International Journal of Analysis and Applications

International Journal of Analysis and Applications

A Pertubation Matrix and Its Eigen Functions

M. Surya Priya, N. Nathiya*

School of Advanced Sciences, Department of Mathematics, Vellore Institute of Technology Chennai, India

*Corresponding author: nadhiyan@gmail.com

Abstract. On a finite graph N with a set of possibly non-symmetric transition indices $\{c(a,b)\}$, $c(a,b) \ge 0$, $c(a) = \sum_b c(a,b) \le 1$, an operator $Ku(a) = (I-A)u(a) = u(a) - \sum_b c(a,b)u(b)$ is defined. We discuss properties of the operator K. We prove that for an eigen function $\xi(a)$ with positive entries, $K\xi(a) = \rho\xi(a)$ where $\rho > 0$ and show that the eigen value ρ is the smallest in the following sense: if for an eigen function $\eta(a)$, $K\eta(a) = \beta\eta(a)$ then $Re\beta > \rho$. This result establishes the uniqueness and minimality of the positive eigenvalue associated with the positive eigenfunction. Finally, it is proven that the set $\mathfrak{F} = \{u : Ku(a) \ge 0\}$ forms a convex cone that is a lattice under the natural order.

1. Introduction

A random walk $\{\mathcal{N}, p(a,b)\}$ on a finite graph \mathcal{N} , generally $p(a) = \sum\limits_b p(a,b) = 1$ for every state a (from Pickarddello and Woess [10] and Saloff-Coste, L. [11]). But in a reflective random walk it is possible that p(a) < 1 for some a. A similar situation arises when we consider discrete Schrödinger equation on a finite network $\{\mathcal{N}, c(a,b)\}$ [Bendito et al. [4]] with the Laplacian $\Delta u(a) = \sum\limits_b c(a,b)[u(b)-u(a)] = q(a)u(a), q \geq 0, q \not\equiv 0$. Setting $p(a,b) = \frac{c(a,b)}{c(a)}, c(a) = \sum\limits_b c(a,b)$, the equation reads $\sum\limits_b p(a,b)u(b) = [1+\frac{q(a)}{c(a)}]u(a)$ (or) $\sum\limits_b p'(a,b)u(b) = u(a)$ where $p'(a,b) = \frac{p(a,b)}{1+\frac{q(a)}{c(a)}} \leq p(a,b)$ and $p'(a) = \sum\limits_b p'(a,b) \leq 1, p'(z) < 1$ for atleast one a = z.

Considering these examples, we set out in this article a function theory on a finite network $\{\mathcal{N}, c(a,b)\}$, $c(a) = \sum_b c(a,b) \le 1$ and c(a) < 1 for at least one vertex a; $c(a,b) \ge 0$ and c(a,b) > 0 if and only if $a \sim b$ (neighbours); c(a,b) and c(b,a) may have different values.

Define the matrix $K = (K_{ab})$, $k_{aa} = 1$, $k_{ab} = -c(a, b)$ representing the finite network $\{N, c(a, b)\}$. By using the Perron-Frobenius theorem, (see Anandam. V and M. Damlakhi [2], C. Araúz et al. [3], Gantmacher [7]) we prove that for an eigen function $\xi(a)$ with positive entries $K\xi(a) = \rho\xi(a)$,

Received: Jul. 11, 2025.

2020 Mathematics Subject Classification. 15A48.

Key words and phrases. Random Walks; Eigen functions; Dirichlet problem; Poisson Equation; Green's function.

ISSN: 2291-8639

where $\rho > 0$; we show that the eigen value ρ is the smallest in the following sense: if for an eigen function $\eta(a)$, $K\eta(a) = \beta\eta(a)$ then $Re\beta > \rho$. Also we show that if $\sigma(a)$ is an eigen function with all its entries real, $K\sigma(a) = \alpha\sigma(a)$, then $\sigma(a)$ has both positive and negative entries. We prove also that if \mathfrak{F} is the set of all functions on \mathcal{N} , $\mathfrak{F} = \{u : Ku(a) \ge 0\}$ then the convex cone \mathfrak{F} represents a lattice of natural order.

