
Int. J. Anal. Appl. (2025), 23:243

An Analytical and Numerical Approach to Vegetation–Nutrient Dynamics Involving
Symbiotic Nitrogen Fixation and the Allee Effect

Shaher Momani1,2, Iqbal M. Batiha2,3,∗, Ahmed Bouchenak4,5, Koichi Unami6

1Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan
2Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, UAE

3Department of Mathematics, Al Zaytoonah University of Jordan, Amman 11733, Jordan
4Department of Mathematics, Faculty of Exact Sciences, University Mustapha Stambouli of Mascara,

Mascara 29000, Algeria
5Mathematics Research Center, Near East University, Nicosia 99138, Turkey
6Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

∗Corresponding author: i.batiha@zuj.edu.jo

Abstract. This study develops a nonlinear dynamical system with three variables representing the standardized abun-

dances of a leguminous plant, a non-leguminous plant, and a nutrient resource. The system is governed by a set of

nonlinear conformable fractional differential equations without delay. We establish the unique existence of solutions,

derive analytical results for special cases, and present a numerical investigation of the agroecological dynamics. The

model is grounded in field experiments involving Trifolium repens (clover) and Mentha × piperita (mint) cultivated on

both flat and sloped plots. Stable isotope analysis was conducted to semi-quantitatively trace the fate of nitrogen

atoms, accounting for isotope fractionation, and to validate the model structure. Leaf area was quantified via image

processing, and photometric analysis of soil pore water was used to determine the concentrations of clover, mint, and

nitrate-nitrogen. Using repeated least squares estimation, model parameters were calibrated based on observed and

normalized variable values. The results indicate a pronounced Allee effect in the interaction between clover and the

soil environment.

1. Introduction

In recent years, fractional calculus and conformable operators have attracted significant at-

tention as powerful tools for analyzing complex dynamical systems and developing efficient

numerical schemes. Several studies have proposed novel algorithms for solving both linear and
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nonlinear Volterra integro-differential equations as well as fractional models arising in applied

sciences [1–4]. More recently, considerable progress has been made in the analysis of impulsive

evolution equations, periodic boundary value problems, and Sturm–Liouville type systems under

the conformable framework, establishing existence results, stability conditions, and numerical

solutions [5–11]. These contributions highlight the flexibility of conformable fractional derivatives

in addressing diverse mathematical problems, thereby motivating their application to ecological

and biological models where nonlinear interactions and memory effects play a central role.

In agroecological systems, interactions between plants and nutrient resources play a critical role

in determining productivity and ecosystem stability. Mathematical modeling serves as a powerful

tool for understanding the complex dynamics among plant species and soil nutrients, particularly

in systems that involve both legumes (capable of fixing atmospheric nitrogen) and non-legume

plants (which rely on available soil nitrogen). These interactions underpin key ecological processes,

including productivity, resilience, and long-term sustainability [12, 13].

Classical differential equation models often fall short in describing biological systems accurately,

as they typically overlook memory effects and anomalous transport phenomena observed in

processes such as nutrient uptake, root exudation, and plant growth. In contrast, fractional-order

models provide a more suitable framework by incorporating long-range temporal dependencies

and non-local interactions [14–16].

In this study, we present a nonlinear dynamical model with three variables representing the

normalized abundances of a legume (e.g., Trifolium repens—white clover), a non-legume (e.g.,

Mentha × piperita — peppermint), and a nutrient resource (soil nitrogen) [17]. The system is

formulated using conformable fractional differential equations without time delays, enabling a

more accurate representation of biological processes characterized by memory and fractional-

order dynamics, such as nutrient uptake and plant growth [18–20]. This work makes four key

theoretical contributions:

• Framework Development: A conformable fractional derivative formulation that general-

izes classical agroecological models while preserving mathematical tractability.

• Analytical Solutions: Closed-form solutions derived for special cases of the nonlinear

system.

• Numerical Algorithms: Robust computational schemes for solving the conformable

fractional-order model.

• Stability Analysis: Detailed characterization of equilibrium states and bifurcation struc-

tures.

2. Essential Axioms of Conformable Calculus

In this section, we present the essential properties of the conformable fractional operator, in-

cluding both its derivative and integral forms, as required for our analysis.
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Definition 2.1 ( [21]). Let f : [0,∞) → R be a real-valued function. The conformable fractional

derivative of f of order α ∈ (0, 1) is defined by

Dα f (t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

, for all t > 0.

We write Dα f (t) to denote the conformable derivative of order α. If the conformable fractional derivative
exists, we say that f is α-differentiable. Furthermore, if f is α-differentiable on an interval (0, a) with
a > 0, and if the limit

lim
t→0+

Dα f (t)

exists, then we define
Dα f (0) := lim

t→0+
Dα f (t).

This definition coincides with the classical definitions of the Riemann–Liouville and Caputo

derivatives when applied to polynomials (up to a constant multiple). One important result is the

relationship between the conformable derivative and the classical derivative, as presented in the

following theorem:

Theorem 2.1. Let α ∈ (0, 1], and let f be both α-differentiable and classically differentiable at a point t > 0.
Then,

Dα f (t) = t1−α d
dt

f (t).

Proof. We apply the definition of the conformable derivative and use the substitution h = εt1−α:

Dα f (t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

= t1−α lim
h→0

f (t + h) − f (t)
h

= t1−α d
dt

f (t).

�

As a consequence of Definition 2.1, the following result holds.

Theorem 2.2. Let α ∈ (0, 1]. If a function f : [0,∞)→ R is α-differentiable at t0 > 0, then f is continuous
at t0.

Proof. By Definition 2.1, since f is α-differentiable at t0 > 0, let h = εt1−α
0 . Then the conformable

derivative at t0 can be rewritten as:

Dα f (t0) = lim
h→0

f (t0 + h) − f (t0)

h tα−1
0

.

