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Abstract: Fuzzy set theory has significant and dominant applications in Taiwan’s insurance industry, especially in
fields involving decision-making, uncertainty, and risk assessment. Providing the complexity and problems in
assessing factors, for instance, natural disaster risks, customer creditworthiness, or health conditions, traditional binary
logic often falls short. Taiwanese insurers have adopted fuzzy logic systems to enhance fraud detection, premium
pricing, and privilege evaluations by catching the indistinctness characteristic in human ruling and imperfect data. The
Taiwan insurance industry is a dynamic and spirited module of the commercial sector, contributing meaningfully to
risk management and economic stability. For this, we study to propose an assessment of the proficiency of insurance
enterprises using Network Data Envelopment Analysis. Toward this end, the frank operational laws for circular
Pythagorean fuzzy (CPF) uncertainty are applied. Moreover, the CPF Choquet Frank averaging (CPFCFA) operator
and CPF Choquet Frank geometric (CPFCFG) operator with three dominant properties for each operator have been
studied. The study deliberates the multi-attributive border approximation area comparison (MABAC) model and
verifies it with the help of numerical examples. This study enhances the industry’s efficiency to offer adapted insurance
products and handle risks precisely, aligning with Taiwan’s push toward intelligent financial services and digital
transformation. In the following, we establish the decision-making performance for assessing the proficiency of
insurance enterprises using the network data envelopment analysis (NDEA) technique. Finally, we examine the
ranking values of offered representations to compare them with the ranking values of prevailing models to show the

capability and efficacy of the originated approaches.
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1. Introduction

Taiwan’s insurance industry, which represents a global market or global platform for
businessmen, is experiencing a thoughtful digital transformation theme to enhance capability,
regulation responsiveness, customer service, and product innovation. This technique contains the
adoption of technologies, for instance, blockchain for secure information sharing, mobile
applications for customer engagement, big data analytics for risk modeling, and artificial
intelligence-driven underwriting, and cloud computing for operations scalability. NDEA gives a
meaningful and well-structured technique to design the multi-stage efficiency of insurance firms
by selecting their internal structure. NDEA is a modified and general form of traditional Data
Envelopment Analysis (DEA) [1] that integrates a network structure of shape to address the
validity and proficiency of decision-making units with interdependent procedures [2]. It is very
famous, especially in sectors where operations involve various stages, for instance, healthcare,
insurance, and manufacturing [3]. The decision-making model is also very famous for
discovering your required decision or results from the collection of information [4, 5]. Further,
we know that vagueness and convolution are part of life, and because of this reason, various
decision-makers have failed to cope with it. For instance, before 1965, each expert has just two
types of information like zero and one, nether more; for example, when we talk about the
intelligent peoples, so we have different types of range or scale, if the people have done their
master, we will include in intelligent (assigned 1), but the people have not educated, then we will
include in the not intelligent (assigned 0), but what about those peoples, they have just failed
completed their Bachler or they will be completing their master after studying their one or two
more course, to cope with this types of problems, the classical information has been failed. For
this, Zadeh [6] designed the fuzzy sets (FSs) model. FSs are a mathematical model that modifies
crisp set theory to cope with the concept of partial membership. In the occurrence of traditional
sets, an element either contains or does not, but in the case of FSs, we have a partial function or
partial degree with zero or one. Every information in FSs has a truth function ranging from zero
to one. FS theory is used in numerous fields, including control systems, image processing, neural
language processing, and decision-making procedures in uncertain environments.

Intuitionistic fuzzy sets (IFSs) are a reform of FSs that incorporate the model of uncertainty in a
massive, nuanced way. Developed by Atanassov [7, 8] in the 1980s, IFSs describe a third
dimension to the truth function, falsity function, and refusal function. Each element in IFSs is
denoted and defined in the form, for instance, the representation of the positive or truth function

is pz: X — [0,1] and the representation of the negative or falsity functionis 7;: X —= [0,1] with 0 <
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Uz + 1z < 1. Further, the refusal function is defined and defined by: m; = 1 — (uz + nz), where
Uz, mz € [0,1]. IFSs were particularly useful in various areas, such as decision-making models
where data is incomplete or uncertain. Further, Pythagorean fuzzy sets (PFSs) [9] are a reformed
version of FSs and IFSs that incorporate the model of uncertainty in a massive, nuanced way. The
structure of PFSs and IFSs is the same; they also describe a third dimension to the truth function,
falsity function, and refusal function, and each element in PFSs is denoted and defined in the
form, for instance, the representation of the positive or truth function is pz: X = [0,1] and the

representation of the negative or falsity function is n;: X — [0,1] with 0 < (uz)? + (7)* < 1.

Further, the refusal function is defined and defined by: m; = (1 — ((uz)* + (nz)z))%, where
pz,nz € [0,1]. PFSs are particularly useful in various areas, such as decision-making models
where data is incomplete or uncertain, data mining, machine learning, and game theory.

To broaden the notion of IFSs, Atanassov [10] expanded the notion and originated the circular
IFSs (CIFSs) in 2020. A CIFS represents a circle with a radius r that centers the truth and falsity
function, where the representation of the truth function is uz: X = [0,1] and the representation of
the negative or falsity function is nz: X - [0,1] with 0 < u; +7n; < 1. Further, the refusal
function is defined and defined by: m; =1 — (uz +nz), where uz,n; € [0,1] with radius
functions such as {;: X — [0,1]. Additionally, in 2022, Bozyigit et al. [11] identified the perfect
technique of circular PFSs (CPFSs), because of ambiguity and complications that are part of
genuine life problems, because the structure of CPFSs and CIFSs is the same, they also describe a
fourth dimension to the truth function, falsity function, refusal function, and radius function, and
each element in CPFSs is denoted and defined in the form, for instance, the representation of the
positive or truth function is pz: X — [0,1] and the representation of the negative or falsity function

isnz: X - [0,1] with 0 < (uz)? + (n7)? < 1. Further, the refusal function is defined and defined

by:mz = (1 — ((ug)? + (nz)z))%, where uz, 1 € [0, 1] with radius functions such as é;: X — [0,1].
CPFSs are particularly useful in various areas, such as decision-making models where data is
incomplete or uncertain, data mining, machine learning, and game theory.

In 2015, Pamucar and Cirovic [12] diagnosed the MABAC technique for classical information as
a perfect model for coping with vague and complex data. Furthermore, Klement et al. [13] offered
a new version of the book based on triangular norms for the unit interval. These norms can help
us in the construction of the aggregation, but they contain many limitations. For this, Frank [14,
15] initiated new norms, called Frank t-norm (FITN) and Frank t-conorm (FTCN) for the unit
interval, where the simple norms are a part of Frank norms. In 1953, Choquet [16] familiarized

the model of the Choquet integral and fuzzy measures for unit intervals. Moreover, Xu [17]
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diagnosed the Choquet integral for weighted IFSs. Tan and Chen [18] derived the intuitionistic
fuzzy Choquet integral for decision support systems. Tan and Chen [19] exposed the Choquet
integral for induced IFSs. Xu and Yager [20] designed the geometric operators for IFSs. Yang et
al. [21] derived the Frank operators for IFSs. Zhang et al. [22] presented the Frank power operators
for IFSs. Xing et al. [23] invented the Choquet Frank operators for PFSs. Ali and Yang [24]
described the Hamacher operators for CPFSs. EDAS model and improved Dombi operators for
CPFSs were invented by Garg et al. [25]. Ali et al. [26] evaluated the Aczel-Alsina power operators
for circular Pythagorean fuzzy linguistic sets. Jiang et al. [27] designed the Bonferroni mean
operators and EDAS model for CPFSs. Verma [28] presented the MABAC model based on order-
alpha divergence measures for IFSs. Jia et al. [29] designed the extended MABAC model for
intuitionistic fuzzy rough sets. Zhao et al. [30] explored the intuitionistic fuzzy MABAC
information and its applications. Petchimuthu et al. [31] discussed the modified power operators
for Yager norms based on generalized FSs. Zhang and Gao [32] described the TODIM technique
with interpretable decision-making fuzzy models. Shahin et al. [33] exposed the renewable
energy source analysis based on the fuzzy MARCOS technique. Jameel et al. [34] invented the
sustainable development model for renewable energy and energy prioritized techniques. Sarfarz
and Gul [35] designed the Hamacher operators for the evaluation of the medical college projects.
Saglain [36] presented the bibliometric analysis with fuzzy decision-making models. Bhowmik et
al. [37] discussed the modified fuzzy TOPDIM approach with Schweizer-Sklar power green
energy source. Kang et al. [38] developed the hydraulic converters in tidal stream turbines with
comprehensive distance-based ranking techniques. Mishra and Rani [39] initiated the blockchain
network with prioritized decision-making models for fuzzy information. Sandra et al. [40]
derived the smart decision technique and sustainable management model for a modified fuzzy
model. Li and Rong [41] designed the emergency logistics outsourcing suppliers with hybrid
modified fuzzy models. Li et al. [42] invented the divergence measures and post-flood assessment
for complex modified fuzzy information. Konur Bilgen et al. [43] studied the SWARA and Q-
ROF-EDAS technique for the shipyard industry. Finally, we concluded that the technique of
CPFSs is very reliable, but to date, no one can derive any kind of information based on it.
Therefore, we object to estimating the Choquet-frank operators and the MABAC model based on
CPFSs will be proposed. The major influence of this article is listed below:

1) To establish the operational laws based on Frank norms for CPF uncertainty with various

dominant results.
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2) To study the CPFCFA operator and the CPFCFG operator with three dominant properties
for each operator.

