
− 1)(ϜℲ1−𝜉𝛧2

2
− 1)

ϜℲ − 1
)

)

 
 
 
 

 

(𝛧1⨁ℱ𝛧2)𝑇𝐶𝑁

=

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧1
2
− 1)(ϜℲ1−𝜇𝛧2

2
− 1)

ϜℲ − 1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧1
2
− 1)(ϜℲ𝜂𝛧2

2
− 1)

ϜℲ − 1
) ,

√LogϜℲ(1 +
(ϜℲ𝜉𝛧1

2
− 1)(ϜℲ𝜉𝛧2

2
− 1)

ϜℲ − 1
)

)

 
 
 
 

 

(𝛧1⨂ℱ𝛧2)𝑇𝑁

=

(

 
 
 
 √LogϜℲ (1 +

(ϜℲ𝜇𝛧1
2
− 1)(ϜℲ𝜇𝛧2

2
− 1)

ϜℲ − 1
) ,√1 − LogϜℲ (1 +

(ϜℲ1−𝜂𝛧1
2
− 1)(ϜℲ1−𝜂𝛧2

2
− 1)

ϜℲ − 1
) ,

√LogϜℲ(1 +
(ϜℲ𝜉𝛧1

2
− 1)(ϜℲ𝜉𝛧2

2
− 1)

ϜℲ − 1
)

)

 
 
 
 

 

(𝛧1⨂ℱ𝛧2)𝑇𝐶𝑁

=

(

 
 
 
 √LogϜℲ (1 +

(ϜℲ𝜇𝛧1
2
− 1)(ϜℲ𝜇𝛧2

2
− 1)

ϜℲ − 1
) ,√1 − LogϜℲ (1 +

(ϜℲ1−𝜂𝛧1
2
− 1)(ϜℲ1−𝜂𝛧2

2
− 1)

ϜℲ − 1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧1

2
− 1)(ϜℲ1−𝜉𝛧2

2
− 1)

ϜℲ − 1
)

)
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Theorem 1: Consider a CPFN Ζ = 〈𝜇Ζ, 𝜂Ζ, 𝜉Ζ〉, then the multiplication operation Å.ℱΖ is 

described in the following form, such as 

(Å. 𝛧)
𝑇𝑁

=

(

 
 
 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√LogϜℲ(1 +

(ϜℲ𝜂𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,

√1 − LogϜℲ(1+
(ϜℲ1−𝜉𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
)

)

 
 
 
 
 
 

 

(Å. 𝛧)
𝑇𝐶𝑁

=

(

 
 
 
 
 
 √1 − LogϜℲ(1 +

(ϜℲ1−𝜇𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√LogϜℲ(1 +

(ϜℲ𝜂𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,

√LogϜℲ(1 +
(ϜℲ𝜉𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
)

)

 
 
 
 
 
 

 

Further, the term Å represents a positive integer, such as Å. Ζ = 𝛧⨁𝛧⨁…⨁𝛧⏞        
Å

. 

The Proof of Theorem 1 is discussed in Appendix A. 

Theorem 2: Consider any CPFN Ζ = 〈𝜇Ζ, 𝜂Ζ, 𝜉Ζ〉, then the power operation Ζ^Å is described in the 

following form, such as 

(Ζ^Å)
TN

= (√LogϜℲ(1 +
(ϜℲ𝜇𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√1 − LogϜℲ(1 +

(ϜℲ1−𝜂𝛧1
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√LogϜℲ(1 +

(ϜℲ𝜇𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
)) 

(Ζ^Å)
TCN

= (√LogϜℲ(1 +
(ϜℲ𝜇𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√1 − LogϜℲ(1 +

(ϜℲ1−𝜂𝛧1
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,) 

where Ζ^Å = 𝛧⨂𝛧⨂…⨂𝛧⏞        
Å

. Hence, based on the above information in Theorem 1 and Theorem 2, 

we have 

(ℴ. 𝛧)𝑇𝑁 =

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,

√1 − LogϜℲ(1 +
(ϜℲ1−𝜉𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

)
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(ℴ. 𝛧)𝑇𝐶𝑁 =

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,

√LogϜℲ(1 +
(ϜℲ𝜉𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 
 

 

(Ζ^Å)
𝑇𝑁

=

(

 
 
 
 √LogϜℲ (1 +

(ϜℲ𝜇𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,√1 − LogϜℲ (1 +

(ϜℲ1−𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,

√LogϜℲ(1 +
(ϜℲ𝜉𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 
 

 

(Ζ^Å)
𝑇𝐶𝑁

=

(

 
 
 
 √LogϜℲ (1 +

(ϜℲ𝜇𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,√1 − LogϜℲ (1 +

(ϜℲ1−𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,

√1 − LogϜℲ(1 +
(ϜℲ1−𝜉𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 
 

 

Further, we described some special cases of the above-proposed information, called ℴ. 𝛧 and 

Ζ^ℴ, such as 

1) When Ζ = 〈𝜇Ζ, 𝜂Ζ, 𝜉Ζ〉 = (1,0,1), thus 

ℴ. 𝛧 =

(

 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−1 − 1)ℴ

(ϜℲ − 1)ℴ−1
) ,√LogϜℲ (1 +

(ϜℲ0 − 1)ℴ

(ϜℲ − 1)ℴ−1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−1 − 1)ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 

= (1,0,1) 

Ζ^ℴ =

(

 
 
 √LogϜℲ (1 +

(ϜℲ1 − 1)ℴ

(ϜℲ − 1)ℴ−1
) ,√1 − LogϜℲ (1 +

(ϜℲ1 − 1)ℴ

(ϜℲ − 1)ℴ−1
) ,

√LogϜℲ (1 +
(ϜℲ1 − 1)ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 

= (1,0,1) 

That is ℴ. (1,0,1) = (1, 0,1), and (1, 0,1)^ℴ = (1, 0,1). 

2) When Ζ = 〈𝜇Ζ, 𝜂Ζ, 𝜉Ζ〉 = (1,0,1), thus 

ℴ. 𝛧 =

(

 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−0 − 1)ℴ

(ϜℲ − 1)ℴ−1
) , √LogϜℲ (1 +

(ϜℲ1 − 1)ℴ

(ϜℲ − 1)ℴ−1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−1 − 1)ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 

= (0,1,0) 
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Ζ^ℴ =

(

 
 
 √LogϜℲ (1 +

(ϜℲ0 − 1)ℴ

(ϜℲ − 1)ℴ−1
) ,√1 − LogϜℲ (1 +

(ϜℲ0 − 1)ℴ

(ϜℲ − 1)ℴ−1
) ,

√LogϜℲ (1 +
(ϜℲ0 − 1)ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 

= (0,1,0) 

That is ℴ. (0,1,0) = (0,1,0), and (0,1, 0)^ℴ = (0,1,0). 

3) When ϜℲ → 1, thus 

Lim
ϜℲ→1

ℴ. 𝛧 = Lim
ϜℲ→1

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,

√1 − LogϜℲ(1 +
(ϜℲ1−𝜉𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 
 

 

By using the technique of equivalent infinitesimal replacement ln(1 + 𝜊) ∼ 𝜊(𝜊 ≻ 0), Logarithmic 

transform, such as 

Lim
ϜℲ→1

(√LogϜℲ (1 +
(ϜℲ𝜂𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)) = Lim

ϜℲ→1

(

 
 
 √ln(1 +

(ϜℲ𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

ln ϜℲ

)

 
 
 

= Lim
ϜℲ→1

(√
(ϜℲ𝜂𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1 ln ϜℲ
) 

To consider the Taylor expansion and ln ϜℲ ≻ 0, we have 

ϜℲ𝜂𝛧
2
= 1 + 𝜂𝛧

2 ln ϜℲ +
𝜂𝛧

2

2
(ln ϜℲ)2 +⋯ = 1 + 𝜂𝛧

2 ln ϜℲ + 𝒪(ln ϜℲ) 

⇒ ϑ𝜂Ζ
2
− 1 = 𝜂Ζ

2 ln ϑ + 𝒪(ln ϑ) 

Then 

Lim
ϜℲ→1

(√
(ϜℲ𝜂𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1 ln ϜℲ
) = Lim

ϜℲ→1
(√

(𝜂𝛧
2 ln ϜℲ)ℴ

(ϜℲ − 1)ℴ−1 ln ϜℲ
) = Lim

ϜℲ→1
(√

(𝜂𝛧
2)ℴ(ln ϜℲ)ℴ−1

(ϜℲ − 1)ℴ−1
) = (𝜂𝛧)

ℴ 

Using the same procedure, we have 

Lim
ϜℲ→1

(√1 − LogϜℲ (1 +
(ϜℲ1−𝜇𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)) = √1 − (1 − 𝜇𝛧

2)ℴ 

Then, 

Lim
ϜℲ→1

ℴ. 𝛧 = (√1 − (1 − 𝜇𝛧
2)ℴ , (𝜂𝛧)

ℴ , √1 − (1 − 𝜉𝛧
2)
ℴ
) 
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Similarly, 

Lim
ϜℲ→1

Ζ^ℴ = ((𝜇𝛧)
ℴ , √1 − (1 − 𝜂𝛧

2)ℴ , (𝜉𝛧)
ℴ) 

 

That is  

ℴ. (0,1,0) ⟶ (√1 − (1 − 𝜇𝛧
2)ℴ , (𝜂𝛧)

ℴ , √1 − (1 − 𝜉𝛧
2)
ℴ
) 

 and  

(0,1, 0)^ℴ ⟶ (√1 − (1 − 𝜇𝛧
2)ℴ , (𝜂𝛧)

ℴ , √1 − (1 − 𝜉𝛧
2)
ℴ
) , ϜℲ ⟶ 1. 