Because Dα f (t0) exists and tα−1
0 > 0, it follows that the numerator must tend to zero as h → 0 in

order for the limit to remain finite. That is,

lim
h→0

[ f (t0 + h) − f (t0)] = 0,
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which implies

lim
h→0

f (t0 + h) = f (t0).

Hence, f is continuous at t0. �

Although the most important case corresponds to α ∈ (0, 1), one may ask: what if α ∈ (n, n + 1]

for some natural number n? The following definition extends the conformable derivative to such

cases.

Definition 2.2. Let α ∈ (n, n + 1], where n ∈ N, and let f be n-times differentiable at t > 0. Then the
conformable fractional derivative of f of order α is defined by

Dα f (t) = lim
ε→0

D(dαe−1) f (t + εtdαe−α) −D(dαe−1) f (t)
ε

,

or equivalently,

Dα f (t) = lim
ε→0

D(n) f (t + εtn−α+1) −D(n) f (t)
ε

,

where dαe denotes the smallest integer greater than or equal to α.

Remark 2.1. As a consequence of Definition 2.2, one can show that

Dα f (t) = tdαe−α Ddαe f (t) = tn−α+1 D(n+1) f (t),

where α ∈ (n, n + 1] and f is (n + 1)-times differentiable at t > 0.

One can easily show that Dα satisfies the following fundamental properties.

Theorem 2.3. Let α ∈ (0, 1] and let f , g be α-differentiable at a point t > 0. Then:

(1) Linearity: Dα(a f + bg) = aDα( f ) + bDα(g), for all a, b ∈ R.
(2) Power Rule: Dα(tp) = ptp−α, for all p ∈ R.
(3) Derivative of a Constant: Dα(λ) = 0, for any constant λ ∈ R.
(4) Product Rule: Dα( f g) = gDα( f ) + f Dα(g).
(5) Quotient Rule: Dα

( f
g

)
=

gDα( f )− f Dα(g)
g2 , provided g(t) , 0.

Proof. Proof of the Power Rule. Using Remark 2.1 and the fact that Dα f (t) = t1−α d
dt f (t) when

α ∈ (0, 1], we compute:

Dα(tp) = t1−α d
dt
(tp)

= t1−α
· ptp−1

= ptp−α.

Proof of the Product Rule.

Dα( f g) = t1−α d
dt
( f g)

= t1−α ( f ′g + f g′)

= g(t1−α f ′) + f (t1−αg′)
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= gDα( f ) + f Dα(g).

�

Remark 2.2. It is important to note that a function may be α-differentiable at a point without being
classically differentiable at that point.

We now present the definition of the α-fractional integral of a function f , starting from a point

a ≥ 0.

Definition 2.3. Let f : [0,∞) → R be a real-valued function, and let α ∈ (0, 1). The conformable

fractional integral of f of order α starting from a is defined by

Ia
α( f )(t) = Ia

1(t
α−1 f ) =

∫ t

a

f (x)
x1−α

dx,

where the integral is understood in the usual Riemann sense (possibly improper).

One of the fundamental results is the result stated and proved below.

Theorem 2.4. Let f be a continuous function on [a,∞), and let α ∈ (0, 1). Then, for all t ≥ a, the
conformable fractional derivative of the conformable fractional integral satisfies

Dα (Ia
α( f )(t)) = f (t).

Proof. Since f is continuous on [a,∞), the integral Ia
α( f )(t) is differentiable. Then, applying the

definition of the conformable derivative, we have:

Dα (Ia
α( f )(t)) = t1−α d

dt

(∫ t

a

f (x)
x1−α

dx
)

= t1−α
·

f (t)
t1−α

= f (t).

�

The following lemma provides a useful identity relating the conformable integral to the classical

derivative.

Lemma 2.1. Let f be a continuous function defined on [a,∞), and let α ∈ (0, 1). Then, for all t > a, we
have

d
dt

(Ia
α( f )(t)) =

f (t)
t1−α

.

Proof. Since f is continuous on [a,∞), the conformable integral Ia
α( f )(t) is differentiable. From the

definition of the conformable derivative:

Dα (Ia
α( f )(t)) = t1−α

·
d
dt

(Ia
α( f )(t)) .

From Theorem 2.4, we know that

Dα (Ia
α( f )(t)) = f (t).
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Substituting into the equation above gives:

t1−α
·

d
dt

(Ia
α( f )(t)) = f (t),

which implies
d
dt

(Ia
α( f )(t)) =

f (t)
t1−α

.

�

3. On-site Testing and Data Collection

To address the stable isotope analysis of nitrogen and to quantify the natural abundance of 15N,

Peoples et al. [22] reported the stable isotope composition using the isotope ratio δ15N of a sample

relative to the atmospheric air standard (expressed in per mill, ‰):

δ15Nreference =
Rsample −Rstandard

Rstandard
× 1000, (3.1)

where Rsample and Rstandard denote the molar ratios of 15N/14N in the sample and the standard,

respectively. By convention, the δ15N value of atmospheric air is taken as 0.000‰ and is referred

to as δ15Nair.

Donahue et al. [23] proposed the following formula to estimate the percentage of nitrogen

derived from the atmosphere (%Ndfa) in leguminous plants:

%Ndfa =
δ15Nreference − δ15Nleg

δ15Nreference − B
× 100, (3.2)

where δ15Nreference is the isotopic abundance of a non-legume plant that depends entirely on soil

mineral nitrogen, δ15Nleg is the isotopic abundance in a legume sample, and B is a species-specific

constant. Jacot et al. [24] reported B = −1.66 for common legume species.

