An Analytical and Numerical Approach to Vegetation–Nutrient Dynamics Involving Symbiotic Nitrogen Fixation and the Allee Effect

Main Article Content

Shaher Momani, Iqbal M. Batiha, Ahmed Bouchenak, Koichi Unami

Abstract

This study develops a nonlinear dynamical system with three variables representing the standardized abundances of a leguminous plant, a non-leguminous plant, and a nutrient resource. The system is governed by a set of nonlinear conformable fractional differential equations without delay. We establish the unique existence of solutions, derive analytical results for special cases, and present a numerical investigation of the agroecological dynamics. The model is grounded in field experiments involving Trifolium repens (clover) and Mentha × piperita (mint) cultivated on both flat and sloped plots. Stable isotope analysis was conducted to semi-quantitatively trace the fate of nitrogen atoms, accounting for isotope fractionation, and to validate the model structure. Leaf area was quantified via image processing, and photometric analysis of soil pore water was used to determine the concentrations of clover, mint, and nitrate-nitrogen. Using repeated least squares estimation, model parameters were calibrated based on observed and normalized variable values. The results indicate a pronounced Allee effect in the interaction between clover and the soil environment.

Article Details

References

  1. N.R. Anakira, A. Almalki, D. Katatbeh, G.B. Hani, A.F. Jameel, K.S. Al Kalbani, M. Abu-Dawas, An Algorithm for Solving Linear and Non-Linear Volterra Integro-Differential Equations, Int. J. Adv. Soft Comput. Appl. 15 (2023), 70–83.
  2. G. Farraj, B. Maayah, R. Khalil, W. Beghami, An Algorithm for Solving Fractional Differential Equations Using Conformable Optimized Decomposition Method, Int. J. Adv. Soft Comput. Appl. 15 (2023), 187–196.
  3. M. Berir, Analysis of the Effect of White Noise on the Halvorsen System of Variable-Order Fractional Derivatives Using a Novel Numerical Method, Int. J. Adv. Soft Comput. Appl. 16 (2024), 294–306.
  4. K.M. Dharmalingam, N. Jeeva, N. Ali, R.K. Al-Hamido, S.E. Fadugba, K. Malesela, F.T. Tolasa, H.S. El-Bahkiry, M. Qousini, Mathematical Analysis of Zika Virus Transmission: Exploring Semi-Analytical Solutions and Effective Controls, Commun. Math. Biol. Neurosci. 2024 (2024), 112. https://doi.org/10.28919/cmbn/8719.
  5. M. Aljazzazi, S. Fakhreddine, I. Batiha, I. Jebril, A. Bouchenak, et al., Impulsive Conformable Evolution Equations in Banach Spaces with Fractional Semigroup, Filomat 38 (2024), 9321–9332. https://doi.org/10.2298/fil2426321a.
  6. A. Al-nana, I.M. Batiha, I.H. Jebril, S. Alkhazaleh, T. Abdeljawad, Numerical Solution of Conformable Fractional Periodic Boundary Value Problems by Shifted Jacobi Method, Int. J. Math. Eng. Manag. Sci. 10 (2025), 189–206. https://doi.org/10.33889/ijmems.2025.10.1.011.
  7. A. Bouchenak, I.M. Batiha, R. Hatamleh, M. Aljazzazi, I.H. Jebril, et al., Study and Analysis of the Second Order Constant Coefficients and Cauchy-Euler Equations via Modified Conformable Operator, Int. J. Robot. Control. Syst. 5 (2025), 794–812. https://doi.org/10.31763/ijrcs.v5i2.1577.
  8. A. Bouchenak, I.M. Batiha, I.H. Jebril, M. Aljazzazi, H. Alkasasbeh, et al., Generalization of the Nonlinear Bernoulli Conformable Fractional Differential Equations with Applications, WSEAS Trans. Math. 24 (2025), 168–180. https://doi.org/10.37394/23206.2025.24.17.
  9. A. Bouchenak, I.M. Batiha, M. Aljazzazi, N. Anakira, M. Odeh, R.I. Hajaj, Numerical and Analytical Investigations of Fractional Self-Adjoint Equations and Fractional Sturm-Liouville Problems via Modified Conformable Operator, J. Robot. Control 6 (2025), 1410–1424.
  10. S. Fakhreddine, A.A. Hazaymeh, M. Aljazzazi, R. Qaralleh, A. Bataihah, I.M. Batiha, R.I. Hajaj, Analytical Investigation of the Existence and Ulam Stability of Integro-Differential Equations With Conformable Derivatives Under Non-Local Conditions, Int. J. Robot. Control Syst. 5 (2025), 1596–1607.
  11. M. Aljazzazi, F. Seddiki, I. Batiha, A. Bouchenak, R.I. Hajaj, Results on the Existence of Solutions for Conformable Evolution Differential Equations with Non-Local Conditions, Gulf J. Math. 20 (2025), 26–38. https://doi.org/10.56947/gjom.v20i2.3016.