3) To assume the proposed models, we goal to discuss the MABAC model and also verify it
with the help of numerical examples.

4) To establish the decision-making performance for assessing the proficiency of insurance
enterprises using the NDEA approach.

5) To procedure the ranking values of proposed models for comparing them with the
ranking values of existing models to show the capability and efficacy of the originated
approaches.

This article is arranged in the following ways: in Section 2, we discussed the information on
CPFSs, secondly, we briefly discussed the idea of Frank norms and their related cases, and last,
we reviewed the model of Choquet integral. In Section 3, we present the operational laws based
on Frank norms for CPF uncertainty with various dominant results. In Section 4, we studied the
CPFCFA operator and the CPFCFG operator with three dominant properties for each operator.
In Section 5, to assume the proposed models, we goal to discuss the MABAC model and also
verify it with the help of numerical examples. In Section 6, we established the decision-making
performance for assessing the proficiency of insurance enterprises using the NDEA approach. In
Section 7, we evaluated the ranking values of proposed models by comparing them with the
ranking values of existing models to show the capability and efficacy of the proposed approaches.

Some final data are discussed in Section 8.

2. Preliminaries

This section is divided into three major sub-sections. First, we discussed the information on
CPFSs; secondly, we briefly discussed the idea of Frank norms and their related cases, and last,
we reviewed the model of Choquet integral.

2.1.CPFSs: Circular Pythagorean Fuzzy Sets [11]

In this subsection, we reviewed the old model of CPFSs and their fundamental laws.

Definition 1: Consider X fo be a fixed ordinary set. The model of CPFS Z based on X is illustrated
and defined in the following form such as

Z = {(0,kz,nz,§z)|0 € X}
The representation of the positive function and negative function with radius is as follows such

as fiz,nz: X = [0,1] and &;: X - [0,1], such as uz,nz,¢&; € [0,1]. The prominent technique of

CPFS is as follows such as 0 < (uz)? + (nz )? < 1, where the mathematical form of the neutral
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function is defined as: m; = /1 — (uz)? — (7 )2. For simplicity, the triplet (uz, 1, é;) represents
the CPF numbers (CPFNSs), such as Z = (uz,nz,¢z)-

Definition 2: Let Z = (uz,1z,¢z) be any CPFN. Then

Vu)? = 1))+ (€)% 1z 21z

_\/((772 2= (p)?) *(§z)* pz<ng

A(Z) = ((u)? + (12)D) * (§2)?
Called the score value and accuracy value, such as $(Z) € [-1,1], A(Z) € [0,1]. Further, we

$2) ={

consider any CPFNs, Z; = (uz1,Mz1,¢21) and Zy = (Uz2,Mz72,$22), thus when $(Z;) > $(Z;), thus
Z; > Zy; when $S(Z,) = S(Z,), thus when A(Z,) > #(Z,), then Z; > Z,; and when A(Z;) = #(Z,),
then Z; = Z;.

Definition 3: Consider any three CPFNs Z = (uz,nz,¢z), Z1 = Uz1,Mz1,€z1) , and Z, =
(Uz2,M72,§72) with parameter i > 1, thus

(Z1®rZy) 1y = <\/.u?12 + Uz2? — Hz1% * Uz Mz * 7722,\/5212 + &gt — &g fzzz)

(Z1®rZ2)ren = (\/MZlZ + Uz2? = Uz1?% * Uz2% Nz * Nz2, €71 * fzz)

(Z1®5Z3) 1y = (HZ1 * Mzz;\/nmz +N0z2%2 = Nz1% *Nz2% 871 * fzz)

(Z1®%Z3)ren = <HZ1 * Mzz;\/nmz +1Mz22 —Mz1? * 77222,\/5212 +E2 =&y fzzz)

WZ)ry = (\/1 -(1- Mzz)w'npw'\/l - (1 - Szzz)ll})

WZ)ren = (Jl -(1- uzz)w.nz¢.€z¢>
(Zw)TN = (“Zw'\/l - (1 - nzz)w’lel})

(2%),0 = (Mzw,Jl -(1- nZZ)w,\/1 -(1- ff)”’)

2.2.Frank t-norm and t-conorm [14, 15]

In this subsection, we briefly reviewed the model of FTN and FTCN based on any two o, ¥ €
[0,1] with parameters Fd € (1, +o0), such as
(Fd° — 1)(Fd¥ — 1)
Fi-1
(Fd*7° —1)(FA*"% - 1)
Fd —10

Tg(o,¥) = Loggy (1 + ),Vo, ¥ e[0,1],Fd € (1,4+)

S¢(0,¥) =1 — Loggy (1 + >,Vo,‘lf € [0,1] ,Fd € (1, +o0)

With some necessary properties, for both norms, such as where T¢(o, ¥) used a t-conorm, if they

satisfy the following properties, such as: (i) T¢(1,1) = 1, Tg(0,0) = T¢(0,0 ) = o0; (ii) when 0; < 0,
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and ¥; < ¥,, thus Tg(04,0,) < Tg(Wy,W,); (iii) Tg(o4,0,) = Tg(03,01); and (iv) TG(ol,T@(oz, 03)) =
T¢(T¢(04,0,),03) . Similarly, where Sg(o,¥) used is a t-norm, if they satisfy the following
properties, such as: (i) Sg(0,0) = 0, S¢(0, 1) = o; (ii) when 0, < 0, and ¥; < ¥,, thus S¢(04,0;) <
Se(W1,¥2); (iii) Sg(01,0,) = $S¢(02,04); and (iv) SG(01:$G(02’03)) = $¢(S¢(01,07),03). Further, we
stated some special parts of the Frank norms based on different values of parameter, such as:
when Fd — 1, thus the basic idea of Frank norms will be reduced into algebraic norms, such as
Te(0,¥) » 0¥ and S¢(0,¥) = 0 + ¥ — o¥, when Fd — oo, thus the basic idea of Frank norms
will be reduced into Lukasiewicz norms, such as Tg(o, %) » max(0,0 + ¥ — 1) and S€ (x,y) —
min(o + ¥, 1).
2.3.Choquet Integral Operator [16, 17]
In this subsection, we revised the technique of fuzzy measure, the Choquet integral operator, and
their related ideas.
Definition 4: The model of fuzzy measure based on fixed set X is a collection of mappings, such
as AV : I'(0) — [0, 1], with two important properties, such as: (i) AV(¢) = 0, AV(X) =1, called
boundary condition, (ii) d, B € X, and d € B, then AV(9) < AV(B), called monotonicity. Further,
we discussed the model of p — fuzzy measure, such as:
AV(8 U B) = AV(d) + AV(B) + pAV(3)AV(B)
Further, when p = 0, thus we have
AV(d UB) = AV(9) + AV(B)
Additionally, when all the values in X are independent, thus
AV(d) = z AV (0,)
0,€0

When all values in X are finite, thus

A
0 1

A E[H(l +AV(0)) — 1| p#0
AV(d) = AV U o, | =P 7=t

=1 Z AV(0,) p=0

Moreover, o, N o; = ¢, for 7,7 = 1,2 ..A, and 7 # 4, when p > 0, thus AV(d U B) > AV(d) +
AV (B), when —1 < p < 0, thus AV (6 U B) < AV(9) + AV(B).

Definition 5: A real-valued mapping g based on a fixed set X with fuzzy measure AV, thus

A
fg,dAV = Z[AV(B(Z)(T)) - AV(a(Z)(T—l))] Zo(1)
=1
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Called the discrete Choquet integral of g concerning AV, where the representation of the

permutation is as follows, such as @(7) of (1,2 ---n) with gg1) = gg(2) = - 2 gy(4), and dg(o) =
¢, o) = {Gotw) - Go(o}

3. Frank Operational Laws for CPFNs

In this section, we develop a novel model of frank operational laws based on the collection of
CPFNs. Further, we also simplify some major properties for the proposed operational laws.
Definition 6: Consider any two CPFNs Z; = (uz1,1z1,$21), and Z, = (uz3,Mz2,€z2). The frank

operational laws are described in the following form such as

(ZleBTZZ)TN
Fal-#z1? — 1) (Fl-#z2? — 1 Fgnz1? — 1)(Fdnz2% — 1
B (Fat=¢a® — 1)(Par—z" - 1)
1_]-‘0ng 1+ Fd—1
(Zl®TZZ)TCN
Fdl—HZ12 -1 Fdl—ﬂzzz -1 ]’—‘;jﬂz12 -1 Fdnzzz -1
jl — Logry <1 + ( F.:[)E T )),\]Logm <1 + ( Fd)E 1 ))’

(F:Ifmz - 1)(Fds‘zz2 - 1)

L 1
Ogrs| 1+ Tl — 1

(Z1®rZ2) TN

Fid#z1? — 1)(Fd#z2® — 1 Fdl-mz:* — 1)(Fdl-"nz2* — 1
\/LOng (1 + ( F.:I)E 1 )>,\/1 — Logpy <1 + ( F.:I)E 1 )>’)

Fiéz’ — 1)(12;[&22 - 1)

L 1
Ogpa| 1+ -1
(Zl®TZZ)TCN
(Fd#z1® — 1)(Fdrz2® — 1) (Fd1=nz:* — 1)(Fdl-nz2* — 1)
L 1 1-1L 1
\/Ong< + Fi—1 ’ Ong< + Fi1—-1 '