Vinther and Jensen [25] reported that the percentage of nitrogen derived from the atmosphere

(%Ndfa) in grass–clover mixtures within grazed organic cropping systems exhibited seasonal

variations. Furthermore, Reilly et al. [26] investigated the percentage of nitrogen transferred

(%Ntr) from legumes to non-legumes within a mixed quadrat. They proposed the following

equation to quantify this transfer:

%Ntr =
δ15Nreference − δ15Nnon-leg

δ15Nreference − B
× 100, (3.3)

where δ15Nnon-leg is the 15N abundance of the non-leguminous plant sampled from a mixed quadrat

that includes legumes.
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Figure 1. Map of the plot setup used in the field experiment [27].

4. Mathematical Investigation of theModel

We hypothesize that the dynamics of the system comprising a leguminous plant (clover), a

non-leguminous plant (mint), and a nutrient resource (NO3-N) can be described by the following

system of conformable fractional-order ordinary differential equations:

DαX = fX(X, Y, Z) = aX fZX + fXX − µXX,

DαY = fY(X, Y, Z) = aY fZY − µYY,

DαZ = fZ(X, Y, Z) = − fZX − fZY + fZZ − µZZ,

(4.1)

where X, Y, and Z denote the standardized (normalized between 0 and 1) abundances of the

leguminous plant, the non-leguminous plant, and the nutrient resource, respectively. The variable

t denotes time. The parameters aX and aY are the nutrient absorption coefficients for clover and

mint, respectively, while µX, µY, and µZ represent mortality or decay rates. The functions fZX, fXX,

fZY, and fZZ model various nonlinear interactions and are defined as:

fZX = KX(1−X −Y)Z(βX −Z)X,

fXX = KS(1−X −Y)(Z + γX)(βZ −Z)X,

fZY = KY(1−X −Y)Z(βY −Z)Y,

fZZ = KZZ(1−Z),

(4.2)
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where KX, KS, KY, and KZ are growth rate parameters, and βX, βY, βZ, and γX are shape parameters

associated with Allee threshold effects.

Figure 2 conceptually illustrates the agroecological dynamics represented by equations (4.1) and

(4.2). The leguminous clover acquires nitrogen through two primary mechanisms: uptake of NO3-

N from soil pore water (modeled by fZX) and symbiotic nitrogen fixation (SNF) via atmospheric

N2 diffusing into the soil (modeled by fXX). In contrast, the non-leguminous mint solely depends

on soil NO3-N uptake (represented by fZY). Both plant species are subject to mortality, while

the nutrient level Z evolves due to a balance between plant uptake and nitrification of NH4-N,

captured in fZZ. The total carrying capacity, normalized to 1, imposes geometric constraints on

growth through the nonlinear interaction functions.

Figure 2. Schematic representation of the agroecological model, illustrating in-

teractions among the legume (clover), non-legume (mint), and nutrient resource

(NO3-N) [27].

Remark 4.1. The structure of the system defined in equations (4.1)–(4.2) satisfies the conditions of the
Picard–Lindelöf theorem. Therefore, the existence and uniqueness of a local solution to the system are
guaranteed.

4.1. Physical Interpretation of the Model. The interaction functions fZX, fXX, fZY, and fZZ respec-

tively represent: nutrient uptake by clover, symbiotic nitrogen fixation (SNF) in clover, nutrient

uptake by mint, and nitrogen self-reaction (e.g., nitrification). These interactions are modulated

by the total plant abundance: as the combined abundance of clover and mint (X + Y) approaches

1, the overall interaction rates decay due to resource competition and space limitations. Quadratic

nonlinearities with respect to the nutrient variable Z introduce potential Allee effects in the dy-

namics, allowing for threshold-dependent growth or decline. In particular, the terms involving Z
in fXX capture the dependence of SNF on environmental nitrogen availability.

The logistic term in fZZ models the self-dynamics of nitrogen in the soil, where ammonia-N is

transformed into nitrate-N (NO3-N) via nitrification processes. This feedback is key to maintaining



Int. J. Anal. Appl. (2025), 23:243 9

nutrient cycling within the system. The physical meanings of all parameters in equations (4.1)

and (4.2) are summarized in Table 1. Since X, Y, and Z are normalized between 0 and 1, all rates

(including growth and decay) have the dimension of time−1, while shape parameters such as β

and γ are dimensionless. In this study, all parameters are assumed to be real-valued.

Table 1. Model parameters and their physical interpretations [27]

Parameter Description

aX Nitrogen absorption coefficient by clover

aY Nitrogen absorption coefficient by mint

µX Mortality coefficient of clover

µY Mortality coefficient of mint

µZ Decay coefficient of nitrogen

KX Growth rate of clover by nutrient uptake ( fZX)

KS Growth rate of clover by nitrogen fixation ( fXX)

KY Growth rate of mint by nutrient uptake ( fZY)

KZ Growth rate of nitrogen by self-reaction ( fZZ)

βX Shape parameter for Allee threshold in fZX

βY Shape parameter for Allee threshold in fZY

βZ First shape parameter for Allee threshold in fXX

γX Second shape parameter for Allee threshold in fXX

4.2. Analytical Study of the Model. This part aims to investigate the mathematical properties of

the model analytically. By substituting the interaction functions from equation (4.2) into the sys-

tem (4.1), we obtain the following nonlinear system of conformable fractional ordinary differential

equations:

DαX = aXKX(1−X −Y)Z(βX −Z)X + KS(1−X −Y)(Z + γX)(βZ −Z)X − µXX,

DαY = aYKY(1−X −Y)Z(βY −Z)Y − µYY,

DαZ = −KX(1−X −Y)Z(βX −Z)X −KY(1−X −Y)Z(βY −Z)Y + KZZ(1−Z) − µZZ.

(4.3)

We begin by invoking the Picard–Lindelöf Theorem, which guarantees the existence and unique-

ness of a local solution to the nonlinear system (4.3), provided that the system satisfies the con-

ditions of continuity and Lipschitz continuity with respect to the state variables. Based on this

foundational result, we proceed to establish the following propositions concerning the qualitative

behavior of the system.