Theorem 3: Consider any three CPFNs 𝛧 = 〈𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉, 𝛧1 = 〈𝜇𝛧1, 𝜂𝛧1, 𝜉𝛧1〉, and 𝛧2 =

〈𝜇𝛧2, 𝜂𝛧2, 𝜉𝛧2〉, then 

1. 𝛧1⨁ℱ𝛧2 = 𝛧2⨁ℱ𝛧1. 

2. 𝛧1⨂ℱ𝛧2 = 𝛧2⨂ℱ𝛧1. 

3. ℴ(𝛧1⨁ℱ𝛧2) = ℴ𝛧2⨁ℱℴ𝛧1, ℴ ≥ 0. 

4. ℴ1𝛧⨁ℱℴ2𝛧 = (ℴ1 + ℴ2)𝛧, ℴ1, ℴ2 ≥ 0. 

5. 𝛧ℴ1⨂ℱ𝛧
ℴ2 = 𝛧(ℴ1+ℴ2), ℴ1, ℴ2 ≥ 0. 

6. (𝛧1
ℴ⨂ℱ𝛧2

ℴ) = (𝛧2⨂ℱ𝛧1)
ℴ , ℴ ≥ 0. 

Proof: Omitted. 

The information in Theorem 3 is the same for both t-norm and t-conorm. Further, we derive the 

model of Choquet Frank operators based on the above information for CPFNs. 

4. Choquet Frank Aggregation Operators for CPFNs 

In this section, we justify the model of the CPFCFA operator and the CPFCFG operator based on 

the collection of CPFNs. Further, we also discuss some major properties and their related results 

to enhance the worth of the proposed theory. Consider the family of CPFNs 𝛧𝜏 =

〈𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉(𝜏 = 1, 2, … , Å)  with permutation ∅(𝜏)  of (1, 2, … , Å)  and 𝛧∅(1) ≥ 𝛧∅(1) ≥ ⋯ ≥ 𝛧∅(Å) , 

where 𝒢∅(𝜏) is the attribute corresponding to 𝛧∅(𝜏), 𝜕∅(𝜏) = 𝜙, 𝜕∅(𝜏) = {𝒢∅(1), … 𝒢∅(𝜏)}. 

Definition 7: The model of the CPFCFA operator is illustrated and defined in the following form 

such as  

ℱ(𝒞1)∫𝛧𝒹∆𝛻 = 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 = ⨁ℱℱ𝜏=1

Å (∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))𝛧∅(𝜏) 

ℱ(𝒞1)∫𝛧𝒹∆𝛻 = 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 = ⨁ℱℱ𝜏=1

Å (∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1))) 𝛧∅(𝜏) 

Theorem 4: Prove that the aggregated values of the proposed operators are again a CPFN, such 

as 
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𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 =

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 =

(

 
 
 
 
 
 
 
 
 
 √1− LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

The Proof of Theorem 4 is discussed in Appendix B. 

Theorem 5: Prove that the following inequality holds for both FTN and FTCN, such as 

𝐶𝑃𝐹𝐶𝐹𝐴(𝜓. ℱ𝛧1, 𝜓. ℱ𝛧2, … , 𝜓. ℱ𝛧Å)𝑇𝑁 = 𝜓.ℱ 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 

𝐶𝑃𝐹𝐶𝐹𝐴(𝜓.ℱ𝛧1, 𝜓. ℱ𝛧2, … , 𝜓. ℱ𝛧Å)𝑇𝐶𝑁 = 𝜓.ℱ 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 

The Proof of Theorem 5 is discussed in Appendix C. 

Theorem 6: Prove that the following inequality holds such as 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1⨁ℱ𝛧,… , 𝛧Å⨁ℱ𝛧)𝑇𝑁 = 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁⨁ℱ𝛧 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1⨁ℱ𝛧,… , 𝛧Å⨁ℱ𝛧)𝑇𝐶𝑁 = 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1⨁ℱ𝛧,… , 𝛧Å⨁ℱ𝛧)𝑇𝐶𝑁⨁ℱ𝛧 

The Proof of Theorem 6 is discussed in Appendix D. 

Theorem 7: Prove that the following inequality holds such as 

𝐶𝑃𝐹𝐶𝐹𝐴(𝜓. 𝛧1⨁ℱΖ𝜓,… ,𝜓. 𝛧Å⨁ℱΖ)𝑇𝑁 = 𝜓. 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁⨁ℱΖ 

𝐶𝑃𝐹𝐶𝐹𝐴(𝜓. 𝛧1⨁ℱΖ𝜓,… ,𝜓. 𝛧Å⨁ℱΖ)𝑇𝐶𝑁 = 𝜓. 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁⨁ℱΖ 

Theorem 8: Prove that the following inequality holds such as 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧₢1⨁ℱ𝛧𝜂1 , … , 𝛧₢Å⨁ℱ𝛧𝜂Å)𝑇𝑁
= 𝐶𝑃𝐹𝐶𝐹𝐴 (𝛧₢1 , … , 𝛧₢Å)𝑇𝑁

⨁ℱ𝐶𝑃𝐹𝐶𝐹𝐴(𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝑁
 

𝐶𝑃𝐹𝐶𝐹𝐴 (𝛧₢1⨁ℱ𝛧𝜂1 , … , 𝛧₢Å⨁ℱ𝛧𝜂Å)𝑇𝐶𝑁
= 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧₢1 , … , 𝛧₢Å)𝑇𝐶𝑁

⨁ℱ𝐶𝑃𝐹𝐶𝐹𝐴 (𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝐶𝑁
 

The Proof of Theorem 8 is discussed in Appendix E. 
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Further, we described the fundamental properties of the proposed theory, called idempotency, 

monotonicity, and boundedness.  

Theorem 9: When Ζ𝜏 = Ζ = 〈𝜇Ζ, 𝜂Ζ, 𝜉Ζ〉(𝜏 = 1, 2, … , Å), thus 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 = 𝛧 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 = 𝛧 

Theorem 10: When 𝜇𝛧₢𝜏 ≤ 𝜇𝛧𝜂𝜏  and 𝜂𝛧₢𝜏 ≥ 𝜂𝛧𝜂𝜏∀𝜏, thus 

𝐶𝑃𝐹𝐶𝐹𝐴 (𝛧₢1 , … , 𝛧₢Å)𝑇𝑁
≤ 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝑁

 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧₢1 , … , 𝛧₢Å)𝑇𝐶𝑁
≤ 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝐶𝑁

 

Theorem 11: When Ζ+ = (
max
𝜏
(𝜇Ζ𝜏),

min
𝜏
(𝜂Ζ𝜏),

max
𝜏
(𝜉Ζ𝜏)) and Ζ− =

(
min
𝜏
(𝜇Ζ𝜏),

max
𝜏
(𝜂Ζ𝜏),

min
𝜏
(𝜉Ζ𝜏)), thus 

Ζ− ≤ 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 ≤ Ζ+ 

Ζ− ≤ 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 ≤ Ζ+ 

Further, we describe some dominant and particular cases of the initiated operators for different 

values of parameters. 

Theorem 12: Prove that the following information is held for different values of parameters, 

such as 

1) When ϑ → 1, thus 

(Lim
ϑ→1

𝐶𝑃𝐹𝐶𝐹𝐴)
𝑇𝑁

=

(

 
 
 
 
 √1 −∏(1 − 𝜇𝛧∅(𝜏)

2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

,∏(𝜂𝛧∅(𝜏))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

,

√1 −∏(1 − 𝜉𝛧∅(𝜏)
2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1 )

 
 
 
 
 

 

(Lim
ϑ→1

𝐶𝑃𝐹𝐶𝐹𝐴)
𝑇𝐶𝑁

=

(

 
 
 
 √1 −∏(1 − 𝜇𝛧∅(𝜏)

2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

,∏(𝜂𝛧∅(𝜏))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

,

∏(𝜉𝛧∅(𝜏))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1 )

 
 
 
 

 

Called the CPF Choquet averaging operator (CPFCA). 

