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Abstract. On a finite graph N with a set of possibly non-symmetric transition indices {c(a,b)}, c¢(a,b) > 0, c(a) =
Y.c(a,b) <1, an operator Ku(a) = (I-A)u(a) = u(a) — Y. c(a,b)u(b) is defined. We discuss properties of the operator
b

K. We prove that for an eigen function &(a) with positive entries, K&(a) = p&(a) where p > 0 and show that the eigen
value p is the smallest in the following sense: if for an eigen function n(a), Kn(a) = pn(a) then Rep > p. This result
establishes the uniqueness and minimality of the positive eigenvalue associated with the positive eigenfunction. Finally,

it is proven that the set § = {u : Ku(a) > 0} forms a convex cone that is a lattice under the natural order.

1. INTRODUCTION

A random walk {N, p(a,b)} on a finite graph N, generally p(a) = }.p(a,b) = 1 for every state
b

a (from Pickarddello and Woess [10] and Saloff-Coste, L. [11]). But in a reflective random walk
it is possible that p(a) < 1 for some a. A similar situation arises when we consider discrete
Schrodinger equation on a finite network {N, c(a, b)} [Bendito et al. [4]] with the Laplacian Au(a) =

¥ c(a,b)[u(b) - u(a)] = q(a)u(a), g > 0,q # 0. Setting p(a,b) = <2}, c(a) = Y. c(a,b), the equation
b b

reads ). p(a,b)u(b) = [1+ %]u(a) (or) Y. p'(a,b)u(b) = u(a) where p'(a,b) = P(”’b)) <p(a,b) and
b b
p(a) =Y p (ab) <1,p (z) <1 for atleast one a = z.
b

Considering these examples, we set out in this article a function theory on a finite network
{N,c(a,b)}, c(a) = Y. c(a,b) <1and c(a) < 1 for atleast one vertex a; c(a,b) > 0 and c(a,b) > 0 if
b

and only if a ~ b (neighbours); ¢(a, b) and c(b,a) may have different values.
Define the matrix K = (Ky), kaa = 1, kypy = —c(a, b) representing the finite network {N/, c(a, b)}.
By using the Perron-Frobenius theorem, (see Anandam. V and M. Damlakhi [2], C. Aratiz et al. [3],

Gantmacher [7]) we prove that for an eigen function &(a) with positive entries K&(a) = pé(a),
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where p > 0; we show that the eigen value p is the smallest in the following sense: if for an eigen
function n(a), Kn(a) = pn(a) then Ref > p. Also we show that if g(a) is an eigen function with
all its entries real, Ko(a) = ac(a), then ¢(a) has both positive and negative entries. We prove also
that if § is the set of all functions on N, § = {u : Ku(a) > 0} then the convex cone § represents a

lattice of natural order.

2. PRELIMINARIES

Let {N, C} represent a finite connected network where {c(a,b)} denote a collection of transition
functions over N such that c(a, b) is non-negative, c(a, b) is positive if only if a2 and b are adjacent,

and c(a,a) = 0 for alla € N. Additionally, c(a) = ). c(a,b) must be less than or equal to one, and
b

there exists at least one vertex a4 = z such that c(z) < 1. A vertex a in {N,c(a,b)} is considered
interior to a subset G C N if a and all its neighbouring vertices i.e, b ~ a belong to the subset G; the
set of all interior vertices of G is represented as G, while the boundary is denoted as dG = G\G. A
set G is defined as connected if, for any two distinct vertices a and b within G, there exists a path
la =eg,e1,....e0 = b}, e; ~ €;41 where each adjacent pair ¢; ~ e;;1 is contained in G, thus linking a
tob.