Proposition 4.1. Consider the nonlinear system of conformable fractional ordinary differential equa-
tions (4.3) under the following initial conditions:

X(0) = X0 > 0, Y(0) = 0, Z(0) = 0. (4.4)
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Then, the system reduces to a nonlinear conformable fractional homogeneous differential equation of Bernoulli
type:

DαX + (µX −KSγXβZ)X = −(KSγXβZ)X2. (4.5)

For t ∈ [0,∞) and α ∈ (0, 1), the equation (4.5) admits a unique solution, which is given explicitly by:

X(t) = ϕ(t)ψ(t) = e−I0
α(µX−KSγXβZ)

[
−I0
α

(
−(KSγXβZ)e−I0

α(µX−KSγXβZ)
)
+

1
X0

]−1
, (4.6)

where ϕ(t) denotes the solution to the associated linear homogeneous equation, and ψ(t) corresponds to the
transformation component arising from the Bernoulli structure of the nonlinear equation.

Proof. The nonlinear conformable fractional differential equation of Bernoulli type (4.5) can be

decomposed into two separate equations. We seek the solution in the form:

X(t) = ϕ(t)ψ(t),

where ϕ(t) solves the linear component:

Dαϕ+ (µX −KSγXβZ)ϕ = 0,

which is a linear conformable first-order ordinary differential equation. Its solution is given by:

ϕ(t) = e−I0
α(µX−KSγXβZ).

Indeed, by using Theorem 2.1, Definition 2.3, and Theorem 2.4, we compute:

Dαϕ+ (µX −KSγXβZ)ϕ = t1−α d
dt

(
e−I0

α(µX−KSγXβZ)
)
+ (µX −KSγXβZ)e−I0

α(µX−KSγXβZ)

= −t1−α d
dt

(
I0
α(µX −KSγXβZ)

)
e−I0

α(µX−KSγXβZ)

+(µX −KSγXβZ)e−I0
α(µX−KSγXβZ)

= −t1−α
·
(µX −KSγXβZ)

t1−α
e−I0

α(µX−KSγXβZ)

+(µX −KSγXβZ)e−I0
α(µX−KSγXβZ)

= −(µX −KSγXβZ)e−I0
α(µX−KSγXβZ)

+(µX −KSγXβZ)e−I0
α(µX−KSγXβZ) = 0.

The general solution of the truncated Bernoulli equation, excluding the linear component, is

represented by the second factor, ψ(t):

ϕDαψ = −(KSγXβZ)ϕ
2ψ2.

Using the known expression ϕ(t) = e−I0
α(µX−KSγXβZ), we return to the equation for ψ:

Dαψ = −(KSγXβZ)ϕψ
2
⇒ ψ−2Dαψ = −(KSγXβZ)e−I0

α(µX−KSγXβZ).

Since the equation is separable, we integrate both sides:

ψ−1 = −I0
α

(
−(KSγXβZ)e−I0

α(µX−KSγXβZ)
)
+ C0,
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where C0 is a constant to be determined using the initial condition (4.4). Taking the reciprocal, we

get:

ψ(t) =
[
−I0
α

(
−(KSγXβZ)e−I0

α(µX−KSγXβZ)
)
+ C0

]−1
.

Thus, the required solution is given by:

X(t) = ϕ(t)ψ(t) = e−I0
α(µX−KSγXβZ)

[
−I0
α

(
−(KSγXβZ)e−I0

α(µX−KSγXβZ)
)
+ C0

]−1
.

Now, since

I0
α(µX −KSγXβZ)(t) =

∫ t

0
(µX −KSγXβZ) dαξ =

∫ t

0
(µX −KSγXβZ) ξ

α−1 dξ

= (µX −KSγXβZ)

∫ t

0
ξα−1 dξ = (µX −KSγXβZ)

[
ξα

α

]t

0

= (µX −KSγXβZ) ·
tα

α
.

The ICs (4.4) yield the value of the constant C0 as follows:

X(0) = ϕ(0)ψ(0) = e0
[
−I0
α

(
−(KSγXβZ)(t = 0)e0

)
+ C0

]−1

= [0 + C0]
−1 =

1
C0

= X0.

Hence, C0 = 1
X0

. Consequently, the solution becomes

X(t) = ϕ(t)ψ(t) = e−I0
α(µX−KSγXβZ)

[
−I0
α

(
−(KSγXβZ)e−I0

α(µX−KSγXβZ)
)
+

1
X0

]−1
.

To complete the proof, it remains to verify that this solution satisfies Eq. (4.5). Using Theorem 2.1,

Definition 2.3, Theorem 2.4, and Lemma 2.1, we compute:

DαX(t) = Dα(ϕ(t)ψ(t)) = ψ(t)Dαϕ(t) + ϕ(t)Dαψ(t)

= −ψ(t)(µX −KSγXβZ)e−I0
α(µX−KSγXβZ) + ϕ(t)Dαψ(t)

= −(µX −KSγXβZ)ϕ(t)ψ(t) + ϕ(t)Dα

[(
−I0
α (−KSγXβZϕ) +

1
X0

)−1]
= −(µX −KSγXβZ)X

+ϕ(t)
[
−

(
−I0
α (−KSγXβZϕ(t)) +

1
X0

)−2
Dα

(
−I0
α (−KSγXβZϕ(t)) +

1
X0

)]
= −(µX −KSγXβZ)X + ϕ(t)

[(
−I0
α (−KSγXβZϕ(t)) +

1
X0

)−2
(KSγXβZ)ϕ(t)

]
= −(µX −KSγXβZ)X +ψ2(t)(KSγXβZ)ϕ

2(t)

= −(µX −KSγXβZ)X − (KSγXβZ)(ϕ(t)ψ(t))2

= −(µX −KSγXβZ)X − (KSγXβZ)X2.