2. Preliminaries

Let $\{N,C\}$ represent a finite connected network where $\{c(a,b)\}$ denote a collection of transition functions over N such that c(a,b) is non-negative, c(a,b) is positive if only if a and b are adjacent, and c(a,a)=0 for all $a\in N$. Additionally, $c(a)=\sum\limits_b c(a,b)$ must be less than or equal to one, and there exists at least one vertex a=z such that c(z)<1. A vertex a in $\{N,c(a,b)\}$ is considered interior to a subset $G\subset N$ if a and all its neighbouring vertices i.e, $b\sim a$ belong to the subset G; the set of all interior vertices of G is represented as \mathring{G} , while the boundary is denoted as $\partial G=G\backslash \mathring{G}$. A set G is defined as connected if, for any two distinct vertices a and b within G, there exists a path a0 is defined as a1, a2, a3, a4, a5, a6, a6, a6, a7, a8, a8, a9, a

Definition 2.1. Laplacian(Δ): Let s(x) be a real valued function defined on $\{N,C\}$. For $a \in \check{G}, G \subset N$, the Laplacian (Δ) of s at a is defined as

$$\Delta s(a) = \sum_{b \sim a} c(a, b) [s(b) - s(a)]$$

Example 2.1. *Finite network with its Laplacian:*

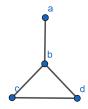


Figure 1. Finite network

The vertex set of the given finite network is $\{a,b,c,d\}$ and the edge set is $\{(a,b),(b,c),(b,d),(c,d)\}$ with the transition probabilities c(b,a)=0.6, c(a,b)=0.6, c(c,b)=0.5, c(d,b)=0.5, c(b,c)=0.2, c(d,c)=0.5, c(c,d)=0.5, c(b,d)=0.2, we see that c(b)=c(c)=c(d)=1 and c(a)<1. Then Laplacian matrix(L) is,

 $L = D(Degree \ matrix) - A(Probability \ transition \ matrix)$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0.6 & 0 & 0 \\ 0.6 & 0 & 0.5 & 0.5 \\ 0 & 0.2 & 0 & 0.5 \\ 0 & 0.2 & 0.5 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & -0.6 & 0 & 0 \\ -0.6 & 3 & -0.5 & -0.5 \\ 0 & -0.2 & 2 & -0.5 \\ 0 & -0.2 & -0.5 & 2 \end{bmatrix}$$

Definition 2.2. Eigen function: An eigen function of a linear operator L is a non-zero function f that, when acted upon by L, results in a scalar multiple of itself. This scalar multiple is called the eigenvalue λ associated with that eigenfunction.

This is expressed by the eigenvalue equation: $L[f(a)] = \lambda f(a)$. where:

- L is a linear operator.
- f(a) is the eigenfunction.
- λ is the eigenvalue, a scalar (which can be real or complex).

Example 2.2. The Eigen functions for the above finite network with the Laplacian matrix

$$L = \begin{bmatrix} 1 & -0.6 & 0 & 0 \\ -0.6 & 3 & -0.5 & -0.5 \\ 0 & -0.2 & 2 & -0.5 \\ 0 & -0.2 & -0.5 & 2 \end{bmatrix} is,$$

$$v_{1} = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} \text{ for the eigen value } \lambda_{1} = \frac{5}{2}$$

$$v_{2} = \begin{bmatrix} 10.914 \\ 3.448 \\ 1 \\ 1 \end{bmatrix} \text{ for the eigen value } \lambda_{2} = 0.810$$

$$v_{3} = \begin{bmatrix} -0.587 \\ 0.409 \\ 1 \\ 1 \end{bmatrix} \text{ for the eigen value } \lambda_{3} = 1.418$$

$$v_4 = \begin{bmatrix} 2.340 \\ -8.857 \\ 1 \\ 1 \end{bmatrix}$$
 for the eigen value $\lambda_4 = 3.271$

Definition 2.3. *Random walk(from [12]):*

Let $\{N, P\}$ be a random walk with a finite number of states N and the probability transition matrix $P = \{p(a,b)\}$, the transition probability from state a to state b is denoted as p(a,b). We assume $\{N, P\}$ to be

- Connected (i.e, for any two distinct states in the random walk there exists a path connecting them).
- There exist no path from a state to itself (without self loops).