Definition 2.1. Laplacian(A): Let s(x) be a real valued function defined on {N,C}. Forae G, G c N,
the Laplacian (A) of s at a is defined as

As(a) = Y c(a,b)[s(b) - 5(a)]
b~a

Example 2.1. Finite network with its Laplacian:

FiGure 1. Finite network

The vertex set of the given finite network is {a,b,c,d} and the edge set is {(a,b), (b,c), (b,d), (c,d)}
with the transition probabilities c(b,a) = 0.6, ¢(a,b) = 0.6, c(c,b) = 0.5, ¢(d,b) = 0.5, ¢(b,c) = 0.2,
c(d,c) =0.5,¢c(c,d) = 0.5, c(b,d) = 0.2, we see that c¢(b) = c(c) = c(d) = 1and c(a) < 1.

Then Laplacian matrix(L) is,

L = D(Degree matrix) — A(Probability transition matrix)
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1000 0 06 0 O
[— 0 300f |06 0 0505
0020 0 02 0 05
0 00 2 0 02 05 0
1 -06 0 0
[ — -06 3 -05 -05

0 -02 2 -05
0 -02 -05 2

Definition 2.2. Eigen function: An eigen function of a linear operator L is a non-zero function f that,
when acted upon by L, results in a scalar multiple of itself. This scalar multiple is called the eigenvalue A
associated with that eigenfunction.

This is expressed by the eigenvalue equation: L[f(a)] = Af(a).

where:

e L is a linear operator.
e f(a) is the eigenfunction.
o A\ is the eigenvalue, a scalar (which can be real or complex).

Example 2.2. The Eigen functions for the above finite network with the Laplacian matrix
1 -06 O 0
-06 3 -05 -05].
L= is,
0o -02 2 -05
0 -02 -05 2
[0
0 , 5
= 1 for the eigen value A1 = 3

1

10.914
3.448
Up = . for the eigen value A, = 0.810

1

[—0.587

0.409
U3 = for the eigen value A3 = 1.418
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2.340

—8.857
vy = for the eigen value Ay = 3.271

Definition 2.3. Random walk(from [12]):
Let {N,P} be a random walk with a finite number of states N and the probability transition matrix
P = {p(a, )}, the transition probability from state a to state b is denoted as p(a, b). We assume {N, P} to be
o Connected (i.e, for any two distinct states in the random walk there exists a path connecting them).

o There exist no path from a state to itself (without self loops).

We say two states a and b are neighbours if there exists an edge between them and it is denoted by a ~ b
and p(a) = Y, p(a,b) =1 for every a € N. We will define [a,b] as an edge if and only if the transition
b~a

probability of the [a, b] is positive.

Example 2.3. Consider a particle on a clock face with 12 positions numbered 1 to 12. The particle starts at
position 1 at each time step, it moves either forward (clockwise) one position or backward (counterclockwise)
one position. The state space is N = {0,1,2,..12} with the set P = {p(a, b)} of transition probabilities given
by p(n,n+1) = p(n,n—1) = 3, for n > 0. The particle’s movement forms a path, which is the random
walk, where Y, p(a,b) = 1 for every statea € N.

b~a
Definition 2.4. Lower directed family: Let (S, <) is a partially ordered set. A non-empty set F C S is
called a lower directed family (or directed downwards) if, for every pair of elements a, b € F, there exists an
element x in F such that x <aand x < b.

Definition 2.5. Convex cone: A set C is a convex cone if, for any vectors x and y in C, and any non-negative

scalars a and B, the linear combination ax + By is also in C.

For a real-valued function u(a) on N, write Au(a) = Y. c(a,b)u(b) and the operator Ku(a) =
b

(I-=A)u(a) =u(a)—Y c(a, b)u(b). With {N,c(a, b)} we associate a random walk {N, p(a, b)}, taking
b

p(a,b) = Ci?gb)) The Laplacian A of this random walk is Au(a) = Y p(a, b)[u(b) — u(a)].
b
Then,

=u(a) - Z Ciﬂ(l;ll;)u(b)
1

=u(a) - @Au(a)

=u(a) + L[K —Tu(a)
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Hence in particular —c(a)Au(a) < Ku(a) if u(a) > 0.