Hence, the obtained solution satisfies the nonlinear equation (4.5), thereby completing the proof

of Proposition 4.1. �
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Proposition 4.2. The nonlinear system of Conformable fractional ordinary differential equations (4.3)

under the initial conditions:

X(0) = 0, Y(0) = Y0 > 0, Z(0) = 0, (4.7)

reduces to a Conformable fractional homogeneous differential equation of the form:

DαY + µYY = 0. (4.8)

Then, for t ∈ [0,∞) and α ∈ (0, 1), there exists a unique solution to (4.8), which is explicitly given by:

Y(t) = Y0 e−µY
tα
α . (4.9)

Proof. The general solution to equation (4.8) can be derived using Definition 2.3 as follows:

Y(t) = C1 eI0
α(−µY) = C1 e

∫ t
0 −µY dαξ

= C1 e
∫ t

0 −µY ξα−1 dξ = C1 e−µY
[
ξα

α

]t

0

= C1 e−µY
tα
α ,

for some constant C1. Using the initial condition (4.7), we find C1 = Y0. It remains to verify that the

function Y(t) = Y0 e−µY
tα
α satisfies the differential equation (4.8). Substituting this expression into

the left-hand side of the equation and applying the Conformable derivative formula, we obtain:

DαY + µYY = Dα
(
Y0 e−µY

tα
α

)
+ µYY0 e−µY

tα
α

= t1−α d
dt

(
Y0 e−µY

tα
α

)
+ µYY0 e−µY

tα
α

= t1−α
(
−µYtα−1Y0 e−µY

tα
α

)
+ µYY0 e−µY

tα
α

= −µYY0 e−µY
tα
α + µYY0 e−µY

tα
α

= 0.

Hence, the result follows as required. �

Proposition 4.3. The nonlinear system of Conformable fractional ordinary differential equations (4.3)

under the following initial conditions (ICs):

X(0) = 0, Y(0) = 0, Z(0) = Z0 > 0, (4.10)

leads to a nonlinear Conformable fractional differential equation of Bernoulli type, given by:

DαZ + (µZ −KZ)Z = −KZZ2. (4.11)

Then, for t ∈ [0,∞) and α ∈ (0, 1), there exists a smooth unique solution to (4.11), which is explicitly given
by:

Z(t) =
[
Z−1

0 e−I0
α(KZ−µZ) + I0

α

(
KZ eI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ)

]−1
. (4.12)
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Proof. We begin by reducing the nonlinear Conformable fractional differential equation of

Bernoulli type, as outlined in the following steps:

Step 1: Divide both sides of equation (4.11) by Z2:

Z−2DαZ + (µZ −KZ)Z−1 = −KZ.

Step 2: Introduce the substitution φ = Z−1 and apply Theorem 2.1. Then, we have

Dαφ = t1−α d
dt
(φ) = t1−α d

dt
(Z−1)

= t1−α(−1)Z−2 dZ
dt

= −Z−2
(
t1−α dZ

dt

)
= −Z−2DαZ.

Thus, we obtain the identity:

Z−2DαZ = −Dαφ.

Step 3: Substitute this result into the modified equation to get:

−Dαφ+ (µZ −KZ)φ = −KZ.

Step 4: Multiply both sides by (−1) to obtain the standard linear form:

Dαφ+ (KZ − µZ)φ = KZ, (4.13)

which is a first-order linear nonhomogeneous Conformable fractional differential equation. Its

solution is given by:

φ(t) = φh(t) + φp(t)

= φ0e−I0
α(KZ−µZ) + I0

α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ),

where φh and φp denote the homogeneous and particular solutions, respectively, and φ0 is a

constant determined by the initial condition (4.10). We now verify that the homogeneous solution

to equation (4.13) is given by

φh(t) = φ0e−I0
α(KZ−µZ).

Indeed, we compute:

Dαφ+ (KZ − µZ)φ = φ0t1−α d
dt

(
e−I0

α(KZ−µZ)
)
+ (KZ − µZ)φ0e−I0

α(KZ−µZ)

= −φ0t1−α d
dt

(
I0
α(KZ − µZ)

)
e−I0

α(KZ−µZ)

+ (KZ − µZ)φ0e−I0
α(KZ−µZ)

= −φ0t1−α
·

KZ − µZ

t1−α
e−I0

α(KZ−µZ) + (KZ − µZ)φ0e−I0
α(KZ−µZ)

= −(KZ − µZ)φ0e−I0
α(KZ−µZ) + (KZ − µZ)φ0e−I0

α(KZ−µZ) = 0.
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To obtain the general solution of the conformable differential equation defined by (4.13), we now

compute the particular solution:

φp(t) = I0
α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ).

To complete the proof for this case, we verify that this function satisfies equation (4.13). Substituting

the candidate solution into the equation and using Theorem 2.4 and Lemma 2.1, we obtain:

Dαφp + (KZ − µZ)φp = Dα
(
I0
α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ)

)
+ (KZ − µZ)I0

α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ)

= Dα
(
I0
α

(
KZeI0

α(KZ−µZ)
))

e−I0
α(KZ−µZ)

+ I0
α

(
KZeI0

α(KZ−µZ)
)

Dα
(
e−I0

α(KZ−µZ)
)

+ (KZ − µZ)I0
α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ).

Evaluating each term

Dα
(
I0
α

(
KZeI0

α(KZ−µZ)
))
= KZeI0

α(KZ−µZ),

Dα
(
e−I0

α(KZ−µZ)
)
= −(KZ − µZ)e−I0

α(KZ−µZ).