We say two states a and b are neighbours if there exists an edge between them and it is denoted by $a \sim b$ and $p(a) = \sum_{b \sim a} p(a,b) = 1$ for every $a \in N$. We will define [a,b] as an edge if and only if the transition probability of the [a,b] is positive.

Example 2.3. Consider a particle on a clock face with 12 positions numbered 1 to 12. The particle starts at position 1 at each time step, it moves either forward (clockwise) one position or backward (counterclockwise) one position. The state space is $\mathcal{N} = \{0, 1, 2, ... 12\}$ with the set $P = \{p(a, b)\}$ of transition probabilities given by $p(n, n + 1) = p(n, n - 1) = \frac{1}{2}$, for $n \ge 0$. The particle's movement forms a path, which is the random walk, where $\sum_{b \sim a} p(a, b) = 1$ for every state $a \in \mathcal{N}$.

Definition 2.4. Lower directed family: Let (S, \leq) is a partially ordered set. A non-empty set $F \subseteq S$ is called a lower directed family (or directed downwards) if, for every pair of elements $a, b \in F$, there exists an element x in F such that $x \leq a$ and $x \leq b$.

Definition 2.5. Convex cone: A set C is a convex cone if, for any vectors x and y in C, and any non-negative scalars α and β , the linear combination $\alpha x + \beta y$ is also in C.

For a real-valued function u(a) on \mathcal{N} , write $Au(a) = \sum_b c(a,b)u(b)$ and the operator $Ku(a) = (I-A)u(a) = u(a) - \sum_b c(a,b)u(b)$. With $\{\mathcal{N},c(a,b)\}$ we associate a random walk $\{\mathcal{N},p(a,b)\}$, taking $p(a,b) = \frac{c(a,b)}{c(a)}$. The Laplacian Δ of this random walk is $\Delta u(a) = \sum_b p(a,b)[u(b)-u(a)]$. Then,

$$-\Delta u(a) = u(a) - \sum p(a,b)u(b)$$

$$= u(a) - \sum \frac{c(a,b)}{c(a)}u(b)$$

$$= u(a) - \frac{1}{c(a)}Au(a)$$

$$= u(a) + \frac{1}{c(a)}[K - I]u(a)$$
so that $Ku(a) = [1 - c(a)]u(a) - c(a)\Delta u(a)$.

Hence in particular $-c(a)\Delta u(a) \le Ku(a)$ if $u(a) \ge 0$.

Suppose $K\xi(a) = \rho\xi(a)$ where ρ is a constant and $\xi(a) > 0$, then $-c(a)\Delta\xi(a) \le K\xi(a) = \rho\xi(a)$. Suppose now $\rho \le 0$, then $-c(a)\Delta\xi(a) \le 0$. Since $\Delta\xi(a) \ge 0$, on a finite network $\xi(a)$ is a constant $\alpha > 0$. From $K\xi(a) = \rho \xi(a)$, we get $(I - A)\alpha = \rho \alpha$. Hence $[1 - c(a)]\alpha = \rho \alpha$. Since 0 < c(z) < 1, we conclude $\rho = 1 - c(z) > 0$, contradicting the assumption $\rho \le 0$. consequently we conclude that $\rho > 0$. (For Laplace eigen values of finite graphs, see for example Mohar. B [9] and Biyikoglu et al. [5]).

Now (I - K) is a matrix with all its entries non-negative, see example 2.1, the probability

Now
$$(I-K)$$
 is a matrix with all its entries non-negative, see example 2.1, the probability transition matrix (A) is,
$$\begin{bmatrix} 0 & 0.6 & 0 & 0 \\ 0.6 & 0 & 0.5 & 0.5 \\ 0 & 0.2 & 0 & 0.5 \\ 0 & 0.2 & 0.5 & 0 \end{bmatrix}$$
. Hence by the Perron-Frobenius theorem there is the largest eigen value λ with associated eigen vectors $\xi(a)$; the entries of $\xi(a)$ are all of the same sign

largest eigen value λ with associated eigen vectors $\xi(a)$; the entries of $\xi(a)$ are all of the same sign so that we can take $\xi(a) > 0$ and $\sum \xi(a) = 1$ (refer Theorem.2.2, [2]). Note also the eigen space associated with N is one, hence the eigen vector $\xi(a) > 0$ and $\sum_{a} \xi(a) = 1$ is uniquely determined. Now $(I - K)\xi(a) = \lambda \xi(a) \Rightarrow K\xi(a) = (1 - \lambda)\xi(a) = \rho \xi(a)$. Then as we just saw above, $\rho > 0$. Remark also that ρ is the smallest eigen value of the matrix K. Note also that $\rho < 1$. The reason for calling ρ the "smallest" eigen value is: $\rho = 1 - \lambda$ and λ is the largest eigen value of (1 - k).