Suppose K& (a) = pé(a) where p is a constant and &(a) > 0, then —c(a)A&(a) < K&(a) = p&(a).
Suppose now p < 0, then —c(a)A&(a) < 0. Since A&(a) > 0, on a finite network &(a) is a constant
a > 0. From K&(a) = pé(a), we get (I — A)a = pa. Hence [1 —c(a)]a = pa. Since 0 < ¢(z) < 1, we
conclude p = 1 —-¢(z) > 0, contradicting the assumption p < 0. consequently we conclude that
p > 0. (For Laplace eigen values of finite graphs, see for example Mohar. B [9] and Biyikoglu et
al. [5]).

Now (I —K) is a matrix with all its entries non-negative, see example 2.1, the probability

0 06 0 O
. ) . 0.6 0 05 05 ) .
transition matrix (A) is, 0 02 0 o5l Hence by the Perron-Frobenius theorem there is the
0 02 05 0

largest eigen value A with associated eigen vectors &(a); the entries of £(a) are all of the same sign
so that we can take &(a) > 0 and ) &(a) = 1 (refer Theorem.2.2, [2]). Note also the eigen space
associated with N is one, hence theu eigen vector £(a) > 0and ) &(a) = 1 is uniquely determined.
Now (I-K)&(a) = Aé(a) = Ké(a) = (1-A)&(a) = pé(a). "lg"hen as we just saw above, p > 0.
Remark also that p is the smallest eigen value of the matrix K. Note also that p < 1. The reason for

calling p the "smallest" eigen value is: p = 1— A and A is the largest eigen value of (1 —k).
Proposition 2.1. Suppose Kao(a) = Bo(a) for some B real or complex. Then Rep > p.
Proof. 1f Ko(a) = Bo(a)
Then
(I-K)o(a) =Io(a) — Ko(a)
—o(a) - fo(a)
—~(1-p)o(a)
By Perron-Frobenius theorem,
L-pl<A=1-p
By the property of complex numbers,
Re(1-p) <|1—-p|
1-Ref<|1-Bl<1l-p
p < Rep

Proposition 2.2. Any real eigenvector of K other than &(a) has both positive and negative entries.
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Proof. Suppose K1(a) = pn(a) where 1(a) has only real entries. Then f is real so that § > p. where
p is the smallest eigen value K&(a) = pé&(a). Suppose now every entry of 1(a) is non-negative,
then

Hence

n(a) _n(b)
,b b)|=/—=-—<]20
L@@ g = )
(@) _n(b)
D) ED) == —-——=]20
;cw O~ 7))
That is, —A* [%] > 0 where A" is the Laplacian associated with the finite network {N, c*(a,b) =
c(a,b)&(b)}. Hence, for all ain N, ) _ a, a constant, a > 0.

&(a)
Clearly a cannot be 0 so that 17(a) = a&(a),a > 0. Then Bn(a) = Kn(a) = aKé&(a) = a[p&(a)] =

pn(a) for all a in N. Since n(a) > 0 for atleast one a = z, we conclude that § = p, not valid.
Consequently the assumption that all entries of n(a) are non-negative is not valid. That is, 1(a)
contains atleast one negative entry. Similarly 7(a) should have atleast one positive entry. So, n(a)

has both positive and negative entries. m]

Theorem 2.1. (Poisson) If f(a) is given on {N,c(a,b)}, then there exists a unique function u(a) such that
Ku(a) = f(a) on N.

Proof. Since the smallest eigenvalue p of the matrix K is p > 0, 0 is not eigenvalue of K, hence K is

invertible, so the theorem. m]
Proposition 2.3. If u(a) > 0 and Ku(a) <0, then u = 0.

