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Abstract. On a finite graph N with a set of possibly non-symmetric transition indices {c(a, b)}, c(a, b) ≥ 0, c(a) =∑
b

c(a, b) ≤ 1, an operator Ku(a) = (I −A)u(a) = u(a) −
∑

c(a, b)u(b) is defined. We discuss properties of the operator

K. We prove that for an eigen function ξ(a) with positive entries, Kξ(a) = ρξ(a) where ρ > 0 and show that the eigen

value ρ is the smallest in the following sense: if for an eigen function η(a), Kη(a) = βη(a) then Reβ > ρ. This result

establishes the uniqueness and minimality of the positive eigenvalue associated with the positive eigenfunction. Finally,

it is proven that the set F = {u : Ku(a) ≥ 0} forms a convex cone that is a lattice under the natural order.

1. Introduction

A random walk {N , p(a, b)} on a finite graph N , generally p(a) =
∑
b

p(a, b) = 1 for every state

a (from Pickarddello and Woess [10] and Saloff-Coste, L. [11]). But in a reflective random walk

it is possible that p(a) < 1 for some a. A similar situation arises when we consider discrete

Schrödinger equation on a finite network {N , c(a, b)} [Bendito et al. [4]] with the Laplacian ∆u(a) =∑
b

c(a, b)[u(b) − u(a)] = q(a)u(a), q ≥ 0, q . 0. Setting p(a, b) = c(a,b)
c(a) , c(a) =

∑
b

c(a, b), the equation

reads
∑
b

p(a, b)u(b) = [1 +
q(a)
c(a) ]u(a) (or)

∑
b

p
′

(a, b)u(b) = u(a) where p
′

(a, b) = p(a,b)

1+ q(a)
c(a)

≤ p(a, b) and

p
′

(a) =
∑
b

p
′

(a, b) ≤ 1, p
′

(z) < 1 for atleast one a = z.

Considering these examples, we set out in this article a function theory on a finite network

{N , c(a, b)}, c(a) =
∑
b

c(a, b) ≤ 1 and c(a) < 1 for atleast one vertex a; c(a, b) ≥ 0 and c(a, b) > 0 if

and only if a ∼ b (neighbours); c(a, b) and c(b, a) may have different values.

Define the matrix K = (Kab), kaa = 1, kab = −c(a, b) representing the finite network {N , c(a, b)}.
By using the Perron-Frobenius theorem, (see Anandam. V and M. Damlakhi [2], C. Araúz et al. [3],

Gantmacher [7]) we prove that for an eigen function ξ(a) with positive entries Kξ(a) = ρξ(a),
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where ρ > 0; we show that the eigen value ρ is the smallest in the following sense: if for an eigen

function η(a), Kη(a) = βη(a) then Reβ > ρ. Also we show that if σ(a) is an eigen function with

all its entries real, Kσ(a) = ασ(a), then σ(a) has both positive and negative entries. We prove also

that if F is the set of all functions on N , F = {u : Ku(a) ≥ 0} then the convex cone F represents a

lattice of natural order.

2. Preliminaries

Let {N , C} represent a finite connected network where {c(a, b)} denote a collection of transition

functions over N such that c(a, b) is non-negative, c(a, b) is positive if only if a and b are adjacent,

and c(a, a) = 0 for all a ∈ N . Additionally, c(a) =
∑
b

c(a, b) must be less than or equal to one, and

there exists at least one vertex a = z such that c(z) < 1. A vertex a in {N , c(a, b)} is considered

interior to a subset G ⊂ N if a and all its neighbouring vertices i.e, b ∼ a belong to the subset G; the

set of all interior vertices of G is represented as G̊, while the boundary is denoted as ∂G = G\G̊. A

set G is defined as connected if, for any two distinct vertices a and b within G, there exists a path

{a = e0, e1, ....., en = b}, ei ∼ ei+1 where each adjacent pair ei ∼ ei+1 is contained in G, thus linking a
to b.