Proposition 2.1. Suppose $K\sigma(a) = \beta\sigma(a)$ for some β real or complex. Then $Re\beta > \rho$.

Proof. If
$$K\sigma(a) = \beta\sigma(a)$$

Then

$$(I - K)\sigma(a) = I\sigma(a) - K\sigma(a)$$
$$= \sigma(a) - \beta\sigma(a)$$
$$= (1 - \beta)\sigma(a)$$

By Perron-Frobenius theorem,

$$|1 - \beta| < \lambda = 1 - \rho$$

By the property of complex numbers,

$$Re(1-\beta) \le |1-\beta|$$

$$1 - Re\beta \le |1-\beta| < 1-\rho$$

$$\rho < Re\beta$$

Proposition 2.2. Any real eigenvector of K other than $\xi(a)$ has both positive and negative entries.

Proof. Suppose $K\eta(a) = \beta\eta(a)$ where $\eta(a)$ has only real entries. Then β is real so that $\beta > \rho$. where ρ is the smallest eigen value $K\xi(a) = \rho\xi(a)$. Suppose now every entry of $\eta(a)$ is non-negative, then

$$\xi(a)K\eta(a) = \xi(a)[\beta\eta(a)]$$

$$\geq \xi(a)[\rho\eta(a)]$$

$$= [\rho\xi(a)]\eta(a)$$

$$= [K\xi(a)]\eta(a)$$

Hence

$$\xi(a)[\eta(a) - \sum_{b} c(a,b)\eta(b)] \ge [\xi(a) - \sum_{b} c(a,b)\xi(b)]\eta(a)$$

$$\sum_{b} c(a,b)[\xi(b)\eta(a) - \xi(a)\eta(b)] \ge 0$$

$$\sum_{b} c(a,b)\xi(a)\xi(b)[\frac{\eta(a)}{\xi(a)} - \frac{\eta(b)}{\xi(b)}] \ge 0$$

$$\sum_{b} c(a,b)\xi(b)[\frac{\eta(a)}{\xi(a)} - \frac{\eta(b)}{\xi(b)}] \ge 0$$

That is, $-\Delta^* \left[\frac{\eta(a)}{\xi(a)} \right] \ge 0$ where Δ^* is the Laplacian associated with the finite network $\{\mathcal{N}, c^*(a, b) = c(a, b)\xi(b)\}$. Hence, for all a in \mathcal{N} , $\frac{\eta(a)}{\xi(a)} = \alpha$, a constant, $\alpha \ge 0$.

Clearly α cannot be 0 so that $\eta(a) = \alpha \xi(a)$, $\alpha > 0$. Then $\beta \eta(a) = K \eta(a) = \alpha K \xi(a) = \alpha [\rho \xi(a)] = \rho \eta(a)$ for all a in \mathcal{N} . Since $\eta(a) > 0$ for at least one a = z, we conclude that $\beta = \rho$, not valid.

Consequently the assumption that all entries of $\eta(a)$ are non-negative is not valid. That is, $\eta(a)$ contains at least one negative entry. Similarly $\eta(a)$ should have at least one positive entry. So, $\eta(a)$ has both positive and negative entries.

Theorem 2.1. (Poisson) If f(a) is given on $\{N, c(a, b)\}$, then there exists a unique function u(a) such that Ku(a) = f(a) on N.

Proof. Since the smallest eigenvalue ρ of the matrix K is $\rho > 0$, 0 is not eigenvalue of K, hence K is invertible, so the theorem.

Proposition 2.3. *If* $u(a) \ge 0$ *and* $Ku(a) \le 0$, then u = 0.

Proof. Since $-c(a)\Delta u(a) = [c(a)-1]u(a) + Ku(a) \le 0$, then $\Delta u(a) \ge 0$, hence u(a) is a constant $\alpha \ge 0$. But then $0 \ge Ku(a) = \alpha K1 = \alpha[1-c(a)]$. In particular, $\alpha[1-c(a)] \le 0$ implying that $\alpha \le 0$ so that $\alpha = 0$.