Proof. Since —c(a)Au(a) = [c(a) — 1]u(a) + Ku(a) < 0, then Au(a) > 0, hence u(a) is a constant
a > 0. But then 0 > Ku(a) = aK1 = a[1 —c(a)]. In particular, a[1 — ¢(a)] < 0 implying that & < 0so
thata = 0. m]

Remark 2.1. In the context of potential theory on finite graphs, (see Anandam [1], chapter 2) K&(a) =
p&(a) = 0 means that &(a) is a K-subharmonic function. From the above proposition if u(a) is a K-
superharmonic function such that 0 < u(a) < &(a), then u(a) = 0. Thus, actually the function &(a) is a
K-potential.
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Green’s Function: Given any vertex e, there exists a unique function G.(a) on N such that
KGe(a) = 0¢(a). The uniqueness of G,(a) follows from the fact that for the invertible K, if Kf = 0
then f = 0.

Remark 2.2. For any real-valued function f(a) on N, the unique Poisson solution of Ku(a) = f(a) is
given by u(a) = Zb:f(b)Gb(a).

Theorem 2.2. (Minimum Principle): Let E be a subset of N. If u(a) is a function on N such that Ku(a) > 0
foreach ain E and u(a) > 0 on N\E, then u > 0on N.

Proof. Suppose u(a) takes negative values. If min u(a) = —m < 0, then there exist z € E, where
u(z) = —m. Since —-m = u(z) > Y, ¢(z,b)u(b) then Y, c(z,b)[u(b) + m] +m[l —c(z)] < 0. Since
b~z b~z

u(b) +m>0and m[1—-c(z)] 20, then u(b) = —m forall b ~ z.
Let e be a vertex in N\E. Then there exists a path {z = z¢, 21, .....,z, = e} connecting z to e. Let i
be the smallest index such that z; € E and z;,1 € N\E. Note that u(z;) = —m, hence u(z;11) = -m,

contradicting u(z;+1) > 0 since z;11 € N\E. This shows that u(a) cannot take negative values. O

A variation: Let u(a) be defined on a subset E. If Ku > 0 on E and u(a) > —a, @ > 0, on JE then

u(a) > —aonkE.

Proof. The function v(a) = u(a) + a on E extended by 0 on N\E satisfies Kv(a) > 0 for a € E and
v(a) > 0ifa € JE. Hence v(a) > 0 so that u(a) > —a on E. mi

Corollary 2.1. If u(a) is a function on N such that Ku(a) = 0 at each vertex of a subset E and u(a) = 0
on N\E, thenu = 0on N.

Corollary 2.2. For a function u(a) on N with Ku(a) > 0, write A = {a : Ku(a) > 0}. Let s(a) be a
function having Ks(a) > 0. If s(a) > u(a) on A, then s(a) > u(a) on N.

Proof. Letv(a) = inf[s(a),u(a)]. Then Kv(a) > 0 and v(a) = u(a) on A. Let f(a) = u(a) —v(a) on
N. Then f(a) = 0on A and Kf(a) < 0 on N/A. Hence by the minimum principle, f(a) <0on N
which implies that v = u on N, so that u <son N. O

Remark 2.3. (1) For avertex e in N, the Green’s function G,(a) < G,(e) for all a.

(2) If a non-zero function s(a) is defined on N, Ks > 0, then s > 0 on N and % > g"gj

N2

—

Proof. Letv(a) = ée(fz Ge(a). Then A = {a : kv(a) > 0} = {e}. Now ate, s(e) = v(e). Hence

)
by corollary 2.2, s(a) > v(a) on N, thus proving the Remark. ]

Theorem 2.3. (Dirichlet Solution) For a subset F of (N, c(a,b)} and E C F. Suppose f(a) is a function on
F\E. Then, a unique function s(a) exists on F such that ifa € E then Ks(a) = 0and s = f on F\E .