Definition 2.1. Laplacian(∆): Let s(x) be a real valued function defined on {N , C}. For a ∈ G̊, G ⊂ N ,
the Laplacian (∆) of s at a is defined as

∆s(a) =
∑
b∼a

c(a, b)[s(b) − s(a)]

Example 2.1. Finite network with its Laplacian:

Figure 1. Finite network

The vertex set of the given finite network is {a, b, c, d} and the edge set is {(a, b), (b, c), (b, d), (c, d)}
with the transition probabilities c(b, a) = 0.6, c(a, b) = 0.6, c(c, b) = 0.5, c(d, b) = 0.5, c(b, c) = 0.2,
c(d, c) = 0.5, c(c, d) = 0.5, c(b, d) = 0.2, we see that c(b) = c(c) = c(d) = 1 and c(a) < 1.
Then Laplacian matrix(L) is,
L = D(Degree matrix) −A(Probability transition matrix)
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L =


1 0 0 0

0 3 0 0

0 0 2 0

0 0 0 2

−


0 0.6 0 0

0.6 0 0.5 0.5

0 0.2 0 0.5

0 0.2 0.5 0



L =


1 −0.6 0 0

−0.6 3 −0.5 −0.5

0 −0.2 2 −0.5

0 −0.2 −0.5 2


Definition 2.2. Eigen function: An eigen function of a linear operator L is a non-zero function f that,
when acted upon by L, results in a scalar multiple of itself. This scalar multiple is called the eigenvalue λ
associated with that eigenfunction.
This is expressed by the eigenvalue equation: L[ f (a)] = λ f (a).
where:

• L is a linear operator.
• f (a) is the eigenfunction.
• λ is the eigenvalue, a scalar (which can be real or complex).

Example 2.2. The Eigen functions for the above finite network with the Laplacian matrix

L =


1 −0.6 0 0

−0.6 3 −0.5 −0.5

0 −0.2 2 −0.5

0 −0.2 −0.5 2

 is,

v1 =


0

0

−1

1

 for the eigen value λ1 = 5
2

v2 =


10.914

3.448

1

1

 for the eigen value λ2 = 0.810

v3 =


−0.587

0.409

1

1

 for the eigen value λ3 = 1.418
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v4 =


2.340

−8.857

1

1

 for the eigen value λ4 = 3.271

Definition 2.3. Random walk(from [12]):
Let {N , P} be a random walk with a finite number of states N and the probability transition matrix

P = {p(a, b)}, the transition probability from state a to state b is denoted as p(a, b). We assume {N , P} to be

• Connected (i.e, for any two distinct states in the random walk there exists a path connecting them).
• There exist no path from a state to itself (without self loops).

We say two states a and b are neighbours if there exists an edge between them and it is denoted by a ∼ b
and p(a) =

∑
b∼a

p(a, b) = 1 for every a ∈ N . We will define [a, b] as an edge if and only if the transition

probability of the [a, b] is positive.

Example 2.3. Consider a particle on a clock face with 12 positions numbered 1 to 12. The particle starts at
position 1 at each time step, it moves either forward (clockwise) one position or backward (counterclockwise)
one position. The state space isN = {0, 1, 2, ..12} with the set P = {p(a, b)} of transition probabilities given
by p(n, n + 1) = p(n, n − 1) = 1

2 , for n ≥ 0. The particle’s movement forms a path, which is the random
walk, where

∑
b∼a

p(a, b) = 1 for every state a ∈ N .

Definition 2.4. Lower directed family: Let (S,≤) is a partially ordered set. A non-empty set F ⊆ S is
called a lower directed family (or directed downwards) if, for every pair of elements a, b ∈ F, there exists an
element x in F such that x ≤ a and x ≤ b.

Definition 2.5. Convex cone: A set C is a convex cone if, for any vectors x and y in C, and any non-negative
scalars α and β, the linear combination αx + βy is also in C.

For a real-valued function u(a) on N , write Au(a) =
∑
b

c(a, b)u(b) and the operator Ku(a) =

(I−A)u(a) = u(a)−
∑
b

c(a, b)u(b). With {N , c(a, b)}we associate a random walk {N , p(a, b)}, taking

p(a, b) = c(a,b)
c(a) . The Laplacian ∆ of this random walk is ∆u(a) =

∑
b

p(a, b)[u(b) − u(a)].

Then,

−∆u(a) =u(a) −
∑

p(a, b)u(b)

=u(a) −
∑ c(a, b)

c(a)
u(b)

=u(a) −
1

c(a)
Au(a)

=u(a) +
1

c(a)
[K − I]u(a)

so that Ku(a) =[1− c(a)]u(a) − c(a)∆u(a).
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Hence in particular −c(a)∆u(a) ≤ Ku(a) if u(a) ≥ 0.