2) When ϑ → 1, ∆∇𝜏= ∆∇(𝜕σ(𝜏)) − ∆∇(𝜕σ(𝜏−1)), then the proposed theory is converted for 

the CPF weighted averaging (CPFWA) operator. 
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3) When ϑ → 1, ω𝜏 = ∆∇(𝜕σ(𝜏)) − ∆∇(𝜕σ(𝜏−1)), and ∆∇(𝜕) = ∑ ω𝜏
|𝜕|
𝜏=1 , where ω =

(ω1, ω2, … , ω∆∇)
₸, ω𝒿 ∈  [0, 1], ∑ ω𝒿

Å
𝒿=1 = 1, then the proposed theory is converted for the 

CPF-ordered weighted averaging (CPFOWA) operator. 

4) When ϑ → +∞, thus 

( Lim
ϑ→+∞

𝐶𝑃𝐹𝐶𝐹𝐴)
𝑇𝑁

=

(

 
 
 
 
 √1 −∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜇𝛧∅(𝜏)
2, √∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜂𝛧∅(𝜏)
2,

√1 −∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜉𝛧∅(𝜏)
2

)

 
 
 
 
 

 

( Lim
ϑ→+∞

𝐶𝑃𝐹𝐶𝐹𝐴)
𝑇𝐶𝑁

=

(

 
 
 
 
 √1 −∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜇𝛧∅(𝜏)
2, √∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜂𝛧∅(𝜏)
2,

√1 −∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜉𝛧∅(𝜏)
2

)

 
 
 
 
 

 

Called a traditional arithmetic weighted average operator. 

The Proof of Theorem 12 is discussed in Appendix F. 

Definition 8: The model of the CPFCFG operator is illustrated and defined in the following form 

such as  

ℱ(𝒞1)∫𝛧𝒹∆𝛻 = 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 =⊗ℱℱ𝜏=1

Å (𝛧∅(𝜏))
(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))) 

ℱ(𝒞1)∫𝛧𝒹∆𝛻 = 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 =⊗ℱℱ𝜏=1

Å (𝛧∅(𝜏))
(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))) 

Theorem 13: Prove that the aggregated values of the proposed operators are again a CPFN, 

such as 

𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 =

(

 
 
 
 
 
 
 
 
 
 √LogϜℲ(1 +∏(ϜℲ𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(ϜℲ1−𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)
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𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 =

(

 
 
 
 
 
 
 
 
 
 √LogϜℲ(1 +∏(ϜℲ𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(ϜℲ1−𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

Theorem 14: Prove that the following inequality holds for both FTN and FTCN, such as 

𝐶𝑃𝐹𝐶𝐹𝐺(𝜓. 𝛧1, 𝜓. 𝛧2, … , 𝜓. 𝛧Å)𝑇𝑁 = 𝜓. 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 

𝐶𝑃𝐹𝐶𝐹𝐺(𝜓. 𝛧1, 𝜓. 𝛧2, … , 𝜓. 𝛧Å)𝑇𝐶𝑁 = 𝜓. 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 

Theorem 15: Prove that the following inequality holds, such as 

𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1⨁ℱ𝛧,… , 𝛧Å⨁ℱ𝛧)𝑇𝑁 = 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁⨁ℱ𝛧 

𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1⨁ℱ𝛧,… , 𝛧Å⨁ℱ𝛧)𝑇𝐶𝑁 = 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1⨁ℱ𝛧,… , 𝛧Å⨁ℱ𝛧)𝑇𝐶𝑁⨁ℱ𝛧 

 

Theorem 16: Prove that the following inequality holds, such as 

𝐶𝑃𝐹𝐶𝐹𝐺(𝜓. 𝛧1⨁ℱΖ𝜓,… ,𝜓. 𝛧Å⨁ℱΖ)𝑇𝑁 = 𝜓. 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁⨁ℱΖ 

𝐶𝑃𝐹𝐶𝐹𝐺(𝜓. 𝛧1⨁ℱΖ𝜓,… ,𝜓. 𝛧Å⨁ℱΖ)𝑇𝐶𝑁 = 𝜓. 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁⨁ℱΖ 

Theorem 17: Prove that the following inequality holds, such as 

𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧₢1⨁ℱ𝛧𝜂1 , … , 𝛧₢Å⨁ℱ𝛧𝜂Å)𝑇𝑁
= 𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧₢1 , … , 𝛧₢Å)𝑇𝑁

⨁ℱ𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝑁
 

𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧₢1⨁ℱ𝛧𝜂1 , … , 𝛧₢Å⨁ℱ𝛧𝜂Å)𝑇𝐶𝑁
= 𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧₢1 , … , 𝛧₢Å)𝑇𝐶𝑁

⨁ℱ𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝐶𝑁
 

Theorem 18: When Ζ𝜏 = Ζ = 〈𝜇Ζ, 𝜂Ζ, 𝜉Ζ〉(𝜏 = 1, 2, … , Å), thus 

𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 = 𝛧 

𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 = 𝛧 

Theorem 19: When 𝜇𝛧₢𝜏 ≤ 𝜇𝛧𝜂𝜏  and 𝜂𝛧₢𝜏 ≥ 𝜂𝛧𝜂𝜏∀𝜏, thus 

𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧₢1 , … , 𝛧₢Å)𝑇𝑁
≤ 𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝑁

 

𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧₢1 , … , 𝛧₢Å)𝑇𝐶𝑁
≤ 𝐶𝑃𝐹𝐶𝐹𝐺 (𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝐶𝑁

 

Theorem 20: When Ζ+ = (
max
𝜏
(𝜇Ζ𝜏),

min
𝜏
(𝜂Ζ𝜏),

max
𝜏
(𝜉Ζ𝜏)) and Ζ− =

(
min
𝜏
(𝜇Ζ𝜏),

max
𝜏
(𝜂Ζ𝜏),

min
𝜏
(𝜉Ζ𝜏)), thus 

Ζ− ≤ 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 ≤ Ζ+ 

Ζ− ≤ 𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 ≤ Ζ+ 
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Further, we describe some dominant and particular cases of the initiated operators for different 

values of parameters. 

Theorem 21: Prove that the following information holds for different values of parameters, such 

as 

1) When ϑ → 1, thus 

(Lim
ϑ→1

𝐶𝑃𝐹𝐶𝐹𝐺)
𝑇𝑁

=

(

 
 
 
 ∏(𝜇𝛧∅(𝜏))

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

, (1 −∏(1 − (𝜂𝛧∅(𝜏))
2
)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

1
2

,

∏(𝜉𝛧∅(𝜏))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1 )

 
 
 
 

 

(Lim
ϑ→1

𝐶𝑃𝐹𝐶𝐹𝐺)
𝑇𝐶𝑁

=

(

 
 
 
 
 ∏(𝜇𝛧∅(𝜏))

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

, (1 −∏(1 − (𝜂𝛧∅(𝜏))
2
)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

1
2

,

(1 −∏(1 − (𝜉𝛧∅(𝜏))
2
)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

1
2

)

 
 
 
 
 

 

Called the CPF Choquet geometric operator (CPFCG). 

2) When ϑ → 1, ∆∇𝜏= ∆∇(𝜕σ(𝜏)) − ∆∇(𝜕σ(𝜏−1)), then the proposed theory is converted to a 

CPF-weighted geometric (CPFWG) operator. 

3) When ϑ → 1, ω𝜏 = ∆∇(𝜕σ(𝜏)) − ∆∇(𝜕σ(𝜏−1)), and ∆∇(𝜕) = ∑ ω𝜏
|𝜕|
𝜏=1 , where ω =

(ω1, ω2, … , ω∆∇)
₸, ω𝒿 ∈  [0, 1], ∑ ω𝒿

Å
𝒿=1 = 1, then the proposed theory is converted for the 

CPF-ordered weighted geometric (CPFOWG) operator.  

5. MABAC Model Based on Proposed Theory 

This section investigates the major information of MABAC data by considering the started 

operators for CPFSs. For this, we intend to construct the decision matrix by using m alternatives. 

𝛧1, 𝛧2, … , 𝛧𝑚 and n attributes 𝐴1, 𝐴2, … , 𝐴Å with weight vectors ω = (ω1, ω2, … , ω∆∇)
₸, ω𝒿 ∈  [0, 1], 

∑ ω𝒿
Å
𝒿=1 = 1. Thus, the major information about the steps of the MABAC model is illustrated 

below: 

Step 1: First, we calculate the matrix of data with the help of CPFNs, such as 

𝐷 =

[
 
 
 
 
𝛧11
𝛧21.
.

𝛧𝑚1

  

𝛧12
𝛧22.
.

𝛧𝑚2

  

.

..

.

.

  

.

..

.

.

  

𝛧1𝑛
𝛧2𝑛.
.

𝛧𝑚𝑛]
 
 
 
 

 

Further, we have two options: either we normalize or do not normalize the data in the decision 

matrix. If we have a cost type, then we normalize the data, such as 
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𝑁 = {
〈𝜇𝛧1, 𝜂𝛧1, 𝜉𝛧1〉 𝑏𝑒𝑛𝑒𝑓𝑖𝑡
〈𝜉𝛧1, 𝜂𝛧1, 𝜇𝛧1〉 𝑐𝑜𝑠𝑡

 

We have no option or requirement to normalize the data.  