Fdl-$z1" — 1)(Fdl—s‘zz2 - 1)
Fd— 1

1-— LOng 1+
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Theorem 1: Consider a CPEN Z = (uz, 1z, {z), then the multiplication operation A Fzis

described in the following form, such as

(Fdl-kz* — 1)A (Fdnz® — 1)A
1- LOgF:[ 1+ W ’ LOgF:[ 1+ W
(A2),, = —
(Fat-¢" — 1)
1- LOng 1+ W
(Fdl-uz* — 1)A (Fdnz* — 1)A
l—LOng 1+W , LOng 1+m f
A2),,, = -
(Fatz" — 1)
Logpd 1+ W
A

Further, the term A represents a positive integer, such as A.Z = Z®Z@® ... ®Z.
The Proof of Theorem 1 is discussed in Appendix A.
Theorem 2: Consider any CPEN Z = (uz, 1z, {z), then the power operation 7"A is described in the

following form, such as

(2N on
L 1+ G 1-L 1+ (G L 1+ (pars” — )"
= [0} _— 1, — LO = B 0 —_—
8Fd (Fd — 1)A1 8Fd (Fd — 1)A1 8Fd (Fd — 1)A1
A 2 A
A B (Fdrz* — 1) (Fd1-1z2* — 1)
(Z")1en = | [Logra| 1+ EE=NE 1—Logp| 1+ Fo )
A

where Z'A =7 ®ZQ ... ®Z. Hence, based on the above information in Theorem 1 and Theorem 2,

1 1 (Fdt-#z* —1)° 1 (Fnz* —1)°
— Logpy + W , |Logry + W ’
(Fdl-é’zz - 1)0
(Fd — 1)o-1 /

we have

(0. Z)ry =

\ 1- LOng 1+
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(Fal-wz* —1)7 (Fdnz* — 1)7
1_L0ng 1+W y LOng 1+W )
(Patz* 1)
(Fd— 1)1

(Farz* —1)° (Fai-nz* —1)°
LOng 1+W ) 1_L0ng 1+W B

(Z’\A)TN — (Fdfzz B 1)0
\ Loggy (1 + W)

(0.2)ren =

Logl:_:[ 1+

toge (14 (F4 —1)° (Fai-nz* —1)°
OLF4 +W , |1 —Logg,s 1+W ,

(Fdl—s‘z2 - 1)”
(Fd — 1)1

(ZAA)TCN -

1-— Logpd 1+

Further, we described some special cases of the above-proposed information, called ¢.Z and
2", such as

1) When Z = (uz,1z,&z) = (1,0,1), thus

1 Logpy (14 22D 1y g E2ZD7
ng( (Fd—1)°-1 > O8F4 ( + (Fd — 1)0_1>,
0.7 = =(1,0,1)
fi - Logyy 1+ EE =)
BFd (Fd — 1)°—1

L 1 (Fd* — 1)~ " ) (Fdt — 1)
Ong( +W> —LOng< +W)

7" = =(1,0,1)
L 1+ (" — 1)
O8R X T RA — 1)o1
That is ¢. (1,0,1) = (1,0,1), and (1,0,1)"* = (1,0,1).
2) WhenZ = (uz,nz,¢z) = (1,0,1), thus
L ) (FA1-0 — 1)~ . ) (F41 — 1)”
08k +W » |LO8F4 +m )

(Fdl_l — 1)0
\ \/1_]-‘0ng<1 +W) /
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(F40 — 1) (F40 — 1)
LOng (1 + W) , |[1— LOng (1 + W) ,
(F40 — 1)
\ \]Long <1 + (FCI — 1)0—1) /

That is ¢. (0,1,0) = (0,1,0), and (0,1,0)"* = (0,1,0).

3) When Fd - 1, thus
(Fal-uz* —1)° (Fanz* — 1)7
1_]-‘0ng 1+W ) LOng 1+W B
kim o7 = kim ———

1_L0gpd 1+W

7' = = (0,1,0)

By using the technique of equivalent infinitesimal replacement In(1 + 0) ~ o(o > 0), Logarithmic

transform, such as

In 1 (Fdnz” —1)”
_ o\ _ | " e
FLal—Ig Loggs| 1+ W - FLdl_r,nl In Fd

= Li (Fanz* —1)°
~HS\ J(Fd= 1)°TInFd

To consider the Taylor expansion and In Fd > 0, we have

2
Fd"2" =1 +n,2InFd + %(ln Fd)?2 + - =1+4+7n;%InFd + O(InFd)

= 972" =1 =n,2In9 + O(In9)
Then

= M2)”

- (Fd— 1)°'InFd (Fd — 1)°-1

y (Fanz® — 1)° y (n?nFd)> | _ [ |0z (nFd)e~t
Fioi\ J(Fd = Do TInFd | ~ Fio1 = R

Using the same procedure, we have

. G — 0\ _ s
Lim 1—LOng 1+W = 1—(1—‘[12 )‘y

Fd-1

Then,

Lim ¢.Z = <\/1 — (A =uz»”, ()7, \/1 -(1- fzz)g)

Fi->1
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Similarly,
Lim 2" = ()" 1= A= 175°, (§2)°)
That is
o. (0,1,0) - <V 1- (1 - MZZ)UJ (YIZ)O'\/l - (1 - EZZ)O)
and

(01,0 — (m (nz)”,\/ 1-(1- fzz)”)ﬂ — 1

Theorem 3: Consider any three CPFNs Z = (uz,17,¢z), Z1 = (Uz1,Mz1,¢z1), and Z, =
(Hz2,Mz2,822), then

1. Z1®5Z, =Z,®5Z;.

2. Z1QrZ, = Z,Q5Z;.

3. 0(Z1®5Zy) = 0Z,®5r0Z;,0 = 0.

4. 04Z®F0,Z = (04 +03)Z, 04,05 = 0.

5. Z°1®zZ% = 7(01%92) 4. 0, > 0.

6. (Z,°®5Z;") = (Z,®5Z1)", 0 2 0.
Proof: Omitted.
The information in Theorem 3 is the same for both t-norm and t-conorm. Further, we derive the

model of Choquet Frank operators based on the above information for CPFNs.

4. Choquet Frank Aggregation Operators for CPFNs

In this section, we justify the model of the CPFCFA operator and the CPFCFG operator based on
the collection of CPFNs. Further, we also discuss some major properties and their related results
to enhance the worth of the proposed theory. Consider the family of CPFNs Z; =
(,uz,nz,fz)(r =12, ...,A) with permutation @(z) of (1,2, ...,A) and Zyq) = Zgq) = = Z¢(A),
where Gy () is the attribute corresponding to Zy(;), 0gr) = @, 9p(r) = {gq,(l), gq,(f)}.

Definition 7: The model of the CPFCFA operator is illustrated and defined in the following form

such as

F(C) f ZdAV = CPFCFA(Zy, Z, ., Z) 1w = @5 (AV(80(r)) — AV (3o(e-1)) ) Zoco)

F(Cy) f ZdAV = CPFCFA(Zy, Z3, ., Z)ren = @5 (A7 (00(r)) — AV (3oe-1)) ) Zoce)

Theorem 4: Prove that the aggregated values of the proposed operators are again a CPFN, such

as
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)

A
AV (0 g(z))—AV(dg (-
1—Logps| 1+ (Fdl—ﬂzo(r)z _ 1) (09())~A7(0p(z-1)) ’
=1
A
AV (0 (7)) —AV (9 (-
CPFCFA(Zy,Z3, o, Zi) TN = Logrs | 1+ H(Fdnmmz _1) (900)-47(0e-) |
=1
5 AV (g )—-AV(d )
1—Logps| 1+ (Fdl‘fzo(r)z _ 1) (o) 9(r—1)
T=1
A
[ AV(3p(r))-AV(dg(r—
1—Logps( 1+ (Fdl—#zo(r)z — 1) (99(0)) 2V (9p(z-1))
=1
A
T AV (3g(r))—AV(dg(r—
CPFCFA(Zy, Z3, - Z) TN = Logra| 1+ | [(Famzoo? — 1) (90(0)-47(%a-n) |
=1
A AV(8g(r))-AV(d )
Loggs| 1+ (Fdfze(ﬂz _ 1) 8(z) 0(z—1)
T=1

The Proof of Theorem 4 is discussed in Appendix B.
Theorem 5: Prove that the following inequality holds for both FTN and FTCN, such as
CPFCFA(Y. FZy, 0. FZy, e, . FZ3) ey = . F CPFCFA(Zy, Z, oo, Z3)
CPFCFA(. FZy, 0. FZy, .., . FZ) ren = Y. F CPFCFA(Z1, Zo, oo, Z3) Ten
The Proof of Theorem 5 is discussed in Appendix C.
Theorem 6: Prove that the following inequality holds such as
CPFCFA(Z,@®#Z, ...,Zy®5Z)ry = CPFCFA(Zy,Zy, ., Z3) rn D52
CPFCFA(Zy\®5Z, ..., Zy®sZ)rcy = CPFCFA(Zy®5Z, ..., Zy®rZ) ren®rZ
The Proof of Theorem 6 is discussed in Appendix D.
Theorem 7: Prove that the following inequality holds such as
CPFCFA(Y. Zy®5Zap, .. Y. Zi®rL)pn = Y. CPFCFA(Zy, Zy, oo, Z3) rn®FZ
CPFCFA(W.Z, @57y, ..., . Z3®5ZL)rcy = W.CPFCFA(Z1,Z3, ..., Z{) 1cnDFL

Theorem 8: Prove that the following inequality holds such as

CPFCFA(Ze, @52y, ) 26,®5Zy,) = CPFCFA(Zg, .1 Ze,)  @®pCPFCFA(Zy,, ... Zy,)

TN

CPFCFA(Z6, @52y, ) 26,®5Zy,) = CPFCFA(Zg,, .. Zs,)  ®rCPFCFA(Z

The Proof of Theorem 8 is discussed in Appendix E.