Suppose Kξ(a) = ρξ(a) where ρ is a constant and ξ(a) > 0, then −c(a)∆ξ(a) ≤ Kξ(a) = ρξ(a).
Suppose now ρ ≤ 0, then −c(a)∆ξ(a) ≤ 0. Since ∆ξ(a) ≥ 0, on a finite network ξ(a) is a constant

α > 0. From Kξ(a) = ρξ(a), we get (I −A)α = ρα. Hence [1− c(a)]α = ρα. Since 0 < c(z) < 1, we

conclude ρ = 1 − c(z) > 0, contradicting the assumption ρ ≤ 0. consequently we conclude that

ρ > 0. (For Laplace eigen values of finite graphs, see for example Mohar. B [9] and Biyikoglu et

al. [5]).

Now (I − K) is a matrix with all its entries non-negative, see example 2.1, the probability

transition matrix (A) is,


0 0.6 0 0

0.6 0 0.5 0.5

0 0.2 0 0.5

0 0.2 0.5 0

. Hence by the Perron-Frobenius theorem there is the

largest eigen value λ with associated eigen vectors ξ(a); the entries of ξ(a) are all of the same sign

so that we can take ξ(a) > 0 and
∑
a
ξ(a) = 1 (refer Theorem.2.2, [2]). Note also the eigen space

associated withN is one, hence the eigen vector ξ(a) > 0 and
∑
a
ξ(a) = 1 is uniquely determined.

Now (I − K)ξ(a) = λξ(a) ⇒ Kξ(a) = (1 − λ)ξ(a) = ρξ(a). Then as we just saw above, ρ > 0.

Remark also that ρ is the smallest eigen value of the matrix K. Note also that p < 1. The reason for

calling ρ the "smallest" eigen value is: ρ = 1− λ and λ is the largest eigen value of (1− k).

Proposition 2.1. Suppose Kσ(a) = βσ(a) for some β real or complex. Then Reβ > ρ.

Proof. If Kσ(a) = βσ(a)
Then

(I −K)σ(a) =Iσ(a) −Kσ(a)

=σ(a) − βσ(a)

=(1− β)σ(a)

By Perron-Frobenius theorem,

|1− β| < λ = 1− ρ

By the property of complex numbers,

Re(1− β) ≤ |1− β|

1−Reβ ≤ |1− β| < 1− ρ

ρ < Reβ

�

Proposition 2.2. Any real eigenvector of K other than ξ(a) has both positive and negative entries.
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Proof. Suppose Kη(a) = βη(a) where η(a) has only real entries. Then β is real so that β > ρ. where

ρ is the smallest eigen value Kξ(a) = ρξ(a). Suppose now every entry of η(a) is non-negative,

then

ξ(a)Kη(a) = ξ(a)[βη(a)]

≥ ξ(a)[ρη(a)]

= [ρξ(a)]η(a)

= [Kξ(a)]η(a)

Hence

ξ(a)[η(a) −
∑

b

c(a, b)η(b)] ≥ [ξ(a) −
∑

c(a, b)ξ(b)]η(a)∑
b

c(a, b)[ξ(b)η(a) − ξ(a)η(b)] ≥ 0

∑
b

c(a, b)ξ(a)ξ(b)[
η(a)
ξ(a)

−
η(b)
ξ(b)

] ≥ 0

∑
b

c(a, b)ξ(b)[
η(a)
ξ(a)

−
η(b)
ξ(b)

] ≥ 0

That is, −∆∗[ η(a)ξ(a) ] ≥ 0 where ∆∗ is the Laplacian associated with the finite network {N , c∗(a, b) =

c(a, b)ξ(b)}. Hence, for all a inN , η(a)ξ(a) = α, a constant, α ≥ 0.

Clearly α cannot be 0 so that η(a) = αξ(a),α > 0. Then βη(a) = Kη(a) = αKξ(a) = α[ρξ(a)] =
ρη(a) for all a inN . Since η(a) > 0 for atleast one a = z, we conclude that β = ρ, not valid.

Consequently the assumption that all entries of η(a) are non-negative is not valid. That is, η(a)
contains atleast one negative entry. Similarly η(a) should have atleast one positive entry. So, η(a)
has both positive and negative entries. �

Theorem 2.1. (Poisson) If f (a) is given on {N , c(a, b)}, then there exists a unique function u(a) such that
Ku(a) = f (a) onN .

Proof. Since the smallest eigenvalue ρ of the matrix K is ρ > 0, 0 is not eigenvalue of K, hence K is

invertible, so the theorem. �

Proposition 2.3. If u(a) ≥ 0 and Ku(a) ≤ 0, then u = 0.