Remark 2.1. In the context of potential theory on finite graphs, (see Anandam [1], chapter 2) $K\xi(a) = \rho \xi(a) \ge 0$ means that $\xi(a)$ is a K-subharmonic function. From the above proposition if u(a) is a K-superharmonic function such that $0 \le u(a) \le \xi(a)$, then u(a) = 0. Thus, actually the function $\xi(a)$ is a K-potential.

Green's Function: Given any vertex e, there exists a unique function $G_e(a)$ on \mathcal{N} such that $KG_e(a) = \delta_e(a)$. The uniqueness of $G_e(a)$ follows from the fact that for the invertible K, if Kf = 0 then f = 0.

Remark 2.2. For any real-valued function f(a) on N, the unique Poisson solution of Ku(a) = f(a) is given by $u(a) = \sum_{b} f(b)G_b(a)$.

Theorem 2.2. (*Minimum Principle*): Let E be a subset of N. If u(a) is a function on N such that $Ku(a) \ge 0$ for each a in E and $u(a) \ge 0$ on $N \setminus E$, then $u \ge 0$ on N.

Proof. Suppose u(a) takes negative values. If $min\ u(a) = -m < 0$, then there exist $z \in E$, where u(z) = -m. Since $-m = u(z) \ge \sum_{b \sim z} c(z,b)u(b)$ then $\sum_{b \sim z} c(z,b)[u(b)+m] + m[1-c(z)] \le 0$. Since $u(b)+m \ge 0$ and $m[1-c(z)] \ge 0$, then u(b)=-m for all $b \sim z$.

Let e be a vertex in $\mathcal{N}\setminus E$. Then there exists a path $\{z=z_0,z_1,....,z_n=e\}$ connecting z to e. Let i be the smallest index such that $z_i \in E$ and $z_{i+1} \in \mathcal{N}\setminus E$. Note that $u(z_i)=-m$, hence $u(z_{i+1})=-m$, contradicting $u(z_{i+1}) \geq 0$ since $z_{i+1} \in \mathcal{N}\setminus E$. This shows that u(a) cannot take negative values. \square

A variation: Let u(a) be defined on a subset E. If $Ku \ge 0$ on E and $u(a) \ge -\alpha$, $\alpha \ge 0$, on ∂E then $u(a) \ge -\alpha$ on E.

Proof. The function $v(a) = u(a) + \alpha$ on E extended by 0 on $\mathbb{N} \setminus E$ satisfies $Kv(a) \ge 0$ for $a \in E$ and $v(a) \ge 0$ if $a \in \partial E$. Hence $v(a) \ge 0$ so that $u(a) \ge -\alpha$ on E.

Corollary 2.1. If u(a) is a function on \mathcal{N} such that Ku(a) = 0 at each vertex of a subset E and u(a) = 0 on $\mathcal{N} \setminus E$, then u = 0 on \mathcal{N} .

Corollary 2.2. For a function u(a) on \mathbb{N} with $Ku(a) \ge 0$, write $A = \{a : Ku(a) > 0\}$. Let s(a) be a function having $Ks(a) \ge 0$. If $s(a) \ge u(a)$ on A, then $s(a) \ge u(a)$ on \mathbb{N} .

Proof. Let v(a) = inf[s(a), u(a)]. Then $Kv(a) \ge 0$ and v(a) = u(a) on A. Let f(a) = u(a) - v(a) on N. Then f(a) = 0 on A and $Kf(a) \le 0$ on N. Hence by the minimum principle, $f(a) \le 0$ on N which implies that v = u on N, so that $u \le s$ on N. □

Remark 2.3. (1) For a vertex e in N, the Green's function $G_e(a) \leq G_e(e)$ for all a.

(2) If a non-zero function s(a) is defined on \mathcal{N} , $Ks \geq 0$, then s > 0 on \mathcal{N} and $\frac{s(a)}{s(e)} \geq \frac{G_e(a)}{G_e(e)}$.