Step 2: Thus, we measure or interrogate the weighted data matrix in the occurrence of planned 

laws, such as  

(Å. 𝛧)
𝑇𝑁

=

(

 
 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
)

)

 
 
 
 
 

 

(Å. 𝛧)
𝑇𝐶𝑁

=

(

 
 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,

√LogϜℲ (1 +
(ϜℲ𝜉𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
)

)

 
 
 
 
 

 

Step 3: Then, we interrogated the aggregated data matrix in the occurrence of planned CPFCFA 

operators and CPFCFG operators for both norms, such as 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 =

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 =

(

 
 
 
 
 
 
 
 
 
 √1− LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)
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𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝑁 =

(

 
 
 
 
 
 
 
 
 
 √LogϜℲ(1 +∏(ϜℲ𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(ϜℲ1−𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

𝐶𝑃𝐹𝐶𝐹𝐺(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 =

(

 
 
 
 
 
 
 
 
 
 √LogϜℲ(1 +∏(ϜℲ𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(ϜℲ1−𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

Step 4: Estimate the distance data measures to use the data in the aggregated matrix and weighted 

data matrix, such as 

𝐷𝑀𝜏𝒿 = {

𝐷(𝛧𝑖 , 𝛧𝑗),    𝑖𝑓 𝛧𝑖 > 𝛧𝑗
0,       𝑖𝑓 𝛧𝑖 = 𝛧𝑗

−𝐷(𝛧𝑖 , 𝛧𝑗),    𝑖𝑓 𝛧𝑖 < 𝛧𝑗

 

Where the function of the distance measure is defined below:  

𝐷(𝛧𝑖 , 𝛧𝑗) =
𝔩

3
(|𝜇𝛧𝑖 − 𝜇𝛧𝑗| + |𝜂𝛧𝑖 − 𝜂𝛧𝑗| + |𝜉𝛧𝑖 − 𝜉𝛧𝑗|) 

Step 5: Demonstrate the function of appraisal value for distance techniques, such as 

Ṩ𝑖 =
𝔩

Å
∑𝐷(𝛧𝑖 , 𝛧𝑗)

Å

𝑗=𝔩

 

Step 6: Estimate the model of ranking data for picking the best solution from the collection of 

data. To exploit the proposed model in the circumstance of various genuine-life problems, we 

assess the problems of the network data envelopment analysis approach: a case study on the 

Taiwan insurance industry for the proposed theory. 
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6. Network DEA: A Case Study on the Taiwan Insurance Industry 

The NDEA model is a modified version of the traditional technique of Data Envelopment 

Analysis (DEA) that analyzes financial records for the internal body and interrelated procedures 

of decision-making units (DMU). The model of NDEA is used to find the flow among multiple 

stages or components within a DMU, making it perfectly useful in companies. NDEA is divided 

into many portions for how it techniques and derives the internal body or shape and procedure 

of DMU. This application model talks about the investigation of the selection of the primary kind 

of NDEA for use in Taiwan. For this, we deliberate on the ensuing five alternatives, such as 

1) Dynamic NDEA. 

2) Directional NDEA. 

3) Network SBM (Slack-Based Model). 

4) Stochastic NDEA. 

5) Static NDEA. 

Additionally, for each alternative, we have the following attributes such as 

i) Growth Analysis. 

ii) Social Impact. 

iii) Political Impact. 

iv) Environmental Impact. 

v) Banking and Finance. 

Thus, we will deliberate on the best one among the above five alternatives. For this, we have also 

considered different values of parameters, such as ϜℲ = 2, 𝜌 = −0.7, Å = (0.3,0.2,0.2,0.2,0.1) for 

the weighted decision matrix and the value of Choquet is described below, such as ∆𝛻(𝛧1) =

0.1, ∆𝛻(𝛧2) = 0.15, ∆𝛻(𝛧3) = 0.2, ∆𝛻(𝛧4) = 0.25, ∆𝛻(𝛧5) = 0.3. Thus, the major information about 

the steps of the MABAC model is illustrated below: 

Step 1: First, we calculate the matrix of data with the help of CPFNs, see Table 1. 

Table 1. CPF information decision matrix. 

 𝛧1
𝐴 𝛧2

𝐴 𝛧3
𝐴 𝛧4

𝐴 𝛧5
𝐴 

𝛧1 〈0.9,0.3,0.1〉 〈0.91,0.31,0.11〉 〈0.92,0.32,0.12〉 〈0.93,0.33,0.13〉 〈0.94,0.34,0.14〉 

𝛧2 〈0.8,0.4,0.4〉 〈0.81,0.41,0.41〉 〈0.82,0.42,0.42〉 〈0.83,0.43,0.43〉 〈0.84,0.44,0.44〉 

𝛧3 〈0.6,0.5,0.2〉 〈0.61,0.51,0.21〉 〈0.62,0.52,0.22〉 〈0.63,0.53,0.23〉 〈0.64,0.54,0.24〉 

𝛧4 〈0.9,0.3,0.8〉 〈0.91,0.31,0.81〉 〈0.92,0.32,0.82〉 〈0.93,0.33,0.83〉 〈0.94,0.34,0.84〉 

𝛧5 〈0.8,0.4,0.1〉 〈0.81,0.41,0.11〉 〈0.82,0.42,0.12〉 〈0.83,0.43,0.13〉 〈0.84,0.44,0.14〉 

Further, we have two options: either we normalize or do not normalize the data in the decision 

matrix. If we have a cost type, then we normalize the data, such as 
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𝑁 = {
〈𝜇𝛧1, 𝜂𝛧1, 𝜉𝛧1〉 𝑏𝑒𝑛𝑒𝑓𝑖𝑡
〈𝜉𝛧1, 𝜂𝛧1, 𝜇𝛧1〉 𝑐𝑜𝑠𝑡

 

We have no option or requirement to normalize the data. So, we will go to the next step with 

the same data in Table 1. 

Step 2: Thus, we measure or interrogate the weighted data matrix in the occurrence of planned 

laws, see Table 2. 

Table 2. CPF weighted information matrix. 

 𝛧1
𝐴 𝛧2

𝐴 𝛧3
𝐴 𝛧4

𝐴 𝛧5
𝐴 

𝛧1 〈0.6023,0.7247,
0.0548

〉 〈0.5173,0.8155,
0.0492

〉 〈0.5302,0.8198,
0.0537

〉 〈0.5443,0.8239,
0.0582

〉 〈0.4094,0.9121,
0.0444

〉 

𝛧2 〈0.4971,0.7807,
0.2238

〉 〈0.4206,0.8542,
0.1881

〉 〈0.4286,0.8576,
0.193

〉 〈0.4369,0.861,
0.1978

〉 〈0.3212,0.9310,
0.1439

〉 

𝛧3 〈0.3473,0.8271,
0.1100

〉 〈0.2912,0.8859,
0.0945

〉 〈0.2968,0.8888,
0.0990

〉 〈0.3025,0.8917,
0.1036

〉 〈0.2198,0.9466,
0.0766

〉 

𝛧4 〈0.6023,0.7247,
0.4971

〉 〈0.5173,0.8155,
0.4206

〉 〈0.5302,0.8198,
0.4286

〉 〈0.5443,0.8239,
0.4369

〉 〈0.4094,0.9121,
0.3212

〉 

𝛧5 〈0.4971,0.7807,
0.0548

〉 〈0.4206,0.8542,
0.0492

〉 〈0.4286,0.8576,
0.0537

〉 〈0.4369,0.861,
0.0582

〉 〈0.3212,0.9310,
0.0444

〉 

Step 3: Then, we interrogated the aggregated data matrix in the occurrence of planned CPFCFA 

operators and CPFCFG operators for both norms, see Table 3. 

Table 3. CPF aggregated data. 

 CPFCFA operator CPFCFG operator 

𝛧1 〈0.2896,0.9485,0.028〉 〈0.8262,0.5427,0.4483〉 

𝛧2 〈0.2301,0.9596,0.1013〉 〈0.7805,0.5775,0.6334〉 

𝛧3 〈0.1570,0.9687,0.0517〉 〈0.7091,0.6106,0.5300〉 

𝛧4 〈0.2896,0.9485,0.2301〉 〈0.8262,0.5427,0.7805〉 

𝛧5 〈0.2301,0.9596,0.028〉 〈0.7805,0.5775,0.4483〉 

Step 4: Estimate the distance data measures to use the data in the aggregated matrix and weighted 

data matrix, see Table 4. 

Table 4. CPF distance measures. 