TCN TC (e 8)ren
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Further, we described the fundamental properties of the proposed theory, called idempotency,
monotonicity, and boundedness.
Theorem 9: When Z,; = Z = (uz, 1y, EZ)(T =1,2, ...,A), thus

CPFCFA(Zy,Zy, 0, Z3)n = Z

CPFCFA(Z1,Z3, ', Z3)ren = Z

Theorem 10: When pz¢ < uz, andnze = nzy V7, thus

CPFCFA(Z,, ...,Z@A)TN < CPFCFA(Zy,, ...,Z,,A)TN

CPFCFA(Zg,, .., Z,) < CPFCFA(Zy,, .., Zy,)

TCN TCN

Theorem 11: When Z* = <mTax('uZT)' me(UZr); mTaX(er)> and 2~ =

<mTin(HZT)’ mTaX(UzT): m_[in(fZT)), thus
7™ < CPFCFA(Z1,Z3, ., Z3)rn < Z*
7™ < CPFCFA(Z1,Z3, .. Z)ren < 2%
Further, we describe some dominant and particular cases of the initiated operators for different
values of parameters.
Theorem 12: Prove that the following information is held for different values of parameters,
such as

1) When 9 - 1, thus

A A
AV(0¢(7))—AV(0gp(r— AV(0gr))—AV (0 g (-
1— 1_[(1 ~ lze0?) (99(r)) A7 (9g( 1))’1_[(7720)@) (99(r)) A7 (9g( 1))’
=1 =1

(%erll CPFCFA)TN -

A
AV(9g(r))—~AV(9g(r-1))
1- H(l —é00°) P
=1

A A
AV(0p(r) )—AV(0g(r— AV(3 (1)) —AV(0g(r—
1— 1_[(1 ~ lz0?) (9p(r)) =47 (9 1))’1_[(7720)@) (90)-47(%0(-1)
(LimcPFCFA) = T=1 T=1
-1

TCN .
\ 1_[(5 Z(Z)(‘L'))AV(GQ)(T))_AV(GQ)(T—D)
T=1

Called the CPF Choquet averaging operator (CPFCA).
2) Whend - 1, AV,= AV(@G(T)) — AV(OG(T_D), then the proposed theory is converted for
the CPF weighted averaging (CPFWA) operator.
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3) Whend - 1, 0y = AV(9(r)) — Av(aa(r ), and AV(d) = Y w,, where w =
(w1, W3, ., Way) T, w; € [0,1], ¥%-; w; = 1, then the proposed theory is converted for the

CPF-ordered weighted averaging (CPFOWA) operator.
4) When 9 — +oo, thus

A A
1- Z (AV(%(T)) - AV(aw(r—l))) Hzo)) Z (AV(aw(r)) - AV(aw(r—l))) Nzom*
(Lim CPFCFA) = ! i
—+00 TN i
1- Z (AV(amm) - AV(am(r—l))) $z0”
=1
A A
- z (AV(%(T)) - AV(aw(r—l))) Hzo? Z (Av(aw)) - AV(ao(r—l))) Nz0()°s
( Lim CPFCFA) = - i
9-+00 TCN i
\ 1- Z (AV(ae(r)) - AV(ao(r—l))) 20 /
=1

Called a traditional arithmetic weighted average operator.
The Proof of Theorem 12 is discussed in Appendix F.
Definition 8: The model of the CPFCFG operator is illustrated and defined in the following form

such as

AV(3g(p))—AV (D g(r—
T(Cl)JZdAV = CPFCFG(Zy,Z2, ., Z3) T =®?Tf‘=1 (ZQ,(T))( (90)-47(90-1)))

A AV(3 (1)) —AV (g (-
T(cl)fmw = CPFCFG(Z1,Z2, ., Z8) TcN =®¢5DTA=1 (ZQ,(T))( (900)~47 (2a(z-»))

Theorem 13: Prove that the aggregated values of the proposed operators are again a CPFN,

such as
A
AV (0g())-AV (0 g (-
Logry 1+1_[(Fdﬂzo(r)2_1) (99(r)) 2V (9p(z-1)) ’
=1
AV (7)) AV (3 (-
CPFCFG(Z1,Z3, ., Z)tn = | |1 — Loggy 1+1_[(F.:11"72®(r)2_1) R CH |
=1
A AV(dgr))-AV(d )
Logry +1_[ Fdézom” _1 o@ 0(r-1)

=1
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A
Loges | 1+ | [(Farzew® —

=1

AV (g )~V (Dgr
1) (99(2))—A7(0p(r-1))

)

A
AV(3g(r))~AV (3p(r—
CPFCFG(leZZi ""ZA)TCN = 1— Long 1+ H(Fdl—nzw(.[)z _ 1) ( o( )) ( o( 1)) ’

=1

A AV () -AV( )
1- LOng 1+ 1_[ (Fdl_fza)(r)z — 1) 2 0(t—1)

=1

Theorem 14: Prove that the following inequality holds for both FTN and FTCN, such as
CPFCFG(. Z1,. 23y 0. Z) oy = Y. CPFCFG(Zy, Z3, ..., Z3) 7w
CPFCFG(.Z1,. Z3y e, 0. Z3) ren = . CPFCFG(Zy, Zy, o, Z3) Ten
Theorem 15: Prove that the following inequality holds, such as
CPFCFG(Z,®5Z, ..., Z3®5Z)rny = CPFCFG(Zy, Z, oo, Z3) in®5Z
CPFCFG(Z1®5Z, ..., Zy®sZ)rcy = CPFCFG(Z,®5Z, ..., Z3®5Z) ren®5Z

Theorem 16: Prove that the following inequality holds, such as
CPFCFG (. Zy@5Zap, .. ). Z3 D L) 1y = Y. CPFCFG(Zy, Z3, o, Z) rn D5 Z
CPFCFG (. Zy @5 T3, ...\ Z3 @ L) ren = . CPFCFG(Z1, 2, ooy Z3) ren ®rZ
Theorem 17: Prove that the following inequality holds, such as

CPFCFG (Zg,®7Z,

1

26, ®@5Ly,) = CPFCFG (Ze,, .1 Ze,)  ®pCPFCFG (Zy,0iZy,)

CPFCFG (Z6,®5Zy,, - 26, ®5Zn,) = CPFCFG (Zg,, . Ze,)  ®pCPFCFG (ZyyyiZy,)

Theorem 18: When Z, = Z = (yz,nz,fz)(r =12, ...,A), thus
CPFCFG(Zy,Z3, ., Z3) 1y = Z
CPFCFG(Zy,Z3, ., Z)rcn = Z

Theorem 19: When pz¢. < Uz, and nze, = 1z, V7, thus

CPFCFG (Ze - Zg,) < CPFCFG (Zy, i Zy,)

CPFCFG (Zg,, .., Z¢,) < CPFCFG(Z

TCN M &) ren

max min

Theorem 20: When Z* = < r Wz, T (UZT),mTaX(EZT)> and 2~ =

i max i
(m;“(uzf), . (nzf),m;“(fza), thus

7~ < CPFCFG(Zy,Z5, .., Z3)rn < Z*
Z_ S CPFCFG(Zl, Zz, 'ZA)TCN S Z+
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Further, we describe some dominant and particular cases of the initiated operators for different
values of parameters.

Theorem 21: Prove that the following information holds for different values of parameters, such
as

1) When 9 - 1, thus

A A 2
A7)~V (g (r— AV(%(:))—AV(%(r-n)
[Joso™ 0. 1[0~ ) |

(%LI?CPFCFG) = | =1 T=1

TN A
\ n(fm( ))AV(%(r))—AV(f’m(r—l))
=1

A A 1
)~ -1 AV (3g(z))-AV (3 (z—1))
H(Hzo(r))w(%( )artisa-y) ’ (1 - 1_[ (1 - (leo(r))z) o pe ) )

(Limcprcre)  =| " =

9-1 TCN A ( ) ( ) %
AV(8p(7))—AV(0g(r—1
(1_1_[(1_(5”‘(1))2) o(x) #(-1) )

=1
Called the CPF Choquet geometric operator (CPFCG).
2) Whend - 1, AV, = AV(GG(T)) - AV(@G(T_D), then the proposed theory is converted to a
CPF-weighted geometric (CPFWG) operator.
3) Whend-1, w,; = AV(@G(T)) - AV(GG(T_D), and AV(9) = erall w;, where w =
(W, Wy, -, way) T, w; € [0,1], ¥%-; w; = 1, then the proposed theory is converted for the
CPF-ordered weighted geometrlc (CPFOWG) operator.
5. MABAC Model Based on Proposed Theory
This section investigates the major information of MABAC data by considering the started
operators for CPFSs. For this, we intend to construct the decision matrix by using m alternatives.
Z1,Z5, .., Zm and n attributes 4, 45, ..., Az with weight vectors w = (w1, 0y, ..., way) T, w; € [0,1],
27_1 w; = 1. Thus, the major information about the steps of the MABAC model is illustrated
below:

Step 1: First, we calculate the matrix of data with the help of CPFNs, such as

Z11 Zig - - Z1in
Zy1 Zyp + - Zop

Zm1 Zmz " Zmn
Further, we have two options: either we normalize or do not normalize the data in the decision

matrix. If we have a cost type, then we normalize the data, such as
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N = {(.uz1,7721.fz1> benefit
(€21, M21, z1) cost

We have no option or requirement to normalize the data.
Step 2: Thus, we measure or interrogate the weighted data matrix in the occurrence of planned

laws, such as

1-L 1+ (aiva’ — )" L 1+ (Fare” —1)"

— Lo —— 1, |Lo -],
8Fd (Fd — 1)A—1 8Frd (Fd — 1)A—1

(A2),, = .
1 — Loggy (1 + M)
\ (Fd — DA-1 /
(Fd1-#z* — 1)A (Fdnz* — 1)A
1 — Logg, (1 + W), Logg, (1 + m),
(Az),., =

(Faéz” — 1)A)

LOng (1 + W

Step 3: Then, we interrogated the aggregated data matrix in the occurrence of planned CPFCFA

operators and CPFCFG operators for both norms, such as

A
AV(0gp(r)) AV (0g(z—
1—Logps| 1+ H(Fdl‘”zo(r)z -1) (90047 (90 (z-1)) ’
T=1
A
AV (3g(r))—AV(dg (-
CPFCFA(Z1,Z3 -, Zi)Tn = Logrs 1+H(de(ﬂz 1) (Goc0)-47(Pote-) |
=1
i AV (3g))—AV(d )
1—Logpy| 1+ (Fdl-fzmr)z _ 1) 9(@) 9(z-1)
=1
A
| AV (0y(p))—AV (8 (1
1—Logrs| 1+ (Fdl‘ﬂzw(r)2 -1) (90) =47 (3p(x-1)) ’
=1
A
AV(3g(z))—AV(9g(r-1))

Loggy '(Fdﬂzo(f)z _ 1)

) §
=1

CPFCFA(Zy,Zy, ...,Z ) TeN =

)AV(ao(r))—AV(ao(r—l))

Loggy (Fafroo” — 1

<1+
(H,A

T=1
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A
AV(9g(z))~AV (dg(r—
Loges | 1+ | [(Fatzo@® — 1) (90)~A7(9p¢c-1)) ’
=1
A
AV (0g () —AV (g (r—
CPFCFG(Zy,Z5, ., Z)7n = | |1—Logps| 1+ | [(Fat-100% — 1) (o) 47 oce-v) |
=1
i AV(9g))~AV(3g(e—1))
LOng 1+ r (Fdfz@(f)z _ 1) 8(t) B(r—1)

=1

[ AV(8g(r)) AV (0g(r—
Logps| 1+ r (Fdtzom® — 1) (900)~A7(9p(c-1)) ’
=1
A
1 AV (D¢ (7)) —AV(Dg(r—
CPFCFG(Zy,Zo, s Z)1en = | |1 — Logea| 1+ | |(Fat-200° — 1) (90(0)~47(90(z-1)) ’
T=1
i AV(8g(r))—-AV(d )
1—Logps( 1+ (Fdl‘fzwmz - 1) o CICEY
7=1

Step 4: Estimate the distance data measures to use the data in the aggregated matrix and weighted
data matrix, such as

D(Z;,2;), if Z; > Z;

DM,; = 0, ifZ; =2

—-D(2;,Z), if Z; < Z;

Where the function of the distance measure is defined below:
[
D(Z;,z;) = §(|Mzt — tizj| + |nzi = nzj| + &2 = &25])

Step 5: Demonstrate the function of appraisal value for distance techniques, such as

A
S = %; D(Z:,2;)

Step 6: Estimate the model of ranking data for picking the best solution from the collection of
data. To exploit the proposed model in the circumstance of various genuine-life problems, we
assess the problems of the network data envelopment analysis approach: a case study on the

Taiwan insurance industry for the proposed theory.
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6. Network DEA: A Case Study on the Taiwan Insurance Industry
The NDEA model is a modified version of the traditional technique of Data Envelopment
Analysis (DEA) that analyzes financial records for the internal body and interrelated procedures
of decision-making units (DMU). The model of NDEA is used to find the flow among multiple
stages or components within a DMU, making it perfectly useful in companies. NDEA is divided
into many portions for how it techniques and derives the internal body or shape and procedure
of DMU. This application model talks about the investigation of the selection of the primary kind
of NDEA for use in Taiwan. For this, we deliberate on the ensuing five alternatives, such as

1) Dynamic NDEA.

2) Directional NDEA.

3) Network SBM (Slack-Based Model).

4) Stochastic NDEA.

5) Static NDEA.
Additionally, for each alternative, we have the following attributes such as

i) Growth Analysis.

ii) Social Impact.
iii) Political Impact.
iv) Environmental Impact.

V) Banking and Finance.
Thus, we will deliberate on the best one among the above five alternatives. For this, we have also
considered different values of parameters, such as Fd = 2, p = —0.7, A =(0.3,0.2,0.2,0.2,0.1) for
the weighted decision matrix and the value of Choquet is described below, such as AV(Z;) =
0.1,AV(Z,) = 0.15,AV(Z3) = 0.2,AV(Z,) = 0.25,AV(Z5) = 0.3. Thus, the major information about
the steps of the MABAC model is illustrated below:
Step 1: First, we calculate the matrix of data with the help of CPFNs, see Table 1.

Table 1. CPF information decision matrix.

z{ z3 z3 z3 z¢
7, (0.9,0.3,0.1) | (0.91,0.31,0.11) | (0.92,0.32,0.12) | (0.93,0.33,0.13) | (0.94,0.34,0.14)
Z, (0.8,0.4,0.4) | (0.81,0.41,0.41) | (0.82,0.42,0.42) | (0.83,0.43,0.43) | (0.84,0.44,0.44)
Zs (0.6,0.5,0.2) | (0.61,0.51,0.21) | (0.62,0.52,0.22) | (0.63,0.53,0.23) | (0.64,0.54,0.24)
Z, (0.9,0.3,0.8) | (0.91,0.31,0.81) | (0.92,0.32,0.82) | (0.93,0.33,0.83) | (0.94,0.34,0.84)
Zs (0.8,0.4,0.1) | (0.81,0.41,0.11) | (0.82,0.42,0.12) | (0.83,0.43,0.13) | (0.84,0.44,0.14)

Further, we have two options: either we normalize or do not normalize the data in the decision

matrix. If we have a cost type, then we normalize the data, such as
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N = {<.“z1'7721'fz1> benefit
(§z1:Mz1,Mz1)  cost
We have no option or requirement to normalize the data. So, we will go to the next step with

the same data in Table 1.

Step 2: Thus, we measure or interrogate the weighted data matrix in the occurrence of planned

laws, see Table 2.

Table 2. CPF weighted information matrix.

77 7 72 72 72

Z, <0.6023,0.7247,) <0.5173,0.8155,) <0.5302,0.8198,> <0.5443,0.8239,> <0.4094,0.9121,)
0.0548 0.0492 0.0537 0.0582 0.0444

Z, <0.4971,0.7807,) <0.4206,0.8542,) <0.4286,0.8576,> (0.4369,0.861,> <0.3212,0.9310,)
0.2238 0.1881 0.193 0.1978 0.1439

Zs <0.3473,0.8271,) <0.2912,0.8859,) <0.2968,0.8888,) <0.3025,0.8917,> <0.2198,0.9466,)
0.1100 0.0945 0.0990 0.1036 0.0766

Z, <0.6023,0.7247,) <0.5173,0.8155,) <0.5302,0.8198,) <0.5443,0.8239,> <0.4094,0.9121,)
0.4971 0.4206 0.4286 0.4369 0.3212

Zs (0.4971,0.7807,) <0.4206,0.8542,) <0.4286,0.8576,) (0.4369,0.861,> <O.3212,0.9310,)
0.0548 0.0492 0.0537 0.0582 0.0444

Step 3: Then, we interrogated the aggregated data matrix in the occurrence of planned CPFCFA

operators and CPFCFG operators for both norms, see Table 3.
Table 3. CPF aggregated data.

CPFCFA operator CPFCFG operator
Z; (0.2896,0.9485,0.028) | (0.8262,0.5427,0.4483)
Z, (0.2301,0.9596,0.1013) | (0.7805,0.5775,0.6334)
Z3 (0.1570,0.9687,0.0517) | (0.7091,0.6106,0.5300)
Zy (0.2896,0.9485,0.2301) | (0.8262,0.5427,0.7805)
Zs (0.2301,0.9596,0.028) | (0.7805,0.5775,0.4483)

Step 4: Estimate the distance data measures to use the data in the aggregated matrix and weighted

data matrix, see Table 4.

Table 4. CPF distance measures.

CPFCFA operator CPFCFG operator
Zy 0.1877,0.1273,0.1316,0.1365,0.0575 | 0.2664,0.3269,0.3225,0.3177,0.3967
Zy 0.1895,0.1276,0.1307,0.1340,0.0541 | 0.2987,0.3606,0.3574,0.3542,0.4341
Z3 0.1300,0.0865,0.089,0.09146,0.0366 | 0.3327,0.3762,0.3738,0.3713,0.4262
Zy 0.2678,0.1837,0.1892,0.1953,0.0824 | 0.2297,0.3138,0.3083,0.3022,0.4151
Zs 0.1576,0.1057,0.1087,0.1119,0.0453 | 0.2933,0.3451,0.3421,0.3390,0.4055

Step 5: Demonstrate the function of appraisal value for distance techniques, see Table 5.
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Table 5. Representation of appraisal values.