Substituting back yeilds

Dαφp + (KZ − µZ)φp = KZeI0
α(KZ−µZ)e−I0

α(KZ−µZ)

− I0
α

(
KZeI0

α(KZ−µZ)
)
(KZ − µZ)e−I0

α(KZ−µZ)

+ (KZ − µZ)I0
α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ)

= KZ.

Hence, the function φp(t) satisfies equation (4.13), confirming its validity. Therefore, the general

solution of the conformable differential equation is given by:

φ(t) = φh(t) + φp(t)

= φ0e−I0
α(KZ−µZ) + I0

α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ).

Now, since φ = Z−1, we conclude that Z = φ−1.

Thus, the solution of the nonlinear Bernoulli-type conformable fractional differential equa-

tion (4.11) is given by:

Z(t) =
(
φ0e−I0

α(KZ−µZ) + I0
α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ)

)−1
.

Applying the initial conditions (4.10) to determine φ0, we compute:

Z(0) =
(
φ0e0 + I0

α

(
KZe0

)
e0
)−1

=
(
φ0 + I0

α(KZ)
)−1

= φ−1
0 = Z0.

Hence, φ0 = Z−1
0 . Substituting back yields:

Z(t) =
(
Z−1

0 e−I0
α(KZ−µZ) + I0

α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ)

)−1
.
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We now explicitly compute the involved integrals:

I0
α(KZ − µZ)(t) =

∫ t

0
(KZ − µZ) dαξ =

∫ t

0
(KZ − µZ)ξ

α−1 dξ = (KZ − µZ)
tα

α
,

I0
α(KZ)(t) =

∫ t

0
KZ dαx =

∫ t

0
KZxα−1 dx = KZ

tα

α
.

This completes the proof of Proposition 4.3. �

4.3. Numerical Approach.

4.3.1. Identification Method for Model Parameters. Fate of N and Justification of the Model Structure:
The δ15N-values of the plant samples from the horizontal plot are summarized in Table 2. It is

challenging to consistently determine the values of δ15Nreference required to calculate %Ndfa and

%Ntr using equations (3.2) and (3.3). Therefore, we rely exclusively on δ15N-values to infer the

fate of nitrogen derived from the atmosphere and its transfer between plant species. Each plant

sample collected in Weeks 9 and 12 (vegetative stage) was measured as a whole. In contrast, for

Weeks 17 (budding stage) and 20 (flowering stage), the samples were dissected into individual

organs—root, stolon, stem, leaf, and flower—for separate measurement. The δ15N-value of the

soil, sampled immediately before the experiment’s initiation, was 5.217‰, denoted as δ15Nsoil.

This positive value results from isotope fractionation due to prior agricultural use of the soil.

Values of δ15N between δ15Nair (defined as 0.000‰) and δ15Nsoil (5.217‰), highlighted in italic

in Table 2, suggest that nitrogen in the plant samples originated from symbiotic nitrogen fixation

(SNF). However, the inverse is not always valid due to isotope fractionation associated with soil

processes such as nitrification, denitrification, root-to-shoot nitrogen transport, and assimilation

by the plants [28, 29].

Most of the δ15N-values for clover from plot H2 (except those from the flower and leaf in Week

20) strongly indicate active SNF, supporting the presence of fXX. Conversely, δ15N-values for

mint from plot H3 confirm the absence of SNF, with the exception of root samples from Week

17 (δ15N = 1.340), which is less than δ15Nsoil. Compared to H3, mint in H4 showed a greater

number of δ15N-values below δ15Nsoil, suggesting that nitrogen fixed by clover was transferred to

the soil (negative fZX), then absorbed by mint (positive fZY). This hypothesis is supported by the

observation of clover stolons from H2 spreading into H3 as early as Week 10, likely facilitating

such nitrogen transfer, as evidenced by the Week 17 root value. To statistically confirm isotope

fractionation between the budding and flowering stages, one-sided Mann–Whitney U tests [30]

were conducted. The p-values for testing the null hypothesis of identical δ15N distributions

between Week 17 and Week 20 were:

• 0.0556 for clover from H2,

• 0.1143 for mint from H3,

• 0.0357 for clover from H4, and

• 0.0556 for mint from H4.
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Significant increases in δ15N from Week 17 to Week 20 were observed in the roots of both

clover and mint in H4. Root imagery revealed that plant roots experienced the most development

during this period, implying that the increases in δ15N were due to isotope fractionation within

the biomass, including within the root tissues themselves.

Table 2. δ15N-values (‰) of plant samples from the horizontal plot. Italic values

indicate estimates between δ15Nair (0.000‰) and δ15Nsoil (5.217‰) [27].

Week Part Clover (H2) Mint (H3) Clover (H4) Mint (H4)

9 Whole 3.754 6.606 6.040 *

12 Whole 1.715 6.773 4.168 6.761

17

Leaf 1.573 5.332 2.122 4.800

Stem 0.684 6.104 1.040 4.591

Stolon 1.639 * * 2.077

Root 1.638 1.340 0.786 0.896

20

Flower 8.336 5.172 5.258 10.615

Leaf 7.815 25.042 6.443 7.370

Stem 1.054 16.488 8.262 1.798

Stolon 3.140 27.378 1.976 5.812

Root 2.480 ** 9.278 8.116

Note: Italicized entries lie between δ15Nair = 0.000‰ and δ15Nsoil = 5.217‰.

∗ Not measured due to sample limitation. ∗∗Measurement failed due to technical error.

Keys:

∗ The sample was too small to measure.

∗∗ Instrument malfunction, possibly due to incomplete combustion of the sample.

Data of NO3-N in Soil Pore Water and Leaf Area (LA) for Model Parameter Identification:

The identification method developed previously was applied to the observed and standardized data from

plots H1, H2, H3, and H5 to estimate the parameter values listed in Table 3. The values of Y from H4 were

too low to support parameter identification; therefore, the dynamics of X, Y, and Z in H4 are reserved for

model validation purposes.