 CPFCFA operator CPFCFG operator 

𝛧1 0.1877,0.1273,0.1316,0.1365,0.0575 0.2664,0.3269,0.3225,0.3177,0.3967 

𝛧2 0.1895,0.1276,0.1307,0.1340,0.0541 0.2987,0.3606,0.3574,0.3542,0.4341 

𝛧3 0.1300,0.0865,0.089,0.09146,0.0366 0.3327,0.3762,0.3738,0.3713,0.4262 

𝛧4 0.2678,0.1837,0.1892,0.1953,0.0824 0.2297,0.3138,0.3083,0.3022,0.4151 

𝛧5 0.1576,0.1057,0.1087,0.1119,0.0453 0.2933,0.3451,0.3421,0.3390,0.4055 

Step 5: Demonstrate the function of appraisal value for distance techniques, see Table 5. 
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Table 5. Representation of appraisal values. 

 CPFCFA operator CPFCFG operator 

𝛧1 0.12815 0.32607 

𝛧2 0.1272 0.36102 

𝛧3 0.08674 0.37607 

𝛧4 0.18372 0.31387 

𝛧5 0.1059 0.34506 

Step 6: Estimate the model of ranking data for picking the best solution between the collection of 

data in Table 6, such as 

Table 6. Representation of ranking data. 

Methods Ranking values Most valuable decision 

CPFCFA operator 𝛧4 > 𝛧1 > 𝛧2 > 𝛧5 > 𝛧3 𝛧4 

CPFCFG operator 𝛧3 > 𝛧2 > 𝛧5 > 𝛧1 > 𝛧4 𝛧3 

Finally, we concluded that the best one is 𝛧4 with the MABAC-CPFCFA operator and 𝛧3 with 

MABAC-CPFCFG operator. Further, we simplify and describe the ranking values of the proposed 

theory by using the data in Table 1. Then, we interrogated the aggregated data matrix in the 

occurrence of planned CPFCFA operators and CPFCFG operators for both norms, see Table 7. 

Table 7. CPF aggregated values. 

 CPFCFA operator CPFCFG operator 

𝛧1 〈0.6372,0.7387,0.0682〉 〈0.9767,0.1797,0.5719〉 

𝛧2 〈0.5192,0.7921,0.2378〉 〈0.9453,0.2378,0.7921〉 

𝛧3 〈0.3631,0.837,0.1234〉 〈0.8764,0.2984,0.6707〉 

𝛧4 〈0.6372,0.7387,0.5192〉 〈0.9767,0.1797,0.9453〉 

𝛧5 〈0.5192,0.7921,0.0682〉 〈0.9453,0.2378,0.5719〉 

Demonstrate the function of appraisal value for distance techniques, see Table 8. 

Table 8. Representation of appraisal values. 

 CPFCFA operator CPFCFG operator 

𝛧1 0.0255 0.549 

𝛧2 0.1422 0.7247 

𝛧3 0.0931 0.5527 

𝛧4 0.1941 0.9075 

𝛧5 0.0408 0.5232 
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Estimate the model of ranking data for picking the best solution between the collection of data in 

Table 9, such as 

Table 9. Representation of ranking data. 

Methods Ranking values Most valuable decision 

CPFCFA operator 𝛧4 > 𝛧2 > 𝛧3 > 𝛧5 > 𝛧1 𝛧4 

CPFCFG operator 𝛧4 > 𝛧2 > 𝛧3 > 𝛧1 > 𝛧5 𝛧4 

Finally, we concluded that the best one is 𝛧4  with the CPFCFA operator and the CPFCFG 

operator. Moreover, we establish a comparative analysis to show the interpretation and validity 

of the initiated techniques. 

7. Comparative Analysis 

The performance of comparative analysis is a valuable and important part of every manuscript, 

especially when you need to prove the supremacy and validity of the derived theory. The key 

objective of this article is to design a comparison between invented information and various 

previous data. Therefore, we arranged the following old models, for instance, Xu [17] diagnosed 

the Choquet integral for weighted IFSs. Tan and Chen [18] derived the intuitionistic fuzzy 

Choquet integral for decision support systems. Tan and Chen [19} exposed the Choquet integral 

for induced IFSs. Xu and Yager [20] designed the geometric operators for IFSs. Yang et al. [21] 

derived the Frank operators for IFSs. Zhang et al. [22] presented the Frank power operators for 

IFSs. Xing et al. [23] invented the Choquet Frank operators for PFSs. Ali and Yang [24] described 

the Hamacher operators for CPFSs. EDAS model and improved Dombi operators for CPFSs were 

invented by Garg et al. [25]. Ali et al. [26] evaluated the Aczel-Alsina power operators for circular 

Pythagorean fuzzy linguistic sets. Jiang et al. [27] designed the Bonferroni mean operators and 

EDAS model for CPFSs. Verma [28] presented the MABAC model based on order-alpha 

divergence measures for IFSs. Jia et al. [29] designed the extended MABAC model for 

intuitionistic fuzzy rough sets. Zhao et al. [30] explored the intuitionistic fuzzy MABAC 

information and its applications. The comparative analysis is given in Table 10 for data in Table 

1. 

Table 10. For data in Table 1, the comparative analysis is given in Table 10. 

Methods Score values Ranking model 

Xu [17] No No 

Tan and Chen [18] No No 

Tan and Chen [19] No No 

Xu and Yager [20] No No 
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Yang et al. [21] No No 

Zhang et al. [22] No No 

Xing et al. [23] No No 

Ali and Yang [24] 0.0432,0.1027,0.0123,0.3026,0.0288 𝛧4 > 𝛧2 > 𝛧1 > 𝛧5 > 𝛧3 

Garg et al. [25] 0.0425,0.1024,0.0121,0.3015,0.0283 𝛧4 > 𝛧2 > 𝛧1 > 𝛧5 > 𝛧3 

Ali et al. [26] No No 

Jiang et al. [27] No No 

Verma [28] No No 

Jia et al. [29] No No 

Zhao et al. [30] No No 

MABAC (averaging) 0.1281,0.1272,0.0867,0.1837,0.1059 𝛧4 > 𝛧1 > 𝛧2 > 𝛧5 > 𝛧3 

MABAC (geometric) 0.3260,0.3610,0.3760,0.3138,0.3450 𝛧3 > 𝛧2 > 𝛧5 > 𝛧1 > 𝛧4 

CPFCFA operator 0.0255,0.1422,0.0931,0.1941,0.0408 𝛧4 > 𝛧2 > 𝛧3 > 𝛧5 > 𝛧1 

CPFCFG operator 0.549,0.7247,0.5527,0.9075,0.5232 𝛧4 > 𝛧2 > 𝛧3 > 𝛧1 > 𝛧5 

Finally, we concluded that the best one is 𝛧4 with the MABAC-CPFCFA operator and 𝛧3 with the 

MABAC-CPFCFG operator. But we concluded that the best one is 𝛧4 with the CPFCFA operator 

and the CPFCFG operator. Further, the existing model of Ali and Yang [24] and the proposed 

theory of Garg et al. [25] also provided the same ranking values 𝛧4 . The invented model is 

different from the existing models because the previous techniques were developed based on 

norms, but the proposed techniques are computed based on the Choquet integral, which is 

reliable for coping with vague data. 

8. Concluding remarks 

Network data envelopment analysis is used to assess the proficiency of insurance enterprises. To 

do this, we intended the frank operational laws for CPF uncertainty with various dominant 

results. Moreover, the CPFCFA operator and CPFCFG operator with three dominant properties 

for each operator have been studied. The MABAC model has been deliberated and verified by 

using numerical examples. In the following, a decision-making performance for assessing the 

proficiency of insurance enterprises using the Network DEA is proposed. 

The major influence of this article is listed below: 

1) We discussed the frank operational laws for CPF uncertainty with various dominant 

results.  

2) We studied the CPFCFA operator and the CPFCFG operator with three dominant 

properties for each operator.  

3) We deliberated on the MABAC model and verified it with the help of numerical examples.  
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4) We establish the decision-making performance for assessing the proficiency of insurance 

enterprises using the NDEA approach.  

5) We proceed with the ranking values of proposed models for comparing them with the 

ranking values of existing models to show the capability and efficacy of the proposed 

approaches. 

There are potential avenues for future studies: one can explore the circular Pythagorean hesitant 

fuzzy sets and their extensions. Moreover, the development of the various operators, measures, 

and methods for invented models and their extensions could be interesting. Finally, one can 

evaluate the decision-making technique, neural networks, game theory, and artificial data mining 

to enhance the worth of the proposed theory. 