  12. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
  13. S. Kumar, R.S. Meena, R. Datta, S.K. Verma, G.S. Yadav, et al., Legumes for Carbon and Nitrogen Cycling: An Organic Approach, in: Carbon and Nitrogen Cycling in Soil, Springer Singapore, 2019: pp. 337–375. https://doi.org/10.1007/978-981-13-7264-3_10.
  14. R.L. Magin, Fractional Calculus in Bioengineering: A Tool to Model Complex Dynamics, in: Proceedings of the 13th International Carpathian Control Conference (ICCC), IEEE, 2012, pp. 464-469. https://doi.org/10.1109/carpathiancc.2012.6228688.
  15. H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A New Collection of Real World Applications of Fractional Calculus in Science and Engineering, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019.
  16. I. Podlubny, Fractional Differential Equations, Elsevier, Amsterdam, 1998.
  17. T. Crews, M. Peoples, Legume Versus Fertilizer Sources of Nitrogen: Ecological Tradeoffs and Human Needs, Agric. Ecosyst. Environ. 102 (2004), 279–297. https://doi.org/10.1016/j.agee.2003.09.018.
  18. V. Ajraldi, M. Pittavino, E. Venturino, Modeling Herd Behavior in Population Systems, Nonlinear Anal.: Real World Appl. 12 (2011), 2319–2338. https://doi.org/10.1016/j.nonrwa.2011.02.002.
  19. K. Louie, G.C. Wake, G. Lambert, A. MacKay, D. Barker, A Delay Model for the Growth of Ryegrass–Clover Mixtures: Formulation and Preliminary Simulations, Ecol. Model. 155 (2002), 31–42. https://doi.org/10.1016/s0304-3800(02)00063-7.
  20. K. Unami, Fractional Interpolation of the Unit-Hydrograph Method and the Lumped Flow Routing Method in Hydrology, in: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, 2023, pp. 1-4. https://doi.org/10.1109/icfda58234.2023.10153368.
  21. T. Abdeljawad, On Conformable Fractional Calculus, J. Comput. Appl. Math. 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016.
  22. M.B. Peoples, P.M. Chalk, M.J. Unkovich, R.M. Boddey, Can Differences in 15n Natural Abundance Be Used to Quantify the Transfer of Nitrogen From Legumes to Neighbouring Non-Legume Plant Species?, Soil Biol. Biochem. 87 (2015), 97–109. https://doi.org/10.1016/j.soilbio.2015.04.010.
  23. K.A. Jacot, A. Lüscher, J. Nösberger, U.A. Hartwig, Symbiotic $N_2$ Fixation of Various Legume Species Along an Altitudinal Gradient in the Swiss Alps, Soil Biol. Biochem. 32 (2000), 1043–1052. https://doi.org/10.1016/s0038-0717(00)00012-2.
  24. F.P. Vinther, E.S. Jensen, Estimating Legume $N_2$ Fixation in Grass-Clover Mixtures of a Grazed Organic Cropping System Using Two Methods, Agric. Ecosyst. Environ. 78 (2000), 139–147. https://doi.org/10.1016/s0167-8809(99)00124-3.
  25. E.C. Reilly, J.L. Gutknecht, N.E. Tautges, C.C. Sheaffer, J.M. Jungers, Nitrogen Transfer and Yield Effects of Legumes Intercropped with the Perennial Grain Crop Intermediate Wheatgrass, Field Crop. Res. 286 (2022), 108627. https://doi.org/10.1016/j.fcr.2022.108627.
  26. S. Das, P. Gupta, A Mathematical Model on Fractional Lotka–Volterra Equations, J. Theor. Biol. 277 (2011), 1–6. https://doi.org/10.1016/j.jtbi.2011.01.034.
  27. W. Guo, E.J. Magero, K. Unami, H. Shinjo, T. Izumi, A Dynamical System Model for Plant-Nutrient Interactions with Symbiotic Nitrogen Fixation and Allee Effect, Nonlinear Sci. 2 (2025), 100018. https://doi.org/10.1016/j.nls.2025.100018.
  28. T. Yoneyama, T. Omata, S. Nakata, J. Yazaki, Fractionation of Nitrogen Isotopes During the Uptake and Assimilation of Ammonia by Plants, Plant Cell Physiol. 32 (1991), 1211–1217. https://doi.org/10.1093/oxfordjournals.pcp.a078199.
  29. T. Yoneyama, K. Fujita, T. Yoshida, T. Matsumoto, I. Kambayashi, et al., Variation in Natural Abundance of 15n Among Plant Parts and in 15n/14n Fractionation During N2 Fixation in the Legume-Rhizobia Symbiotic System, Plant Cell Physiol. 27 (1986), 791–799. https://doi.org/10.1093/oxfordjournals.pcp.a077165.
  30. G. Mabaya, K. Unami, H. Yoshioka, J. Takeuchi, M. Fujihara, Robust Optimal Diversion of Agricultural Drainage Water From Tea Plantations to Paddy Fields During Rice Growing Seasons and Non-Rice Growing Seasons, Paddy Water Environ. 14 (2015), 247–258. https://doi.org/10.1007/s10333-015-0494-y.