CPFCFA operator | CPFCFG operator
A 0.12815 0.32607
Zy 0.1272 0.36102
Z3 0.08674 0.37607
Zy 0.18372 0.31387
Zs 0.1059 0.34506

Step 6: Estimate the model of ranking data for picking the best solution between the collection of
data in Table 6, such as

Table 6. Representation of ranking data.

Methods Ranking values Most valuable decision
CPFCFA operator Zy>71>2y> 175> 173 Zy
CPFCEFG operator L3y>12,>725>271> 17, Zs

Finally, we concluded that the best one is Z, with the MABAC-CPFCFA operator and Z3 with
MABAC-CPFCFG operator. Further, we simplify and describe the ranking values of the proposed
theory by using the data in Table 1. Then, we interrogated the aggregated data matrix in the
occurrence of planned CPFCFA operators and CPFCFG operators for both norms, see Table 7.
Table 7. CPF aggregated values.

CPFCFA operator CPFCFG operator
Z; (0.6372,0.7387,0.0682) | (0.9767,0.1797,0.5719)
Z, (0.5192,0.7921,0.2378) | (0.9453,0.2378,0.7921)
Z3 (0.3631,0.837,0.1234) | (0.8764,0.2984,0.6707)
Zy (0.6372,0.7387,0.5192) | (0.9767,0.1797,0.9453)
Zs (0.5192,0.7921,0.0682) | (0.9453,0.2378,0.5719)

Demonstrate the function of appraisal value for distance techniques, see Table 8.

Table 8. Representation of appraisal values.

CPFCFA operator CPFCFG operator
Z 0.0255 0.549
Z3 0.1422 0.7247
Z3 0.0931 0.5527
Zy 0.1941 0.9075
Zs 0.0408 0.5232
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Estimate the model of ranking data for picking the best solution between the collection of data in
Table 9, such as
Table 9. Representation of ranking data.

Methods Ranking values Most valuable decision
CPFCFA operator Zy>2y>1723>725>17; Zy
CPFCFG operator Ly > 2y > 13> 17 > Zs Zy

Finally, we concluded that the best one is Z, with the CPFCFA operator and the CPFCFG
operator. Moreover, we establish a comparative analysis to show the interpretation and validity

of the initiated techniques.

7. Comparative Analysis

The performance of comparative analysis is a valuable and important part of every manuscript,
especially when you need to prove the supremacy and validity of the derived theory. The key
objective of this article is to design a comparison between invented information and various
previous data. Therefore, we arranged the following old models, for instance, Xu [17] diagnosed
the Choquet integral for weighted IFSs. Tan and Chen [18] derived the intuitionistic fuzzy
Choquet integral for decision support systems. Tan and Chen [19} exposed the Choquet integral
for induced IFSs. Xu and Yager [20] designed the geometric operators for IFSs. Yang et al. [21]
derived the Frank operators for IFSs. Zhang et al. [22] presented the Frank power operators for
IFSs. Xing et al. [23] invented the Choquet Frank operators for PFSs. Ali and Yang [24] described
the Hamacher operators for CPFSs. EDAS model and improved Dombi operators for CPFSs were
invented by Garg et al. [25]. Ali et al. [26] evaluated the Aczel-Alsina power operators for circular
Pythagorean fuzzy linguistic sets. Jiang et al. [27] designed the Bonferroni mean operators and
EDAS model for CPFSs. Verma [28] presented the MABAC model based on order-alpha
divergence measures for IFSs. Jia et al. [29] designed the extended MABAC model for
intuitionistic fuzzy rough sets. Zhao et al. [30] explored the intuitionistic fuzzy MABAC
information and its applications. The comparative analysis is given in Table 10 for data in Table
1.

Table 10. For data in Table 1, the comparative analysis is given in Table 10.

Methods Score values Ranking model

Xu [17] No No
Tan and Chen [18] No No
Tan and Chen [19] No No
Xu and Yager [20] No No
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Yang et al. [21] No No
Zhang et al. [22] No No
Xing et al. [23] No No
Ali and Yang [24] 0.0432,0.1027,0.0123,0.3026,0.0288 Zy>7Zy> 7> 75> Zy
Garg et al. [25] 0.0425,0.1024,0.0121,0.3015,0.0283 Ly >2,>7y> 125> Zs
Ali et al. [26] No No
Jiang et al. [27] No No
Verma [28] No No
Jia et al. [29] No No
Zhao et al. [30] No No
MABAC (averaging) 0.1281,0.1272,0.0867,0.1837,0.1059 Zy>21>2,>Zs> 7
MABAC (geometric) 0.3260,0.3610,0.3760,0.3138,0.3450 Zy>Z,>7Zs>71>27,
CPFCFA operator 0.0255,0.1422,0.0931,0.1941,0.0408 Zy>2),>723>75>27
CPFCFG operator 0.549,0.7247,0.5527,0.9075,0.5232 Zy>7y>7Z3> 71> Zs

Finally, we concluded that the best one is Z, with the MABAC-CPFCFA operator and Z3 with the
MABAC-CPFCFG operator. But we concluded that the best one is Z, with the CPFCFA operator
and the CPFCFG operator. Further, the existing model of Ali and Yang [24] and the proposed
theory of Garg et al. [25] also provided the same ranking values Z,. The invented model is
different from the existing models because the previous techniques were developed based on
norms, but the proposed techniques are computed based on the Choquet integral, which is

reliable for coping with vague data.

8. Concluding remarks
Network data envelopment analysis is used to assess the proficiency of insurance enterprises. To
do this, we intended the frank operational laws for CPF uncertainty with various dominant
results. Moreover, the CPFCFA operator and CPFCFG operator with three dominant properties
for each operator have been studied. The MABAC model has been deliberated and verified by
using numerical examples. In the following, a decision-making performance for assessing the
proficiency of insurance enterprises using the Network DEA is proposed.
The major influence of this article is listed below:
1) We discussed the frank operational laws for CPF uncertainty with various dominant
results.
2) We studied the CPFCFA operator and the CPFCFG operator with three dominant
properties for each operator.

3) We deliberated on the MABAC model and verified it with the help of numerical examples.
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4) We establish the decision-making performance for assessing the proficiency of insurance
enterprises using the NDEA approach.

5) We proceed with the ranking values of proposed models for comparing them with the
ranking values of existing models to show the capability and efficacy of the proposed
approaches.

There are potential avenues for future studies: one can explore the circular Pythagorean hesitant
fuzzy sets and their extensions. Moreover, the development of the various operators, measures,
and methods for invented models and their extensions could be interesting. Finally, one can
evaluate the decision-making technique, neural networks, game theory, and artificial data mining

to enhance the worth of the proposed theory.

Appendix Section
Appendix A: Proof: Let 0 < uy, n; <1,Fd>1,and uz2 +1n;2 <1, thusn,2 <1—pz%,0<1-
piz? < 1. For A. Z, thus

(Fd1-0 — 1)A (Pat-kz? —1)"
0< [1-Logr(1+———2)< |1-Logpy| 1+ —---
(Fd — 1)A-1 (Fd — 1)A-1

(Fd1-1 — 1)A
< [1-Logp(14+—-7F>|=1

(Fd — 1)A-1

(F4° — DA (anz* — 1)" (Fdt — DA
0= LOng 14— | < LOng 14— | < LOng 14— =1
(Fd — 1)A-1 (Fd — 1)A-1 (Fd — 1)A-1

where

(Fd1-#z* — 1)A (Fdnz* — 1)A

0< 1-— LOgF:[ 1+ + LOng 1+

(Fd — 1)A-1 (Fd — 1)A-1
A A

<1-1L 1+ (P~ —1) +L 1+ (Fa"=" — 1) 1
EFd (Fd — 1)A1 8Fd (Fd — 1)A-1

The information of A.Z holds the condition of CPFSs. Further, by using mathematical induction,

we prove the above information. For this, if A =1, thus
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For A = 1, the proposed theory holds. Further, we assume that the proposed theory also holds

for A = ¢, such as
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Then, we prove it for A =0 +1,suchas
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For A = 0+ 1, the proposed theory is held successfully. Similarly, we will be evaluating the

remaining part of the proposed theory.

1-— LOng 1+

(Fdi-#z* — 1)A (Fdnz* — 1)A
TR = A i Ay
(Fd — 1)A-1 (Fd—1)
A
(Fatz’ — 1)
Lo 1+-—
Brd (Fd — 1)A-1

Appendix B: Proof: For the verification of the above two proposed techniques, we use the model

of mathematical induction. If A = 2, thus

(AV(%@)) - AV(GQ(O))) Ty =
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For A = 2, the proposed theory holds. Further, we assume that the proposed theory holds for
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Thus, we prove it for A=0+1,suchas
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For A =0+ 1, we successfully hold the required results. Further, we will also prove the

remaining part, such as
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Similarly, we will prove it for FTCN.

Appendix D: Proof: Let
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Similarly, we will evaluate it for FTCN.

Appendix E: Proof: Let
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Similarly, we will evaluate the remaining part.