 

 

 

Appendix Section 

Appendix A: Proof: Let 0 ≤ 𝜇𝛧, 𝜂𝛧 ≤ 1, ϜℲ ≻ 1, and 𝜇𝛧
2 + 𝜂𝛧

2 ≤ 1, thus 𝜂𝛧
2 ≤ 1 − 𝜇𝛧

2, 0 ≤ 1 −

𝜇𝛧
2 ≤ 1. For Å. Ζ, thus 

0 ≤ √1 − LogϜℲ (1 +
(ϜℲ1−0 − 1)Å

(ϜℲ − 1)Å−1
) ≤ √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
)

≤ √1 − LogϜℲ (1 +
(ϜℲ1−1 − 1)Å

(ϜℲ − 1)Å−1
) = 1 

0 = √LogϜℲ (1 +
(ϜℲ0 − 1)Å

(ϜℲ − 1)Å−1
) ≤ √LogϜℲ(1 +

(ϜℲ𝜂𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ≤ √LogϜℲ (1 +

(ϜℲ1 − 1)Å

(ϜℲ − 1)Å−1
) = 1 

where 

0 ≤ (√1− LogϜℲ (1 +
(ϜℲ1−𝜇𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
))

2

+ (√LogϜℲ(1 +
(ϜℲ𝜂𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
))

2

 

≤ 1 − LogϜℲ(1 +
(ϜℲ1−𝜇𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
)+ LogϜℲ(1 +

(ϜℲ𝜂𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) = 1 

The information of Å. Ζ holds the condition of CPFSs. Further, by using mathematical induction, 

we prove the above information. For this, if Å = 1, thus 
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(1. 𝛧)𝑇𝑁 =

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

1

(ϜℲ − 1)1−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

1

(ϜℲ − 1)1−1
) ,

√1 − LogϜℲ(1 +
(ϜℲ1−𝜉𝛧

2
− 1)

1

(ϜℲ − 1)1−1
)

)

 
 
 
 

= 〈𝜇𝛧, 𝜂𝛧, 𝜉𝛧〉 = 𝛧 

For Å = 1, the proposed theory holds. Further, we assume that the proposed theory also holds 

for Å = ℴ, such as 

(ℴ. 𝛧)𝑇𝑁 =

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 
 

 

Then, we prove it for Å = ℴ + 1, such as 

(ℴ + 1). 𝛧 = (ℴ. 𝛧)⨁. 𝛧 =

(

 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧

2
− 1)

ℴ

(ϜℲ − 1)ℴ−1
)

)

 
 
 

⨁〈𝜇𝛧, 𝜂𝛧 , 𝜉𝛧〉 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  

1 − LogϜℲ

(

 
 
1 +

(

 
 
ϜℲ

1−(1−LogϜℲ(1+
(ϜℲ1−𝜇𝛧

2
−1)

ℴ

(ϜℲ−1)ℴ−1
))

− 1

)

 
 
.
(ϜℲ1−𝜇𝛧

2
− 1)

ϜℲ − 1

)

 
 
,

√
  
  
  
  
  

LogϜℲ

(

 
 
1 +

(

 
 
ϜℲ

LogϜℲ(1+
(ϜℲ𝜂𝛧

2
−1)

ℴ

(ϜℲ−1)ℴ−1
)

)

 
 
.
(ϜℲ𝜂𝛧

2
− 1)

ϜℲ − 1

)

 
 
,

√
  
  
  
  
  

1 − LogϜℲ

(

 
 
1+

(

 
 
ϜℲ

1−(1−LogϜℲ(1+
(ϜℲ1−𝜉𝛧

2
−1)

ℴ

(ϜℲ−1)ℴ−1
))

− 1

)

 
 
.
(ϜℲ1−𝜉𝛧

2
− 1)

ϜℲ − 1

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

ℴ+1

(ϜℲ − 1)ℴ
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧
2
− 1)

ℴ+1

(ϜℲ − 1)ℴ
) ,

√1 − LogϜℲ(1 +
(ϜℲ1−𝜉𝛧

2
− 1)

ℴ+1

(ϜℲ − 1)ℴ
)

)
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For Å = ℴ + 1, the proposed theory is held successfully. Similarly, we will be evaluating the 

remaining part of the proposed theory. 

(Å. 𝛧)
𝑇𝐶𝑁

=

(

 
 
 
 
 
 √1− LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,√LogϜℲ(1 +

(ϜℲ𝜂𝛧
2
− 1)

Å

(ϜℲ − 1)Å−1
) ,

√LogϜℲ(1+
(ϜℲ𝜉𝛧

2
− 1)

Å

(ϜℲ − 1)Å−1
)

)

 
 
 
 
 
 

. 

 

Appendix B: Proof: For the verification of the above two proposed techniques, we use the model 

of mathematical induction. If Å = 2, thus 

(∆𝛻(𝜕∅(1)) − ∆𝛻(𝜕∅(0))) . 𝛧∅1 =

(

 
 
 
 
 
 
 
 
 
 
 
 √1− Logϑ(1 +

(ϑ1−𝜇Ζσ(1)
2
− 1)

∆∇(𝜕σ(1))−∆∇(𝜕σ(0))

(ϑ − 1)∆∇(𝜕σ(1))−∆∇(𝜕σ(0))−1
) ,

√Logϑ(1+
(ϑ

𝜂Ζσ(1)
2

− 1)
∆∇(𝜕σ(1))−∆∇(𝜕σ(0))

(ϑ − 1)∆∇(𝜕σ(1))−∆∇(𝜕σ(0))−1
) ,

√1 − Logϑ(1 +
(ϑ1−𝜉Ζσ(1)

2

− 1)
∆∇(𝜕σ(1))−∆∇(𝜕σ(0))

(ϑ − 1)∆∇(𝜕σ(1))−∆∇(𝜕σ(0))−1
)

)

 
 
 
 
 
 
 
 
 
 
 
 

 

(∆𝛻(𝜕∅(2)) − ∆𝛻(𝜕∅(1))) . 𝛧∅2 =

(

 
 
 
 
 
 
 
 
 
 
 
 √1 − Logϑ(1 +

(ϑ1−𝜇Ζσ(2)
2
− 1)

(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))

(ϑ − 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))−1

) ,

√Logϑ

(

 1 +
(ϑ

𝜂Ζσ(2)
2

− 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))

(ϑ − 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))−1

)

 ,

√1 − Logϑ

(

 1+
(ϑ1−𝜉Ζσ(2)

2

− 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))

(ϑ − 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))−1

)

 

)

 
 
 
 
 
 
 
 
 
 
 
 

 

Thus, 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2) = ∆𝛻(𝜕∅2) − ∆𝛻(𝜕∅1). 𝛧∅1⊕ℱ ∆𝛻(𝜕∅3) − ∆𝛻(𝜕∅2). 𝛧∅2 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 √1− Logϑ (1 +

(ϑ1−𝜇Ζσ(1)
2
− 1)

∆∇(𝜕σ(1))−∆∇(𝜕σ(0))

(ϑ − 1)∆∇(𝜕σ(1))−∆∇(𝜕σ(0))−1
) ,

√Logϑ(1 +
(ϑ

𝜂Ζσ(1)
2

− 1)
∆∇(𝜕σ(1))−∆∇(𝜕σ(0))

(ϑ − 1)∆∇(𝜕σ(1))−∆∇(𝜕σ(0))−1
) ,

√1 − Logϑ(1 +
(ϑ1−𝜉Ζσ(1)

2

− 1)
∆∇(𝜕σ(1))−∆∇(𝜕σ(0))

(ϑ − 1)∆∇(𝜕σ(1))−∆∇(𝜕σ(0))−1
)

)

 
 
 
 
 
 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
 
 
 
 
 √1− Logϑ (1 +

(ϑ1−𝜇Ζσ(2)
2
− 1)

(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))

(ϑ − 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))−1

) ,

√Logϑ

(

 1 +
(ϑ

𝜂Ζσ(2)
2

− 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))

(ϑ − 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))−1

)

 ,

√1 − Logϑ

(

 1 +
(ϑ1−𝜉Ζσ(2)

2

− 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))

(ϑ − 1)
(∆𝛻(𝜕∅(2))−∆𝛻(𝜕∅(1)))−1

)

 

)

 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ(1 +

∏ (ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))2
𝜏=1

(ϑ − 1)∑ ∆∇(𝜕σ(𝜏))−∆∇(𝜕σ(𝜏−1))−1
2
𝜏=1

) ,

√LogϜℲ (1 +
∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))2
𝜏=1

(ϑ − 1)∑ ∆∇(𝜕σ(𝜏))−∆∇(𝜕σ(𝜏−1))−1
2
𝜏=1

) ,

√1 − LogϜℲ(1 +
∏ (ϜℲ1−𝜉𝛧∅(𝜏)

2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

2
𝜏=1

(ϑ − 1)∑ ∆∇(𝜕σ(𝜏))−∆∇(𝜕σ(𝜏−1))−1
2
𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 
 

 

Where, ∑ ∆∇(𝜕σ(𝜏)) − ∆∇(𝜕σ(𝜏−1)) = 12
𝜏=1 , thus 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧σ1, 𝛧σ2) =

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
2

𝜏=1

) ,

√LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
2

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

2

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

For Å = 2, the proposed theory holds. Further, we assume that the proposed theory holds for 

Å = ℴ, thus 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧ℴ) =

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
ℴ

𝜏=1

) ,

√LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
ℴ

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

ℴ

𝜏=1

)

)
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Thus, we prove it for Å = ℴ + 1, such as 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧ℴ , 𝛧ℴ+1) = 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧ℴ)⨁ℱ∆𝛻(𝜕∅(ℴ)) − ∆𝛻(𝜕∅(ℴ+1))𝛧∅ℴ+1 