Proof. Let $v(a) = \frac{s(e)}{G_e(e)}G_e(a)$. Then $A = \{a : kv(a) > 0\} = \{e\}$. Now at e, s(e) = v(e). Hence by corollary 2.2, $s(a) \ge v(a)$ on \mathcal{N} , thus proving the Remark.

Theorem 2.3. (Dirichlet Solution) For a subset F of $\{N, c(a, b)\}$ and $E \subset \mathring{F}$. Suppose f(a) is a function on $F \setminus E$. Then, a unique function s(a) exists on F such that if $a \in E$ then Ks(a) = 0 and s = f on $F \setminus E$.

Proof. For some positive M, let $|f(a)| \le M$ on $F \setminus E$. Then the function v(a) on F satisfies $Kv \ge 0$ on E such that v = f on $F \setminus E$ and v = M on E. Assume that the family of all functions u(a) on E is denoted by \mathfrak{F} such that u = f on $E \setminus E$ and $E \setminus$

then $\inf(u_1, u_2) \in \mathfrak{F}$ so that we can extract a subsequence $\{u_n\}$ from \mathfrak{F} such that $s(a) = \lim u_n(a)$ on F. Consequently s(a) = f(a) on $F \setminus E$ and $Ks \ge 0$ on E.

Actually Ks(a) = 0 for every $a \in E$. For take $z \in E$ and consider the function s_z on E such that $s_z(a) = s(a)$ and $s_z(z) = \sum_{b \sim z} s(b)c(z,b)$ if $a \in E$ and $a \neq z$. Then $s_z \in \mathfrak{F}$ and $s_z \leq s$ on E. This means, since E is the infimum in \mathfrak{F} , E0, E2 on E3 so that E3 on E4. The minimum principle implies that the solution E4 is unique (corollary 2.1).

3. The family of all functions \mathfrak{F}

Note: The family of all functions u(a) on \mathcal{N} for which $Ku(a) \geq 0$ on \mathcal{N} is denoted as \mathfrak{F} .

Lemma 3.1. *If* $v_1, v_2 \in \mathfrak{F}$ *then* $v = \inf(v_1, v_2) \in \mathfrak{F}$.

Proof. Suppose
$$v(e) = v_1(e)$$
, at a vertex e . Then $Kv(e) = v(e) - \sum_b c(e,b)v(b) \ge v_1(e) - \sum_b c(e,b)v_1(b) = Kv_1(e) \ge 0$. Hence $v \in \mathfrak{F}$.

Lemma 3.2. *If* $u \in \mathcal{F}$ *then* u *is non-negative on* \mathcal{N} .

Proof. Assume that u takes negative values on \mathcal{N} . Then at a vertex z, $u(z) = -m = \inf_{a \in \mathcal{N}} u(a)$ for some m > 0. Then we see that, u = -m on \mathcal{N} by the minimum principle. But then $Ku(a) = -m - \sum_{b} c(a,b)(-m) = -[1-c(a)]m$. Since c(b) < 1 at least at one vertex b, Ku(b) < 0, a contradiction. \square

Theorem 3.1. *The convex cone* \mathfrak{F} *is a lattice representing a natural order.*

Proof. If $u_1, u_2 \in \mathcal{F}$, then by the above Lemma 3.1 inf $(u_1, u_2) \in \mathcal{F}$.

Let $f = \sup(u_1, u_2)$. Then $f \le u_1 + u_2 \in \mathfrak{F}$. Let \mathbb{F} be the subfamily of \mathfrak{F} such that $\mathbb{F} = \{v \in \mathfrak{F}, v \ge f\}$. Note that \mathbb{F} is a lower directed family in the sense that if $v_1, v_2 \in \mathbb{F}$, then $\inf(v_1, v_2) \in \mathbb{F}$, so that we can extract a decreasing sequence $v_n \in \mathbb{F}$ such that if $v_0 = \lim_n v_n$ then $v_0 \in \mathbb{F}$. Clearly $v_0 = u_1 \vee u_2$. Hence \mathfrak{F} is lattice representing the natural order.

Theorem 3.2. (*Maximum Principle*): Let G be a subset of N. If u(a) is a function on G, $Ku(a) \le 0$ if $a \in \mathring{G}$ and $u(a) \le M \ge 0$ on ∂G , then $u \le M$ on G.