Proof. Since −c(a)∆u(a) = [c(a) − 1]u(a) + Ku(a) ≤ 0, then ∆u(a) ≥ 0, hence u(a) is a constant

α ≥ 0. But then 0 ≥ Ku(a) = αK1 = α[1− c(a)]. In particular, α[1− c(a)] ≤ 0 implying that α ≤ 0 so

that α = 0. �

Remark 2.1. In the context of potential theory on finite graphs, (see Anandam [1], chapter 2) Kξ(a) =

ρξ(a) ≥ 0 means that ξ(a) is a K-subharmonic function. From the above proposition if u(a) is a K-
superharmonic function such that 0 ≤ u(a) ≤ ξ(a), then u(a) = 0. Thus, actually the function ξ(a) is a
K-potential.
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Green’s Function: Given any vertex e, there exists a unique function Ge(a) on N such that

KGe(a) = δe(a). The uniqueness of Ge(a) follows from the fact that for the invertible K, if K f = 0

then f = 0.

Remark 2.2. For any real-valued function f (a) on N , the unique Poisson solution of Ku(a) = f (a) is
given by u(a) =

∑
b

f (b)Gb(a).

Theorem 2.2. (Minimum Principle): Let E be a subset ofN . If u(a) is a function onN such that Ku(a) ≥ 0

for each a in E and u(a) ≥ 0 onN\E, then u ≥ 0 onN .

Proof. Suppose u(a) takes negative values. If min u(a) = −m < 0, then there exist z ∈ E, where

u(z) = −m. Since −m = u(z) ≥
∑
b∼z

c(z, b)u(b) then
∑
b∼z

c(z, b)[u(b) + m] + m[1 − c(z)] ≤ 0. Since

u(b) + m ≥ 0 and m[1− c(z)] ≥ 0, then u(b) = −m for all b ∼ z.

Let e be a vertex in N\E. Then there exists a path {z = z0, z1, ....., zn = e} connecting z to e. Let i
be the smallest index such that zi ∈ E and zi+1 ∈ N\E. Note that u(zi) = −m, hence u(zi+1) = −m,

contradicting u(zi+1) ≥ 0 since zi+1 ∈ N\E. This shows that u(a) cannot take negative values. �

A variation: Let u(a) be defined on a subset E. If Ku ≥ 0 on E and u(a) ≥ −α, α ≥ 0, on ∂E then

u(a) ≥ −α on E.

Proof. The function v(a) = u(a) + α on E extended by 0 on N\E satisfies Kv(a) ≥ 0 for a ∈ E and

v(a) ≥ 0 if a ∈ ∂E. Hence v(a) ≥ 0 so that u(a) ≥ −α on E. �

Corollary 2.1. If u(a) is a function on N such that Ku(a) = 0 at each vertex of a subset E and u(a) = 0

onN\E, then u = 0 onN .

Corollary 2.2. For a function u(a) on N with Ku(a) ≥ 0, write A = {a : Ku(a) > 0}. Let s(a) be a
function having Ks(a) ≥ 0. If s(a) ≥ u(a) on A, then s(a) ≥ u(a) onN .

Proof. Let v(a) = in f [s(a), u(a)]. Then Kv(a) ≥ 0 and v(a) = u(a) on A. Let f (a) = u(a) − v(a) on

N . Then f (a) = 0 on A and K f (a) ≤ 0 on N/A. Hence by the minimum principle, f (a) ≤ 0 on N

which implies that v = u onN , so that u ≤ s onN . �

Remark 2.3. (1) For a vertex e inN , the Green’s function Ge(a) ≤ Ge(e) for all a.
(2) If a non-zero function s(a) is defined onN , Ks ≥ 0, then s > 0 onN and s(a)

s(e) ≥
Ge(a)
Ge(e)

.

Proof. Let v(a) = s(e)
Ge(e)

Ge(a). Then A = {a : kv(a) > 0} = {e}. Now at e, s(e) = v(e). Hence

by corollary 2.2, s(a) ≥ v(a) onN , thus proving the Remark. �

Theorem 2.3. (Dirichlet Solution) For a subset F of {N , c(a, b)} and E ⊂ F̊. Suppose f (a) is a function on
F\E. Then, a unique function s(a) exists on F such that if a ∈ E then Ks(a) = 0 and s = f on F\E .