Appendix F: Proof: Using the proposed information, we aim to evaluate part (1) and part (4),
where the proof of part (2) and part (3) is similar to the proof of part (1) and part (4).
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=1

" AV (B 7))~V (D7
In (1 + ] |¢:1(Fd’iz¢(r)2 -1) (oco)-47(0c 1)))
= Lim

9-1 In Fd

. AV (3 (r)) ~AV (B e . Do) A7 (o
_ A (Fa"zo@® — 1) (%00)=27(P0(-) A (120002 In F.:I)AV( 00) =87 (9p(z-1))
= gum = Lim
9-1 In Fd 9-1 In F4

A AV(3y(z))—AV(8g(z— A
Hl‘?':l(r’Z@(T)z) ( o )) ( o 1)) (ln Fd) _ 2 AV(%(T))—AV(%(T_D)
= (TIZ(D(T) )
=1

= Lim
9-1 In Fd
thus
A
AV(Bg(r))~AV(dg(r—
Lim [1- Loge ( 1+ H(deuzm(ﬂz —1) (90)-27(9p(c-1))
=1
: (9g(r))-a7( )
AV(o (@) —-AV(0 (T-1)
= |1- 1_[(1 - ﬂzo(r)z) ’ e
7=1

thus,



36

Int. J. Anal. Appl. (2025), 23:245

Lim CPFCFA =
9-1

A A
AV(3gp))~AV (D7 AV(dgp))~AV (D s
1— 1_[(1 ~ lz0?) (99(r))—A7 (9 1)):1_[(772¢(1)) (09(x)) A7 (9 1))’
=1 =1

A
\ 1= 1_[(1 - EZQ(T)Z)AV(%&))—AV(%&_D)
=1

Further, we derive part (4), such as

thus

Since

Logpa (1 + Héﬂ(Fan‘”mZ - 1)

A
AV (39 () ~A7 (g (e
Lim |1— Loggy| 1+ H(deuz@mz ~1) (99(1)) =7 (9p(r-1))

99—+
=1

A
= |- Z (47 (90 — A7 (30(-1)) Hz0(0r?
=1

A
AV(3g(r) )—AV(Dg(r—
Lim |Logg 1+1_[(Fd’72®(r)2 —1) (90)-27(9pz-1))

99—+
=1

(87 (30()) — A7 (3o (-1)) ) Nz0r)?

Il
)
il Ma»
oy

A
AV (g (r))—AV (g (r-1))
; —_ 1-Ez0m)° _
Lim |1~ Loggs 1+1_[(F:I 700" — 1)
1

=

= [1-

e

(Av(a(b(r)) - AV(aQ)(T—l))) fzw(r)z

1l
[y

T

A
AV(3g(r) )—AV(Dg(r—
Lim |Logg 1+1_[(F;[’72o(r)2 ~1) (90)-27(9p(z-1))

99—+
=1

A
= z (AV(@@(T)) - AV(aqj(T—l))) nZ(Z)(r)Z
=1

AV(9p(1))—AV(9p(r-1)) . .
is continuous, thus
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A
AV(0¢(7))—AV (g (r—
Lim LOng 1+ H(Fdnm(f)z _ 1) ( (416 )) ( (416 1))
=1

Y-+ 0

A
- ; Nzo()? —
Lim Logpy | 1+ H(Fc{

=1

AV () )~V (D s
1) (99(2))—AV(0p(r-1))

Thus, by using L'Hospital's rule, we have

A
A7 (39 (x))~A7 (o
JLim Loge (1 + H(Fdﬂm(r)z - 1) (900)-7 (0 1))>
—+00

=1

" AV (3¢ ()) -V (D (r—
In <1 +1 I¢=1(Fdnz¢(r)2 -1) (Poc0)-47 (% 1))>
= | Lim

9—-+00 In Fd

[TA_ (Fanzow* — 1)AV(ao(r))—AV(ao(r—1))

= | Lim

1
9>+00 ] - ) 2 Nz0m% — /ﬁ
(1 n l_[?:l(F.:I”ZW)Z _ 1)AV(3(2)(T)) AV(a(b(r—l))) A (AV(G(D(T)) _ AV(6¢(T—1))) Nz(r) < Fd170 1

Fd"200° — 1

1

A
: Nz
= [ E (a7 (30c)) = A7 (Bpe-1)) ) —
S+oo A A7 (3p(0))—A7 (3g(r— — —
9=+ (1 4+ 1/1—[11@:1(13:17;2@(1)2 _ 1) (%0(x)) (90 1))) 1—1/Fd"z0@

=1

(87 (30()) — A7 (30 (-1)) ) Nz0r)?

A
=1

T

thus

A A
Lim 11— Logey (1 + H(Fdl-ﬂzw(r)z - 1)AV(%(T))_AV(%(T_1))> = |1- Z (AV(aQ)(T)) - AV(a@(T—l))) Hzo()”

=1 =1

Thus
Lim CPFCFA

9-+00

%E

i
1- z (87(30()) = A7 (3p(e-1)) ) tz00% | ) (B7(3pxy) = AV (3pe-1)) ) Mz0er
=1

1

T

A

1— z (AV(G@(T)) - AV(@Q)(T_I))) §200)° /

=1

Hence, the proposed theory holds.



38 Int. J. Anal. Appl. (2025), 23:245

Acknowledgments: This work was supported in part by the National Science and Technology
Council, Taiwan, under Grant NSTC 114-2410-H-224-001 and internal number 114-1011.
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] C. Kao, Network Data Envelopment Analysis: A Review, Eur. ]J. Oper. Res. 239 (2014), 1-16.
https:/ /doi.org/10.1016/j.ejor.2014.02.039.

[2] J. Zhu, Dea Under Big Data: Data Enabled Analytics and Network Data Envelopment Analysis, Ann.
Oper. Res. 309 (2020), 761-783. https:/ /doi.org/10.1007 /510479-020-03668-8.

[3] C.Kao, A Classification of Slacks-Based Efficiency Measures in Network Data Envelopment Analysis
with an Analysis of the Properties Possessed, Eur. J. Oper. Res. 270 (2018), 1109-1121.
https://doi.org/10.1016/j.ejor.2018.04.036.

[4] O.T. Joel, V.U. Oguanobi, Navigating Business Transformation and Strategic Decision-Making in
Multinational Energy Corporations with Geodata, Int. J. Appl. Res. Soc. Sci. 6 (2024), 801-818.
https://doi.org/10.51594/ijarss.v6i5.1103.

[5] O.A. Odejide, T.E. Edunjobi, Al in Project Management: Exploring Theoretical Models for Decision-
Making and Risk Management, Eng. Sci. Technol. ]. 5 (2024), 1072-1085.
https://doi.org/10.51594/ estj.v5i3.959.

[6] L.Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338-353. https:/ /doi.org/10.1016/s0019-9958(65)90241-x.

[7] K.T. Atanassov, Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr.
Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation,
20 (2016), S1-S6.

[8] K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87-96

[9] R.R. Yager, Pythagorean Fuzzy Subsets, in: 2013 Joint IFSA World Congress and NAFIPS Annual
Meeting (IFSA/NAFIPS), IEEE, 2013.
https:/ /doi.org/https:/ /doi.org/10.1109/IFSA-NAFIPS.2013.6608375.

[10]K.T. Atanassov, Circular Intuitionistic Fuzzy Sets, J. Intell. Fuzzy Syst. 39 (2020), 5981-5986.
https://doi.org/10.3233 /jifs-189072.

[11]M.C. Bozyigit, M. Olgun, M. Unver, Circular Pythagorean Fuzzy Sets and Applications to Multi-
Criteria Decision Making, Informatica 34 (2023), 713-742. https:/ /doi.org/10.15388 / 23-infor529.

[12] D. Pamucar, G. Cirovi¢, The Selection of Transport and Handling Resources in Logistics Centers Using
Multi-Attributive Border Approximation Area Comparison (MABAC), Expert Syst. Appl. 42 (2015),
3016-3028. https:/ /doi.org/10.1016/j.eswa.2014.11.057.

[13] P.E. Klement, R. Mesiar, Triangular Norms, Tatra Mt. Math. Publ. 13 (1997), 169-193.

[14] M.]. Frank, On the Simultaneous Associativity of F(x,y) and x+y-F(x,y), Aequ. Math. 18 (1978), 266-267.
https:/ /doi.org/10.1007 /bf01844082.

[15] M.]. Frank, On the Simultaneous Associativity of F(x, y) and x+y-F(x, y), Aequ. Math. 19 (1979), 194-
226. https:/ /doi.org/10.1007 / bf02189866.


https://doi.org/10.1016/j.ejor.2014.02.039
https://doi.org/10.1007/s10479-020-03668-8
https://doi.org/10.1016/j.ejor.2018.04.036
https://doi.org/10.51594/ijarss.v6i5.1103
https://doi.org/10.51594/estj.v5i3.959
https://doi.org/10.1016/s0019-9958(65)90241-x
https://doi.org/https:/doi.org/10.1109/IFSA-NAFIPS.2013.6608375
https://doi.org/10.3233/jifs-189072
https://doi.org/10.15388/23-infor529
https://doi.org/10.1016/j.eswa.2014.11.057
https://doi.org/10.1007/bf01844082
https://doi.org/10.1007/bf02189866

Int. ]. Anal. Appl. (2025), 23:245 39

[16] G. Choquet, Theory of Capacities, Ann. Inst. Fourier 5 (1954), 131-295.