Proof. Let v(a) = u(a) - M on G and on N, $s(a) = \sup(v(a), 0)$ extended by 0 outside G. Then $Ks(a) \le 0$ if $a \in \mathring{G}$ and s(a) = 0 if $a \in N \setminus \mathring{G}$. Hence $s = 0 \Rightarrow v \le 0$ on G.

Proposition 3.1. Let g(a) be a function defined on \mathcal{N} , Kg(a) = f(a). Then $g = s_1 - s_2$ where $s_1, s_2 \in \mathfrak{F}$; moreover g(a) has a representation $g(a) = \sum_b f(b)G_b(a)$ on \mathcal{N} .

Proof. Given Kg = f, write $Ks_1 = f^+$ and $Ks_2 = f^-$. Then $s_1, s_2 \in \mathfrak{F}$ and $K(s_1 - s_2) = f = Kg$ so that $g = s_1 - s_2 + h$ where Kh = 0, hence h = 0. Moreover, since $s_i(a) = \sum_b Ks_i(b)G_b(a)$ then $g(a) = \sum_b f(b)G_b(a)$ on N.

Remark 3.1. In particular K^{-1} is the matrix $(G_b(a))$, $a, b \in \mathcal{N}$.

Applications

- (1) Random walk has wide applications in the field of Image segmentation. The random walk algorithm, used in image processing can be seen as a form of random walk on a graph (refer [6] and [8]).
- (2) Eigen Functions has a wide application in Image Denoising and Reconstruction. Newer methods treat images as potential functions within a discretized Schrödinger equation, and the eigen functions of the associated Hamiltonian are used for image representation and denoising (refer [13]).
- (3) Modal Analysis: Engineers use modal analysis, which is based on eigenfunctions and eigenvalues, to predict how structures will respond to dynamic loads (e.g., earthquakes, wind).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] V. Anandam, Harmonic Function Theory on Infinite Networks, Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-21399-1_3.
- [2] V. Anandam, M. Damlakhi, Perturbed Laplace Operators on Finite Networks, Rev. Roum. Math. Pures Appl. 61 (2016), 75–92.
- [3] C. Arauz, A. Carmona, A.M. Encinas, Dirichlet-to-Robin Maps on Finite Networks, Appl. Anal. Discret. Math. 9 (2015), 85–102. https://www.jstor.org/stable/43666209.
- [4] E. Bendito, Á. Carmona, A.M. Encinas, Potential Theory for Schrödinger Operators on Finite Networks, Rev. Mat. Iberoam. 21 (2005), 771–818. https://doi.org/10.4171/rmi/435.
- [5] T. Biyikoğu, J. Leydold, P.F. Stadler, Laplacian Eigenvectors of Graphs, Springer, Berlin, 2007. https://doi.org/10. 1007/978-3-540-73510-6.
- [6] C. Chahine, A. Nakib, R. El Berbari, On The Random Walks Algorithms for Image Processing, in: International Conference on Metaheuristics and Nature Inspired Computing, META 2014, (2014).
- [7] F.R. Gantmacher, The Theory of Matrices, American Mathematical Society, (1959).
- [8] L. Grady, Random Walks for Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006), 1768–1783. https://doi.org/10.1109/tpami.2006.233.
- [9] B. Mohar, Some Applications of Laplace Eigenvalues of Graphs, in: Graph Symmetry, Springer, Dordrecht, 1997: pp. 225–275. https://doi.org/10.1007/978-94-015-8937-6_6.
- [10] M. Picardello, W. Woess, Random Walks and Discrete Potential Theory, Cambridge University Press, (1999).
- [11] L. Saloff-Coste, Random Walks on Finite Groups, in: Encyclopaedia of Mathematical Sciences, Springer, Berlin, Heidelberg, 2004: pp. 263–346. https://doi.org/10.1007/978-3-662-09444-0_5.
- [12] M.S. Priya, N. Nathiya, Subordinate Average Structures on Random Walks, Eur. J. Pure Appl. Math. 18 (2025), 5761. https://doi.org/10.29020/nybg.ejpam.v18i1.5761.
- [13] Z. Kaisserli, T. Laleg-Kirati, Image Representation and Denoising Using Squared Eigenfunctions of Schrodinger Operator, arXiv:1409.3720 (2014). https://doi.org/10.48550/arXiv.1409.3720.