Proof. For some positive M, let | f (a)| ≤ M on F\E. Then the function v(a) on F satisfies Kv ≥ 0 on

E such that v = f on F\E and v = M on E. Assume that the family of all functions u(a) on F is

denoted by F such that u = f on F\E and ∆u ≥ 0 on E. Take s(a) = inf
u∈F

u(a). Note that if u1, u2 ∈ F
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then inf(u1, u2) ∈ F so that we can extract a subsequence {un} from F such that s(a) = lim un(a) on

F. Consequently s(a) = f (a) on F\E and Ks ≥ 0 on E.

Actually Ks(a) = 0 for every a ∈ E. For take z ∈ E and consider the function sz on F such that

sz(a) = s(a) and sz(z) =
∑
b∼z

s(b)c(z, b) if a ∈ F and a , z. Then sz ∈ F and sz ≤ s on F. This means,

since s is the infimum in F, s = sz on F so that Ks(a) = 0 if a = z. The minimum principle implies

that the solution s(a) is unique (corollary 2.1). �

3. The family of all functions F

Note: The family of all functions u(a) onN for which Ku(a) ≥ 0 onN is denoted as F.

Lemma 3.1. If v1, v2 ∈ F then v = inf(v1, v2) ∈ F.

Proof. Suppose v(e) = v1(e), at a vertex e. Then Kv(e) = v(e) −
∑
b

c(e, b)v(b) ≥ v1(e) −∑
c(e, b)v1(b) = Kv1(e) ≥ 0. Hence v ∈ F. �

Lemma 3.2. If u ∈ F then u is non-negative onN .

Proof. Assume that u takes negative values on N . Then at a vertex z, u(z) = −m = inf
a∈N

u(a) for

some m > 0. Then we see that, u = −m on N by the minimum principle. But then Ku(a) = −m−∑
b

c(a, b)(−m) = −[1− c(a)]m. Since c(b) < 1 atleast at one vertex b, Ku(b) < 0, a contradiction. �

Theorem 3.1. The convex cone F is a lattice representing a natural order.

Proof. If u1, u2 ∈ F, then by the above Lemma 3.1 inf(u1, u2) ∈ F.

Let f = sup(u1, u2). Then f ≤ u1 + u2 ∈ F. Let F be the subfamily ofF such that F = {v ∈ F, v ≥ f }.
Note that F is a lower directed family in the sense that if v1, v2 ∈ F, then inf(v1, v2) ∈ F, so that we

can extract a decreasing sequence vn ∈ F such that if v0 = limnvn then v0 ∈ F. Clearly v0 = u1 ∨ u2.

Hence F is lattice representing the natural order. �

Theorem 3.2. (Maximum Principle): Let G be a subset of N . If u(a) is a function on G, Ku(a) ≤ 0 if
a ∈ G̊ and u(a) ≤M ≥ 0 on ∂G, then u ≤M on G.

Proof. Let v(a) = u(a) −M on G and on N , s(a) = sup(v(a), 0) extended by 0 outside G. Then

Ks(a) ≤ 0 if a ∈ G̊ and s(a) = 0 if a ∈ N\G̊. Hence s = 0⇒ v ≤ 0 on G. �

Proposition 3.1. Let g(a) be a function defined onN , Kg(a) = f (a). Then g = s1 − s2 where s1, s2 ∈ F;
moreover g(a) has a representation g(a) =

∑
b

f (b)Gb(a) onN .

Proof. Given Kg = f , write Ks1 = f+ and Ks2 = f−. Then s1, s2 ∈ F and K(s1 − s2) = f = Kg
so that g = s1 − s2 + h where Kh = 0, hence h = 0. Moreover, since si(a) =

∑
b

Ksi(b)Gb(a) then

g(a) =
∑
b

f (b)Gb(a) onN . �

Remark 3.1. In particular K−1 is the matrix (Gb(a)), a, b ∈ N .
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Applications

(1) Random walk has wide applications in the field of Image segmentation. The random walk

algorithm, used in image processing can be seen as a form of random walk on a graph

(refer [6] and [8]).

(2) Eigen Functions has a wide aaplication in Image Denoising and Reconstruction. Newer

methods treat images as potential functions within a discretized Schrödinger equation, and

the eigen functions of the associated Hamiltonian are used for image representation and

denoising (refer [13]).

(3) Modal Analysis: Engineers use modal analysis, which is based on eigenfunctions and

eigenvalues, to predict how structures will respond to dynamic loads (e.g., earthquakes,

wind).
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