A Pertubation Matrix and Its Eigen Functions
Main Article Content
Abstract
On a finite graph \(\mathcal{N}\) with a set of possibly non-symmetric transition indices \(\{c(a,b)\}\), \(c(a,b)\geq 0\), \(c(a)=\sum\limits_{b}c(a,b)\leq 1\), an operator \(Ku(a)=(I-A)u(a)=u(a)-\sum c(a,b)u(b) \) is defined. We discuss properties of the operator \(K\). We prove that for an eigen function \(\xi (a) \) with positive entries, \(K\xi (a)=\rho \xi (a)\) where \(\rho >0\) and show that the eigen value \(\rho\) is the smallest in the following sense: if for an eigen function \(\eta (a)\), \(K \eta (a)=\beta \eta (a) \) then \(Re \beta >\rho\). This result establishes the uniqueness and minimality of the positive eigenvalue associated with the positive eigenfunction. Finally, it is proven that the set \(\mathfrak{F}=\{u:Ku(a)\geq 0\}\) forms a convex cone that is a lattice under the natural order.
Article Details
References
- V. Anandam, Harmonic Function Theory on Infinite Networks, Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-21399-1_3.
- V. Anandam, M. Damlakhi, Perturbed Laplace Operators on Finite Networks, Rev. Roum. Math. Pures Appl. 61 (2016), 75–92.
- C. Arauz, A. Carmona, A.M. Encinas, Dirichlet-to-Robin Maps on Finite Networks, Appl. Anal. Discret. Math. 9 (2015), 85–102. https://www.jstor.org/stable/43666209.
- E. Bendito, Á. Carmona, A.M. Encinas, Potential Theory for Schrödinger Operators on Finite Networks, Rev. Mat. Iberoam. 21 (2005), 771–818. https://doi.org/10.4171/rmi/435.
- T. Biyikoğu, J. Leydold, P.F. Stadler, Laplacian Eigenvectors of Graphs, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-73510-6.
- C. Chahine, A. Nakib, R. El Berbari, On The Random Walks Algorithms for Image Processing, in: International Conference on Metaheuristics and Nature Inspired Computing, META 2014, (2014).
- F.R. Gantmacher, The Theory of Matrices, American Mathematical Society, (1959).
- L. Grady, Random Walks for Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006), 1768–1783. https://doi.org/10.1109/tpami.2006.233.
- B. Mohar, Some Applications of Laplace Eigenvalues of Graphs, in: Graph Symmetry, Springer, Dordrecht, 1997: pp. 225–275. https://doi.org/10.1007/978-94-015-8937-6_6.
- M. Picardello, W. Woess, Random Walks and Discrete Potential Theory, Cambridge University Press, (1999).
- L. Saloff-Coste, Random Walks on Finite Groups, in: Encyclopaedia of Mathematical Sciences, Springer, Berlin, Heidelberg, 2004: pp. 263–346. https://doi.org/10.1007/978-3-662-09444-0_5.
- M.S. Priya, N. Nathiya, Subordinate Average Structures on Random Walks, Eur. J. Pure Appl. Math. 18 (2025), 5761. https://doi.org/10.29020/nybg.ejpam.v18i1.5761.
- Z. Kaisserli, T. Laleg-Kirati, Image Representation and Denoising Using Squared Eigenfunctions of Schrodinger Operator, arXiv:1409.3720 (2014). https://doi.org/10.48550/arXiv.1409.3720.