Int. J. Anal. Appl. (2025), 23:243 17

Table 3. Identified parameter values for different models based on experimental

setups [27].

Parameter
Identified Value

From HeZdZ From H3YZdZ From H2XYdZ

aX 1.168

aY 0.128 (H3YZdY), 0.171 (H3YZdY0)

µX 0.532

µY −0.110 (H3YZdY), 0.000 (H3YZdY0)

µZ 0.367 0.108 3.799

KX −24.133

KS 1.365

KY 3.127

KZ 0.849 2.248 5.237

βX 0.169

βY 3.887

βZ 0.234

γX 6.371

4.3.2. Visualization. The general solution of the nonlinear agroecological system (4.3) under the initial con-

ditions (4.5) is expressed as:

X(t) = ϕ(t)ψ(t) = e−I0
α(µX−KSγXβZ)

[
−I0
α

(
−(KSγXβZ) e−I0

α(µX−KSγXβZ)
)
+

1
X0

]−1

.

For enhanced visualization and numerical computation, we now simplify each term.

Step 1: Exponential Term.

e−I0
α(µX−KSγXβZ)(t) = e−

∫ t
0 (µX−KSγXβZ) dαξ = e−

∫ t
0 (µX−KSγXβZ) ξ

α−1dξ

= e−(µX−KSγXβZ)
tα
α .

Step 2: Fractional Integral Term.

−I0
α

(
−(KSγXβZ) e−I0

α(µX−KSγXβZ)
)
(t) = (KSγXβZ) I0

α

(
e−I0

α(µX−KSγXβZ)
)

= (KSγXβZ)

∫ t

0
e−(µX−KSγXβZ)

xα
α xα−1dx

=
KSγXβZ

KSγXβZ − µX

(
e−(µX−KSγXβZ)

tα
α − 1

)
.

Final Expression. Substituting the above results into the expression for X(t), we obtain:

X(t) = e−(µX−KSγXβZ)
tα
α

[
KSγXβZ

KSγXβZ − µX

(
e−(µX−KSγXβZ)

tα
α − 1

)
+

1
X0

]−1

. (4.14)

This closed-form solution facilitates efficient simulation and plotting of X(t) for given parameters and initial

conditions.
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Table 4. Closed-form solutions of the nonlinear agroecological system (4.3) under

ICs (4.4), computed for fractional orders α = 1, 1
4 , 1

2 , and 3
4 using parameter values

from the H3YZdZ dataset.

X0 α µX KS γX βZ X(t)

1 1 0.532 1.365 6.371 0.234 e1.50296111t
[2.03496111

1.50296111

(
e1.50296111t

− 1
)
+ 1

]−1

1
1
4

0.532 1.365 6.371 0.234 e1.50296111 t1/4
1/4

[
2.03496111
1.50296111

(
e1.50296111 t1/4

1/4 − 1
)
+ 1

]−1

1
1
2

0.532 1.365 6.371 0.234 e1.50296111 t1/2
1/2

[
2.03496111
1.50296111

(
e1.50296111 t1/2

1/2 − 1
)
+ 1

]−1

1
3
4

0.532 1.365 6.371 0.234 e1.50296111 t3/4
3/4

[
2.03496111
1.50296111

(
e1.50296111 t3/4

3/4 − 1
)
+ 1

]−1

5 10 15 20
t

0.7388

0.7390

0.7392

0.7394

0.7396
X

Figure 3. Behavior of the solution X(t) with parameter values µX, KS, γX, and βZ

taken from H3YZdZ under integer and fractional orders α =
(
1, 1

4 , 1
2 , 3

4

)
.

The general solution of the nonlinear agroecological system (4.3) under the initial conditions (4.4) is given

by:

Y(t) = Y0e−µY
tα
α , (4.15)

where Y0 is the initial value of Y, µY is the mortality rate, and α denotes the order of the conformable

fractional derivative.

Table 5. Solutions of the nonlinear agroecological system (4.3) under ICs (4.7) using

µY values from H3YZdY and H3YZdY0, for various orders α = 1, 1
4 , 1

2 , 3
4 .

Y0 α µY (from H3YZdY) Y(t) µY (from H3YZdY0) Y(t)

1 1 −0.110 e0.110 t 0.000 1

1 1
4 −0.110 e0.440 t1/4

0.000 1

1 1
2 −0.110 e0.220 t1/2

0.000 1

1 3
4 −0.110 e

0.110
0.75 t3/4

0.000 1
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t
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2.0

Y

(a) Y(t) with µY from H3YZdY0

5 10 15 20
t

2

3

4

5

Y

(b) Y(t) with µY from H3YZdY

Figure 4. The behavior of the solution Y(t) using µY from H3YZdY and H3YZdY0

under integer and fractional orders α ∈
{
1, 1

4 , 1
2 , 3

4

}
.

The general solution of the nonlinear agroecological system (4.3) under the initial conditions (4.10) is

given by:

Z(t) =
(

1
Z0

e−I0
α(KZ−µZ) + I0

α

(
KZeI0

α(KZ−µZ)
)

e−I0
α(KZ−µZ)

)−1

.

Since

e−I0
α(KZ−µZ)(t) = e−

∫ t
0 (KZ−µZ) dαξ = e−

∫ t
0 (KZ−µZ) ξ

α−1dξ

= e
−

[
(KZ−µZ)

ξα

α

]t

0 = e−(KZ−µZ)
tα
α ,

and

I0
α

(
KZeI0

α(KZ−µZ)
)
(t) = KZ · I0

α

(
eI0
α(KZ−µZ)

)
= KZ

∫ t

0
e
∫ x

0 (KZ−µZ) dαξ dαx

= KZ

∫ t

0
e(KZ−µZ)

xα
α xα−1dx

=
KZ

KZ − µZ

[
e(KZ−µZ)

xα
α

]t

0

=
KZ

KZ − µZ

(
e(KZ−µZ)

tα
α − 1

)
.