[17]Z. Xu, Choquet Integrals of Weighted Intuitionistic Fuzzy Information, Inf. Sci. 180 (2010), 726-736.
https:/ /doi.org/10.1016/j.ins.2009.11.011.

[18] C. Tan, X. Chen, Intuitionistic Fuzzy Choquet Integral Operator for Multi-Criteria Decision Making,
Expert Syst. Appl. 37 (2010), 149-157. https:/ /doi.org/10.1016/j.eswa.2009.05.005.

[19]C. Tan, X. Chen, Induced Intuitionistic Fuzzy Choquet Integral Operator for Multicriteria Decision
Making, Int. J. Intell. Syst. 26 (2011), 659-686. https:/ /doi.org/10.1002/int.20489.

[20]Z. Xu, R.R. Yager, Some Geometric Aggregation Operators Based on Intuitionistic Fuzzy Sets, Int. J.
Gen. Syst. 35 (2006), 417-433. https:/ /doi.org/10.1080/03081070600574353.

[21] X. Yang, T. Mahmood, Z. Ali, K. Hayat, Identification and Classification of Multi-Attribute Decision-
Making Based on Complex Intuitionistic Fuzzy Frank Aggregation Operators, Mathematics 11 (2023),
3292. https:/ /doi.org/10.3390/math11153292.

[22] X. Zhang, P. Liu, Y. Wang, Multiple Attribute Group Decision Making Methods Based on Intuitionistic
Fuzzy Frank Power Aggregation Operators, J. Intell. Fuzzy Syst. 29 (2015), 2235-2246.
https://doi.org/10.3233/ifs-151699.

[23]Y. Xing, R. Zhang, ]. Wang, X. Zhu, Some New Pythagorean Fuzzy Choquet-Frank Aggregation
Operators for Multi-Attribute Decision Making, Int. J. Intell. Syst. 33 (2018), 2189-2215.
https://doi.org/10.1002/int.22025.

[24] Z. Ali, M. Yang, Circular Pythagorean Fuzzy Hamacher Aggregation Operators with Application in
the Assessment of Goldmines, IEEE Access 12 (2024), 13070-13087.
https://doi.org/10.1109/ access.2024.3354823.

[25]H. Garg, M. Wagqas, Z. Ali, W. Emam, EDAS Method for Circular Pythagorean Fuzzy with Improved
Dombi Power Aggregation Operators and Their Application in Policy Analysis and Decision Support
Systems, Alex. Eng. ]. 106 (2024), 172-193. https:/ /doi.org/10.1016/j.a€j.2024.06.062.

[26]Z. Ali, M. Ali, S. Yin, M. Yang, Novel Aczel-Alsina Power Aggregation Operators for Circular
Pythagorean Fuzzy Linguistics with Application to Waste Reduction and Recycling in Green Supply
Chain Management, IEEE Access 12 (2024), 151710-151727.
https:/ /doi.org/10.1109/access.2024.3474178.

[27]W. Jiang, Z. Ali, M. Wagqas, P. Liu, Decision Methods Based on Bonferroni Mean Operators and Edas
for the Classifications of Circular Pythagorean Fuzzy Meta-Analysis, AIMS Math. 9 (2024), 28273-
28294. https:/ /doi.org/10.3934/math.20241371.

[28] R. Verma, On Intuitionistic Fuzzy Order-a Divergence and Entropy Measures with Mabac Method for
Multiple Attribute Group Decision-Making, J. Intell. Fuzzy Syst. 40 (2021), 1191-1217.
https://doi.org/10.3233 /jifs-201540.

[29]F. Jia, Y. Liu, X. Wang, An Extended MABAC Method for Multi-Criteria Group Decision Making Based
on Intuitionistic Fuzzy Rough Numbers, Expert Syst. Appl. 127 (2019), 241-255.
https://doi.org/10.1016 /j.eswa.2019.03.016.

[30]M. Zhao, G. Wei, X. Chen, Y. Wei, Intuitionistic Fuzzy Mabac Method Based on Cumulative Prospect
Theory for Multiple Attribute Group Decision Making, Int. J. Intell. Syst. 36 (2021), 6337-6359.
https://doi.org/10.1002/int.22552.


https://doi.org/10.1016/j.ins.2009.11.011
https://doi.org/10.1016/j.eswa.2009.05.005
https://doi.org/10.1002/int.20489
https://doi.org/10.1080/03081070600574353
https://doi.org/10.3390/math11153292
https://doi.org/10.3233/ifs-151699
https://doi.org/10.1002/int.22025
https://doi.org/10.1109/access.2024.3354823
https://doi.org/10.1016/j.aej.2024.06.062
https://doi.org/10.1109/access.2024.3474178
https://doi.org/10.3934/math.20241371
https://doi.org/10.3233/jifs-201540
https://doi.org/10.1016/j.eswa.2019.03.016
https://doi.org/10.1002/int.22552

40 Int. J. Anal. Appl. (2025), 23:245

[31]S. Petchimuthu, B. Palpandi, K. Rajakumar, F. Banu M, Sustainable Urban Development: g-Rung
Orthopair Fuzzy MCDM with Generalized Power Prioritized Yager Aggregation, Spectr. Oper. Res. 3
(2025), 275-309. https:/ /doi.org/10.31181/s0r31202649.

[32]W. Zhang, H. Gao, Interpretable Robust Multicriteria Ranking with TODIM in Generalized Orthopair
Fuzzy Settings, Spectr. Oper. Res. 3 (2025), 14-28. https:/ /doi.org/10.31181/s0r31202632.

[33] V. Shahin, M. Alimohammadlou, D. Pamucar, An Interval-Valued Circular Intuitionistic Fuzzy Marcos
Method for Renewable Energy Source Selection, Spectr. Decis. Mak. Appl. 3 (2025), 243-268.
https://doi.org/10.31181/sdmap31202645.

[34]T. Jameel, Y. Yasin, M. Riaz, An Integrated Hybrid MCDM Framework for Renewable Energy
Prioritization in Sustainable Development, Spectr. Decis. Mak. Appl. 3 (2025), 124-150.
https://doi.org/10.31181/sdmap31202640.

[35] M. Sarfraz, R. Gul, Evaluating Medical College Projects with Hamacher Aggregation Operators Under
the Interval-Valued Complex T-Spherical Fuzzy Environment, Manag. Sci. Adv. 2 (2025), 69-90.
https://doi.org/10.31181/msa21202511.

[36] M. Saqlain, Half a Century of Fuzzy Decision Making in Italy: A Bibliometric Analysis, Manag. Sci.
Adv. 2 (2025), 133-143. https:/ /doi.org/10.31181/msa21202521.

[37]C. Bhowmik, D. Zindani, P. Chatterjee, D. Marinkovic, J. Sliogeriené, Evaluation of Green Energy
Sources: An Extended Fuzzy-Todim Approach Based on Schweizer-Sklar and Power Averaging
Operators, Facta Univ. Ser.: Mech. Eng. (2024). https:/ /doi.org/10.22190/fume240711042b.

[38]D. Kang, K. Suvitha, S. Narayanamoorthy, Comprehensive Distance-Based Ranking Method for
Evaluating Hydraulic Converters in Tidal Stream Turbines Utilizing Picture Fermatean Fuzzy Set,
Facta Univ. Ser.: Mech. Eng. (2024). https:/ /doi.org/10.22190/fume240730046k.

[39]A.R. Mishra, P. Rani, Evaluating and Prioritizing Blockchain Networks Using Intuitionistic Fuzzy
Multi-Criteria Decision-Making Method, Spectr. Mech. Eng. Oper. Res. 2 (2025), 78-92.
https://doi.org/10.31181/smeor21202527.

[40]S. Narayanamoorthy, M. Sandra, N. Almakayeel, A Smart Decision Framework for Sustainable
Managementof C&D Waste Using Picture Fuzzy Decision Model, Spectr. Mech. Eng. Oper. Res. 2
(2025), 130-146. https:/ /doi.org/10.31181/smeor21202533.

[41]D. Li, Y. Rong, A Hybrid Quadripartitioned Single-Valued Neutrosophic Method and Its Application
for the Selection of Emergency Logistics Outsourcing Suppliers, J. Oper. Intell. 3 (2025), 130-148.
https:/ /doi.org/10.31181/jopi31202548.

[42], Application of New Divergence Measure in Complex Fermatean Fuzzy Sets for Post-Flood
Assessment, ]. Intell. Decis. Mak. Granul. Comput. 1 (2025), 127-142.
https:/ /doi.org/10.31181/jidmgc1120258.

[43]M.K. Bilgen, B. Guneri, S. Baldiran, Integrated Fermatean Fuzzy SWARA and Q-ROF-EDAS
Methodology for Supplier Evaluation in the Shipyard Industry, J. Intell. Decis. Mak. Granul. Comput.
1 (2025), 48-75. https:/ /doi.org/10.31181/jidmgc1120257.


https://doi.org/10.31181/sor31202649
https://doi.org/10.31181/sor31202632
https://doi.org/10.31181/sdmap31202645
https://doi.org/10.31181/sdmap31202640
https://doi.org/10.31181/msa21202511
https://doi.org/10.31181/msa21202521
https://doi.org/10.22190/fume240711042b
https://doi.org/10.22190/fume240730046k
https://doi.org/10.31181/smeor21202527
https://doi.org/10.31181/smeor21202533
https://doi.org/10.31181/jopi31202548
https://doi.org/10.31181/jidmgc1120258
https://doi.org/10.31181/jidmgc1120257

