A Pertubation Matrix and Its Eigen Functions

Main Article Content

M. Surya Priya, N. Nathiya

Abstract

On a finite graph \(\mathcal{N}\) with a set of possibly non-symmetric transition indices \(\{c(a,b)\}\), \(c(a,b)\geq 0\), \(c(a)=\sum\limits_{b}c(a,b)\leq 1\), an operator \(Ku(a)=(I-A)u(a)=u(a)-\sum c(a,b)u(b) \) is defined. We discuss properties of the operator \(K\). We prove that for an eigen function \(\xi (a) \) with positive entries, \(K\xi (a)=\rho \xi (a)\) where \(\rho >0\) and show that the eigen value \(\rho\) is the smallest in the following sense: if for an eigen function \(\eta (a)\), \(K \eta (a)=\beta \eta (a) \) then \(Re \beta >\rho\). This result establishes the uniqueness and minimality of the positive eigenvalue associated with the positive eigenfunction. Finally, it is proven that the set \(\mathfrak{F}=\{u:Ku(a)\geq 0\}\) forms a convex cone that is a lattice under the natural order.

Article Details

References

  1. V. Anandam, Harmonic Function Theory on Infinite Networks, Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-21399-1_3.
  2. V. Anandam, M. Damlakhi, Perturbed Laplace Operators on Finite Networks, Rev. Roum. Math. Pures Appl. 61 (2016), 75–92.
  3. C. Arauz, A. Carmona, A.M. Encinas, Dirichlet-to-Robin Maps on Finite Networks, Appl. Anal. Discret. Math. 9 (2015), 85–102. https://www.jstor.org/stable/43666209.
  4. E. Bendito, Á. Carmona, A.M. Encinas, Potential Theory for Schrödinger Operators on Finite Networks, Rev. Mat. Iberoam. 21 (2005), 771–818. https://doi.org/10.4171/rmi/435.
  5. T. Biyikoğu, J. Leydold, P.F. Stadler, Laplacian Eigenvectors of Graphs, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-73510-6.
  6. C. Chahine, A. Nakib, R. El Berbari, On The Random Walks Algorithms for Image Processing, in: International Conference on Metaheuristics and Nature Inspired Computing, META 2014, (2014).
  7. F.R. Gantmacher, The Theory of Matrices, American Mathematical Society, (1959).
  8. L. Grady, Random Walks for Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006), 1768–1783. https://doi.org/10.1109/tpami.2006.233.
  9. B. Mohar, Some Applications of Laplace Eigenvalues of Graphs, in: Graph Symmetry, Springer, Dordrecht, 1997: pp. 225–275. https://doi.org/10.1007/978-94-015-8937-6_6.
  10. M. Picardello, W. Woess, Random Walks and Discrete Potential Theory, Cambridge University Press, (1999).
  11. L. Saloff-Coste, Random Walks on Finite Groups, in: Encyclopaedia of Mathematical Sciences, Springer, Berlin, Heidelberg, 2004: pp. 263–346. https://doi.org/10.1007/978-3-662-09444-0_5.
  12. M.S. Priya, N. Nathiya, Subordinate Average Structures on Random Walks, Eur. J. Pure Appl. Math. 18 (2025), 5761. https://doi.org/10.29020/nybg.ejpam.v18i1.5761.
  13. Z. Kaisserli, T. Laleg-Kirati, Image Representation and Denoising Using Squared Eigenfunctions of Schrodinger Operator, arXiv:1409.3720 (2014). https://doi.org/10.48550/arXiv.1409.3720.