Consequently, the solution becomes

Z(t) =
(

1
Z0

e−(KZ−µZ)
tα
α +

(
KZ

KZ − µZ

(
e(KZ−µZ)

tα
α − 1

))
e−(KZ−µZ)

tα
α

)−1

. (4.16)
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Table 6. Solution of the nonlinear agroecological system (4.3) under ICs (4.10) with

KZ and µZ from HeZdZ, subject to integer and fractional orders α = 1, 1
4 , 1

2 , 3
4 .

Z0 α µZ (HeZdZ) KZ (HeZdZ) Z(t)

1 1 0.367 0.849
(
e−0.482t +

(
0.849
0.482

(
e0.482t

− 1
))

e−0.482t
)−1

1 1
4 0.367 0.849

e
−0.482 t

1
4
1
4 +

 0.849
0.482

e
0.482 t

1
4
1
4 − 1


 e
−0.482 t

1
4
1
4


−1

1 1
2 0.367 0.849

e
−0.482 t

1
2
1
2 +

 0.849
0.482

e
0.482 t

1
2
1
2 − 1


 e
−0.482 t

1
2
1
2


−1

1 3
4 0.367 0.849

e
−0.482 t

3
4
3
4 +

 0.849
0.482

e
0.482 t

3
4
3
4 − 1


 e
−0.482 t

3
4
3
4


−1

5 10 15 20
t

0.58

0.60

0.62

0.64

0.66
Z

Figure 5. The behavior of the solution Z(t) with µZ and KZ from HeZdZ, subject to

the integer and fractional orders α =
(
1, 1

4 , 1
2 , 3

4

)
.

Table 7. Solution of the nonlinear agroecological system (4.3) under ICs (4.10)

with KZ and µZ identified from H3YZdZ, subject to integer and fractional orders

α = 1, 1
4 , 1

2 , 3
4 .

Z0 α µZ from H3YZdZ KZ from H3YZdZ Z(t)

1 1 0.108 2.248
(
e−2.14t +

(
2.248
2.14

(
e2.14t

− 1
))

e−2.14t
)−1

1 1
4 0.108 2.248

e
−2.14 t

1
4
1
4 +

 2.248
2.14

e
2.14 t

1
4
1
4 − 1


 e
−2.14 t

1
4
1
4


−1

1 1
2 0.108 2.248

e
−2.14 t

1
2
1
2 +

 2.248
2.14

e
2.14 t

1
2
1
2 − 1


 e
−2.14 t

1
2
1
2


−1

1 3
4 0.108 2.248

e
−2.14 t

3
4
3
4 +

 2.248
2.14

e
2.14 t

3
4
3
4 − 1


 e
−2.14 t

3
4
3
4


−1
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Figure 6. Behavior of the solution Z(t) with µZ and KZ from H3YZdZ, subject to

integer and fractional orders α =
(
1, 1

4 , 1
2 , 3

4

)
.

Table 8. Solution of the nonlinear agroecological system (4.3) under ICs (4.10) with

KZ and µZ identified from H2XYdZ, subject to the integer and fractional order

α = 1, 1
4 , 1

2 , 3
4 .

Z0 α µZ from H2XYdZ KZ from H2XYdZ Z(t)

1 1 3.799 5.237
(
e−1.438t +

(
5.237
1.438

(
e1.438t

− 1
))

e−1.438t
)−1
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Figure 7. The behavior of solution Z(t) with µZ and KZ from H2XYdZ subject to

the integer and fractional orders α =
(
1, 1

4 , 1
2 , 3

4

)
.



22 Int. J. Anal. Appl. (2025), 23:243

The asymptotic behavior of the agroecological system (4.3) takes the following forms, depending on the

identified values of the parameters from HeZdZ, H3YZdZ, and H2XYdZ. It also depends on whether the

system is of integer or fractional order α.
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Figure 8. Asymptotic behavior of the agroecological system with µX, KS, γX, and

βZ from H3YZdZ; µY from H3YZdY0; and µZ and KZ from HeZdZ.
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Figure 9. Asymptotic behavior of the agroecological system with µX, KS, γX, and

βZ from H3YZdZ; µY from H3YZdY; and µZ and KZ from HeZdZ.
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Figure 10. Asymptotic behavior of the agroecological system, with µX, KS, γX, and

βZ from H3YZdZ; µY from H3YZdY; and µZ and KZ from H3YZdZ.
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Figure 11. Asymptotic behavior of the agroecological system, with µX, KS, γX, and

βZ from H3YZdZ; µY from H3YZdY; and µZ and KZ from H2XYdZ.
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Figure 12. Asymptotic behavior of the agroecological system with µX, KS, γX, and

βZ from H3YZdZ; µY from H3YZdY0; and µZ and KZ from H3YZdZ.
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Figure 13. Asymptotic behavior of the agroecological system with µX, KS, γX, and

βZ from H3YZdZ; µY from H3YZdY0; and µZ and KZ from H2XYdZ.
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5. Results Discussion

First, we highlight the initial conditions used in all preceding visualizations, which serve as keys for clear

interpretation and deeper understanding:

• For the initial condition (4.4), we set X0 = 1.

• For the initial condition (4.7), we set Y0 = 1.

• For the initial condition (4.10), we set Z0 = 1.

In all figures, the colors represent the behavior of X(t), Y(t), or Z(t) (as indicated on the axes) corre-

sponding to different values of the fractional order α:

• Blue curve: Solution with integer order α = 1.

• Yellow curve: Solution with fractional order α = 1
4 .

• Green curve: Solution with fractional order α = 1
2 .

• Red curve: Solution with fractional order α = 3
4 .
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