=

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
ℴ

𝜏=1

) ,

√LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
ℴ

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

ℴ

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧∅ℴ+1
2
− 1)

∆𝛻(𝜕∅(ℴ))−∆𝛻(𝜕∅(ℴ−1))

(ϑ − 1)∆∇(𝜕σ(ℴ))−∆∇(𝜕σ(ℴ−1))−1
) ,

√LogϜℲ(1 +
(ϜℲ𝜂𝛧∅ℴ+1

2
− 1)

∆𝛻(𝜕∅(ℴ))−∆𝛻(𝜕∅(ℴ−1))

(ϑ − 1)∆∇(𝜕σ(ℴ))−∆∇(𝜕σ(ℴ−1))−1
) ,

√1 − LogϜℲ(1 +
(ϜℲ1−𝜉𝛧∅ℴ+1

2
− 1)

∆𝛻(𝜕∅(ℴ))−∆𝛻(𝜕∅(ℴ−1))

(ϑ − 1)∑ ∆∇(𝜕σ(ℴ))−∆∇(𝜕σ(ℴ−1))−1
2
𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ(1 +

∏ (ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))ℴ+1
𝜏=1

(ϑ − 1)∑ ∆∇(𝜕σ(𝜏))−∆∇(𝜕σ(𝜏−1))−1
ℴ+1
𝜏=1

) ,

√LogϜℲ (1 +
∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))ℴ+1
𝜏=1

(ϑ − 1)∑ ∆∇(𝜕σ(𝜏))−∆∇(𝜕σ(𝜏−1))−1
ℴ+1
𝜏=1

) ,

√1 − LogϜℲ(1 +
∏ (ϜℲ1−𝜉𝛧∅(𝜏)

2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

ℴ+1
𝜏=1

(ϑ − 1)∑ ∆∇(𝜕σ(𝜏))−∆∇(𝜕σ(𝜏−1))−1
ℴ+1
𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 
 

 

where  ∑ ∆∇(𝜕σ(𝜏)) − ∆∇(𝜕σ(𝜏−1)) = 1ℴ+1
𝜏=1 , thus 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧ℴ , 𝛧ℴ+1) =

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
ℴ+1

𝜏=1

) ,

√LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
ℴ+1

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

ℴ+1

𝜏=1

)

)
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For Å = ℴ + 1 , we successfully hold the required results. Further, we will also prove the 

remaining part, such as 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)𝑇𝐶𝑁 =

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

. 

 

Appendix C: Proof: Using the information in Theorem 1 and Theorem 4, we have 

(𝜓. 𝛧𝜏)𝑇𝑁

=

(

 
 
√1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

𝜓

(ϑ − 1)𝜓−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

𝜓

(ϑ − 1)𝜓−1
) ,√1 − LogϜℲ(1 +

(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
𝜓

(ϑ − 1)𝜓
)

)

 
 

 

(𝜓. 𝛧𝜏)𝑇𝐶𝑁 =

(

 
 
√1− LogϜℲ (1 +

(ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

𝜓

(ϑ − 1)𝜓−1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

𝜓

(ϑ − 1)𝜓−1
) ,√LogϜℲ(1 +

(ϜℲ𝜉𝛧∅(𝜏)
2

− 1)
𝜓

(ϑ − 1)𝜓−1
)

)

 
 

 

then 

𝐶𝑃𝐹𝐶𝐹𝐴(𝜓. 𝛧1, 𝜓. 𝛧2, … , 𝜓. 𝛧Å)

=

(

 
 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ(1 +

∏ (ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

𝜓(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1)))Å
𝜏=1

(ϑ − 1)𝜓−1
) ,

√LogϜℲ(1 +
∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1)

𝜓(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1)))Å
𝜏=1

(ϑ − 1)𝜓−1
) ,

√1 − LogϜℲ

(

 1 +
∏ (ϜℲ1−𝜉𝛧∅(𝜏)

2

− 1)
𝜓(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1)))Å

𝜏=1

(ϑ − 1)𝜓−1

)

 

)
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𝜓. 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å) = 𝜓.

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ(1 +

∏ (ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

𝜓(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1)))Å
𝜏=1

(ϑ − 1)𝜓−1
) ,

√LogϜℲ(1 +
∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1)

𝜓(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1)))Å
𝜏=1

(ϑ − 1)𝜓−1
) ,

√1 − LogϜℲ

(

 1 +
∏ (ϜℲ1−𝜉𝛧∅(𝜏)

2

− 1)
𝜓(∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1)))Å

𝜏=1

(ϑ − 1)𝜓−1

)

 

)

 
 
 
 
 
 
 
 
 
 
 

 

= 𝐶𝑃𝐹𝐶𝐹𝐴(𝜓. 𝛧1, 𝜓. 𝛧2, … , 𝜓. 𝛧Å) 

Similarly, we will prove it for FTCN. 

 

Appendix D: Proof: Let 

(𝛧𝜏⨁ℱ𝛧)𝑇𝑁 =

(

 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧𝜏
2
− 1)(ϜℲ1−𝜇𝛧

2
− 1)

ϜℲ − 1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧𝜏
2
− 1)(ϜℲ𝜂𝛧

2
− 1)

ϜℲ − 1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧𝜏

2
− 1)(ϜℲ1−𝜉𝛧

2
− 1)

ϜℲ − 1
)

)

 
 
 

 

(𝛧𝜏⨁ℱ𝛧)𝑇𝐶𝑁 =

(

 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧𝜏
2
− 1)(ϜℲ1−𝜇𝛧

2
− 1)

ϜℲ − 1
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧𝜏
2
− 1)(ϜℲ𝜂𝛧

2
− 1)

ϜℲ − 1
) ,

√LogϜℲ (1 +
(ϜℲ𝜉𝛧𝜏

2
− 1)(ϜℲ𝜉𝛧

2
− 1)

ϜℲ − 1
)

)

 
 
 

 

Thus 
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𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1⨁ℱ𝛧,… , 𝛧Å⨁ℱ𝛧) =

(

 
 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)∏ (ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

ϑ − 1
) ,

√LogϜℲ (1 +
(ϜℲ𝜂𝛧

2
− 1)∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

ϑ − 1
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧

2
− 1)∏ (ϜℲ1−𝜉𝛧∅(𝜏)

2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å
𝜏=1

ϑ − 1
)

)

 
 
 
 
 
 
 
 
 
 
 

 

and 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧1, 𝛧2, … , 𝛧Å)⨁ℱ𝛧 =

(

 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

⨁ℱ𝛧〈𝜇𝛧, 𝜂𝛧 , 𝜉𝛧〉 

=

(

 
 
 
 
 
 
 
 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧
2
− 1)∏ (ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

ϑ − 1
) ,

√LogϜℲ(1 +
(ϜℲ𝜂𝛧

2
− 1)∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

ϑ − 1
) ,

√1 − LogϜℲ(1 +
(ϜℲ1−𝜉𝛧

2
− 1)∏ (ϜℲ1−𝜉𝛧∅(𝜏)

2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å

𝜏=1

ϑ − 1
)

)

 
 
 
 
 
 
 
 
 
 
 

 

= CPFCFA(Ζ1⨁ℱΖ,… , ΖÅ⨁ℱΖ) 

Similarly, we will evaluate it for FTCN. 

Appendix E: Proof: Let 

(𝛧₢𝜏⨁ℱ𝛧𝜂𝜏)𝑇𝑁
=

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧₢𝜏
2
− 1)(ϜℲ1−𝜇𝛧𝜂𝜏

2
− 1)

(ϑ − 1)
) ,√LogϜℲ (1 +

(ϜℲ𝜂𝛧₢𝜏
2
− 1)(ϜℲ𝜂𝛧𝜂𝜏

2
− 1)

(ϑ − 1)
) ,

√1 − LogϜℲ (1 +
(ϜℲ1−𝜉𝛧₢𝜏

2
− 1)(ϜℲ1−𝜉𝛧𝜂𝜏

2
− 1)

(ϑ − 1)
)

)
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(𝛧₢𝜏⨁ℱ𝛧𝜂𝜏)𝑇𝐶𝑁
=

(

 
 
 
 √1 − LogϜℲ (1 +

(ϜℲ1−𝜇𝛧₢𝜏
2
− 1)(ϜℲ1−𝜇𝛧𝜂𝜏

2
− 1)

(ϑ − 1)
) , √LogϜℲ (1 +

(ϜℲ𝜂𝛧₢𝜏
2
− 1)(ϜℲ𝜂𝛧𝜂𝜏

2
− 1)

(ϑ − 1)
) ,

√LogϜℲ (1 +
(ϜℲ𝜉𝛧₢𝜏

2
− 1) (ϜℲ𝜉𝛧𝜂𝜏

2
− 1)

(ϑ − 1)
)

)

 
 
 
 

 

𝐶𝑃𝐹𝐶𝐹𝐴 (𝛧₢1⨁ℱ𝛧𝜂1, … , 𝛧₢Å⨁ℱ𝛧𝜂Å)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
√1 − LogϜℲ(1 +∏(