Proof. For some positive M, let |f(a)| < M on F\E. Then the function v(a) on F satisfies Kv > 0 on

E such thatv = f on F\E and v = M on E. Assume that the family of all functions u(a) on F is

denoted by & such that u = f on F\E and Au > 0 on E. Take s(a) = intf\r u(a). Note thatif uy, up € §
ue
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then inf(uy, uy) € § so that we can extract a subsequence {u,} from § such that s(a) = limu,(a) on
F. Consequently s(a) = f(a) on F\E and Ks > 0 on E.
Actually Ks(a) = 0 for every a € E. For take z € E and consider the function s, on F such that
sz(a) = s(a) and s,(z) = bZ s(b)c(z,b) ifa € Fand a # z. Then s, € § and s; < s on F. This means,
~2

since s is the infimum in &, s = s, on F so that Ks(a) = 0 if 2 = z. The minimum principle implies
that the solution s(a) is unique (corollary 2.1). ]

3. THE FAMILY OF ALL FUNCTIONS §

Note: The family of all functions u(a) on N for which Ku(a) > 0 on N is denoted as §.
Lemma 3.1. Ifvy, v € § then v = inf(v1,v2) € &.

Proof. Suppose v(e) = wvi(e), at a vertex e. Then Kv(e) = v(e) — Y. c(e,b)v(b) = vi(e) —
Y.c(e,b)vi(b) = Kvi(e) > 0. Hence v € §. ]

Lemma 3.2. If u € § then u is non-negative on N.

Proof. Assume that u takes negative values on N. Then at a vertex z, u(z) = —m = inAf/ u(a) for
ae
some m > 0. Then we see that, u = —m on N by the minimum principle. But then Ku(a) = —m —

Y. c(a,b)(—m) = —[1 —c(a)]m. Since c¢(b) < 1 atleast at one vertex b, Ku(b) < 0, a contradiction. O
b

Theorem 3.1. The convex cone § is a lattice representing a natural order.

Proof. If uy,u; € §, then by the above Lemma 3.1 inf(u1, up) € &.

Let f = sup(uy, u2). Then f < uy +up € §. Let IF be the subfamily of & such thatF = {v € §,v > f.
Note that FF is a lower directed family in the sense that if v, v, € F, then inf(v1,v2) € F, so that we
can extract a decreasing sequence v, € [F such that if v9 = lim,v, then vy € F. Clearly vy = uy V us.

Hence  is lattice representing the natural order. m]

Theorem 3.2. (Maximum Principle): Let G be a subset of N. If u(a) is a function on G, Ku(a) < 0 if
aeGandu(a) <M > 0ondG, thenu < Mon G.

Proof. Let v(a) = u(a) —M on G and on N, s(a) = sup(v(a),0) extended by 0 outside G. Then
Ks(a) <0ifae Gands(a) = 0ifa € N\G. Hences =0 = v < 0onG. m]

Proposition 3.1. Let g(a) be a function defined on N, Kg(a) = f(a). Then § = s1 — s, where s1,s2 € §;
moreover g(a) has a representation g(a) =Y. f(b)Gy(a) on N.
b

Proof. Given Kg = f, write Ks; = f* and Ks; = f~. Then s1,s, € § and K(s1 —s2) = f = Kg
so that g = s1 —sp + h where Kh = 0, hence i = 0. Moreover, since s;(a) = Y Ks;(b)Gy(a) then
b

g(a) = Zb]f(b)Gb(a) on N. O

Remark 3.1. In particular K~ is the matrix (Gy(a)), a,b € N.
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Applications

(1) Random walk has wide applications in the field of Image segmentation. The random walk
algorithm, used in image processing can be seen as a form of random walk on a graph
(refer [6] and [8]).

(2) Eigen Functions has a wide aaplication in Image Denoising and Reconstruction. Newer
methods treat images as potential functions within a discretized Schrodinger equation, and
the eigen functions of the associated Hamiltonian are used for image representation and
denoising (refer [13]).

(3) Modal Analysis: Engineers use modal analysis, which is based on eigenfunctions and
eigenvalues, to predict how structures will respond to dynamic loads (e.g., earthquakes,

wind).
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