(ϜℲ
1−𝜇𝛧₢(∅𝜏)

2

− 1) (ϜℲ
1−𝜇𝛧𝜂(∅𝜏)

2

− 1)

(ϑ − 1)
)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å

𝜏=1

) ,

√LogϜℲ(1 +∏(
(ϜℲ

𝜂𝛧₢(∅𝜏)
2

− 1) (ϜℲ
𝜂𝛧𝜂(∅𝜏)

2

− 1)

(ϑ − 1)
)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å

𝜏=1

) ,

√1 − LogϜℲ(1 +∏(
(ϜℲ

1−𝜉𝛧₢(∅𝜏)
2

− 1)(ϜℲ
1−𝜉𝛧𝜂(∅𝜏)

2

− 1)

(ϑ − 1)
)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Since 

𝐶𝑃𝐹𝐶𝐹𝐴(𝛧₢1 , … , 𝛧₢Å)𝑇𝑁
=

(

 
 
 
 
 
 
 
 
 
 √1− LogϜℲ(1 +∏(ϜℲ

1−𝜇𝛧₢(∅𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ
𝜂𝛧₢(∅𝜏)

2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ
1−𝜉𝛧₢(∅𝜏)

2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

𝐶𝑃𝐹𝐶𝐹𝐴 (𝛧𝜂1, … , 𝛧𝜂Å)𝑇𝑁
=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  

1 − LogϜℲ

(

 
 
1 +

∏ ((ϜℲ
1−𝜇𝛧₢(∅𝜏)

2

− 1) (ϜℲ
1−𝜇𝛧𝜂(∅𝜏)

2

− 1))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å
𝜏=1

(ϑ − 1)

)

 
 
,

√
  
  
  
  
  

LogϜℲ

(

 
 
1 +

∏ ((ϜℲ
𝜂𝛧₢(∅𝜏)

2

− 1) (ϜℲ
𝜂𝛧𝜂(∅𝜏)

2

− 1))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å
𝜏=1

(ϑ − 1)

)

 
 
,

√
  
  
  
  
  

1 − LogϜℲ

(

  
 
1 +

∏ ((ϜℲ
1−𝜉𝛧₢(∅𝜏)

2

− 1)(ϜℲ
1−𝜉𝛧𝜂(∅𝜏)

2

− 1))

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å
𝜏=1

(ϑ − 1)

)

  
 

)
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= 𝐶𝑃𝐹𝐶𝐹𝐴(𝛧₢1 , … , 𝛧₢Å)𝑇𝑁
⨁ℱ𝐶𝑃𝐹𝐶𝐹𝐴(𝛧𝜂1 , … , 𝛧𝜂Å)𝑇𝑁

 

Similarly, we will evaluate the remaining part. 

Appendix F: Proof: Using the proposed information, we aim to evaluate part (1) and part (4), 

where the proof of part (2) and part (3) is similar to the proof of part (1) and part (4). 

1) Let 

Lim
ϑ→+∞

𝐶𝑃𝐹𝐶𝐹𝐴 = Lim
ϑ→+∞

(

 
 
 
 
 
 
 
 
 
 √1− LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) ,

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

)

 
 
 
 
 
 
 
 
 
 

 

Thus, we only derive that 

Lim
ϑ→1

√1− LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

= √1−∏(1 − 𝜇𝛧∅(𝜏)
2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

 

Lim
ϑ→1

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) =∏(𝜂𝛧∅(𝜏))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

 

Lim
ϑ→1

√1− LogϜℲ(1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

= √1−∏(1 − 𝜉𝛧∅(𝜏)
2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

 

First, we evaluate that  

Lim
ϑ→1

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) =∏(𝜂𝛧∅(𝜏))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1
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where ϑ → 1 , then (ϑ𝜂Ζσ(𝜏)
2
− 1)

∆∇(𝜕σ(𝜏))−∆∇(𝜕σ(𝜏−1))
→ 0 . Further, by using the technique of 

equivalent infinitesimal replacement ln(1 + 𝜊) ∼ 𝜊(𝜊 ≻ 0), and Logarithmic transform, such as 

√LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1 − 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

=
√ln (1 +

∏ (ϜℲ𝜂𝛧∅(𝜏)
2
− 1 − 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1 )

ln ϜℲ
 

~√
∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1 − 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

ln ϜℲ
 

Using the following technique, we have 

ϜℲ𝜂𝛧∅(𝜏)
2
− 1 = 1 + 𝜂𝛧∅(𝜏)

2 ln ϜℲ +
𝜂𝛧∅(𝜏)

2

2
(ln ϜℲ)2 +⋯ = 1 + 𝜂𝛧∅(𝜏)

2 ln ϜℲ + 𝑂(ln ϜℲ) 

⇒ ϜℲ𝜂𝛧∅(𝜏)
2
− 1 = 𝜂𝛧∅(𝜏)

2 ln ϜℲ + 𝑂(ln ϜℲ) 

Then, ϜℲ𝜂𝛧∅(𝜏)
2
− 1⟶ 𝜂𝛧∅(𝜏)

2 ln ϜℲ, thus 

Lim
ϑ→1

√LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

= Lim
ϑ→1

√ln (1 +
∏ (ϜℲ𝜂𝛧∅(𝜏)

2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1 )

ln ϜℲ
 

= Lim
ϑ→1

√∏ (ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

ln ϜℲ
= Lim

ϑ→1

√∏ (𝜂𝛧∅(𝜏)
2 ln ϜℲ)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

ln ϜℲ
 

= Lim
ϑ→1

√∏ (𝜂𝛧∅(𝜏)
2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å

𝜏=1 (ln ϜℲ)

ln ϜℲ
=∏(𝜂𝛧∅(𝜏)

2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

 

thus 

Lim
ϑ→1

√1− LogϜℲ(1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

= √1−∏(1 − 𝜇𝛧∅(𝜏)
2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

 

thus,  
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Lim
ϑ→1

𝐶𝑃𝐹𝐶𝐹𝐴 =

(

 
 
 
 
 √1 −∏(1 − 𝜇𝛧∅(𝜏)

2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

,∏(𝜂𝛧∅(𝜏))
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

,

√1 −∏(1 − 𝜉𝛧∅(𝜏)
2)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1 )

 
 
 
 
 

 

Further, we derive part (4), such as 

Lim
ϑ→+∞

√1− LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

= √1−∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))𝜇𝛧∅(𝜏)
2

Å

𝜏=1

 

Lim
ϑ→+∞

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

= √∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜂𝛧∅(𝜏)
2 

Lim
ϑ→+∞

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜉𝛧∅(𝜏)
2

− 1)
∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))

Å

𝜏=1

)

= √1−∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1))) 𝜉𝛧∅(𝜏)
2

Å

𝜏=1

 

thus  

Lim
ϑ→+∞

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

= √∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜂𝛧∅(𝜏)
2 

Since  

LogϜℲ (1 + ∏ (ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1 ) is continuous, thus  
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Lim
ϑ→+∞

√LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

= √ Lim
ϑ→+∞

LogϜℲ(1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) 

Thus, by using L'Hospital's rule, we have 

√ Lim
ϑ→+∞

LogϜℲ (1 +∏(ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

)

=
√
Lim
ϑ→+∞

ln (1 + ∏ (ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1 )

ln ϜℲ
 

= √ Lim
ϑ→+∞

∏ (ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1

(1 + ∏ (ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1 )∑ (∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

𝜂𝛧∅(𝜏)
2ϜℲ𝜂𝛧∅(𝜏)

2
− 1

ϜℲ𝜂𝛧∅(𝜏)
2
− 1

Å
𝜏=1

1

ϜℲ
⁄  

= √ Lim
ϑ→+∞

1

(1 + 1 ∏ (ϜℲ𝜂𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))Å
𝜏=1⁄ )

∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))
𝜂𝛧∅(𝜏)

2

1 − 1 ϜℲ𝜂𝛧∅(𝜏)
2

⁄

Å

𝜏=1

 

= √∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1))) 𝜂𝛧∅(𝜏)
2

Å

𝜏=1

 

thus 

Lim
ϑ→+∞

√1 − LogϜℲ (1 +∏(ϜℲ1−𝜇𝛧∅(𝜏)
2
− 1)

∆𝛻(𝜕∅(𝜏))−∆𝛻(𝜕∅(𝜏−1))
Å

𝜏=1

) = √1 −∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1))) 𝜇𝛧∅(𝜏)
2

Å

𝜏=1

 

Thus 

Lim
ϑ→+∞

𝐶𝑃𝐹𝐶𝐹𝐴

=

(

 
 
 
 
 √1 −∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜇𝛧∅(𝜏)
2, √∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜂𝛧∅(𝜏)
2,

√1 −∑(∆𝛻(𝜕∅(𝜏)) − ∆𝛻(𝜕∅(𝜏−1)))

Å

𝜏=1

𝜉𝛧∅(𝜏)
2

)

 
 
 
 
 

. 

Hence, the proposed theory holds. 
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