Neutrosophic Semi δ-pre Irresolute Mappings
Main Article Content
Abstract
This study investigates and defined new concept of irresolute mappings called Neutrosophic semi δ-pre irresolute mappings via Neutrosophic topological spaces. Several preservation properties and some characterizations concerning Neutrosophic semi δ-pre irresolute have been obtained.
Article Details
References
- L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- C. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182–190. https://doi.org/10.1016/0022-247x(68)90057-7.
- K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
- D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets Syst. 88 (1997), 81–89. https://doi.org/10.1016/s0165-0114(96)00076-0.
- Y.S. Eom, S.J. Lee, Intuitionistic Fuzzy $delta$-Continuous Functions, Int. J. Fuzzy Log. Intell. Syst. 13 (2013), 336–344. https://doi.org/10.5391/ijfis.2013.13.4.336.
- I. Hanafy, Intuitionistic Fuzzy Functions, Int. J. Fuzzy Log. Intell. Syst. 3 (2003), 200–205. https://doi.org/10.5391/ijfis.2003.3.2.200.
- I.M. Hanafy, Intuitionistic Fuzzy $gamma$-Continuity, Can. Math. Bull. 52 (2009), 544–554. https://doi.org/10.4153/cmb-2009-055-0.
- J.K. Jeon, Y.B. Jun, J.H. Park, Intuitionistic Fuzzy Alpha‐continuity and Intuitionistic Fuzzy Precontinuity, Int. J. Math. Math. Sci. 2005 (2005), 3091–3101. https://doi.org/10.1155/ijmms.2005.3091.
- H. Gurcay, A.H. Es, D. Coker, On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces, J. Fuzzy Math. 5 (1997), 365–378.
- D. Coker, A.H. Es, On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces, J. Fuzzy Math. 3 (1995), 899–909.
- N. Turanli, D. Çoker, Fuzzy Connectedness in Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets Syst. 116 (2000), 369–375. https://doi.org/10.1016/s0165-0114(98)00346-7.
- S.S. Thakur, R. Chaturvedi, Generalized Continuity in Intuitionistic Fuzzy Topological Spaces, Notes Intuitionistic Fuzzy Sets 12 (2006), 38–44.
- S.S. Thakur, R. Chaturvedi, Regular Generalized Closed Sets in Intuitionistic Fuzzy Topological Spaces, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, 16 (2006), 252–272.
- S.S. Thakur, R. Chaturvedi, Generalized Closed Sets in Intuitionistic Fuzzy Topology, J. Fuzzy Math. 16 (2008), 559–572.
- F. Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set, and Logic, American Research Press, Rehoboth, 1999.
- F. Smarandache, Neutrosophy and Neutrosophic Logic, in: First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, (2002).
- A.A. Salama, S.A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR J. Math. 3 (2012), 31–35.
- W. Al-Omeri, F. Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, in: F. Smarandache, S. Pramanik (Eds), Neutrosophic Operational Research, Pons Editions, Brussels, Belgium, Vol. I, pp. 189–209, 2017.
- W.F. Al-Omeri, Neutrosophic Crisp Sets via Neutrosophic Crisp Topological Spaces, Neutrosophic Sets Syst. 13 (2016), 96–104.
- I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces, Neutrosophic Sets Syst. 16 (2017), 16–19.
- F.G. Lupiáñez, Quasicoincidence for Intuitionistic Fuzzy Points, Int. J. Math. Math. Sci. 2005 (2005), 1539–1542. https://doi.org/10.1155/ijmms.2005.1539.
- M. Thakur, F. Smarandache, S.S. Thakur. Neutrosophic Semi $delta$-Preopen Sets and Neutrosophic Semi $delta$-Pre Continuity, Neutrosophic Sets Syst. 73 (2024), 35.
- A. Vadivel, M. Seenivasan, C. John Sundar, An Introduction to $delta$-Open Sets in a Neutrosophic Topological Spaces, J. Phys.: Conf. Ser. 1724 (2021), 012011. https://doi.org/10.1088/1742-6596/1724/1/012011.
- I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces, Neutrosophic Sets Syst. 16 (2017), 4.
- W. Al-Omeri, M.S.M. Noorani, A. Al-Omari, New Forms of Contra-Continuity in Ideal Topology Spaces, Missouri J. Math. Sci. 26 (2014), 33–47. https://doi.org/10.35834/mjms/1404997107.
- W. Al-Omeri, M.S.M. Noorani, A. Al-Omari, Weak Open Sets on Simple Extension Ideal Topological Space, Italian J. Pure Appl. Math. 33 (2014), 333–344.
- T.Rajesh Kannan, S. Chandrasekar Neutrosophic Pre$alpha$, Semi-$alpha$ Pre-$beta$-Irresolute Functions, Neutrosophic Sets Syst. 39 (2021), 6.
- S. Dey, G.C. Ray, Neutrosophic Pre-Compactness, Int. J. Neutrosophic Sci. 21 (2023), 105–120.
- A. Vadivel, C.J. Sundar, Somewhat Neutrosophic $delta$-Irresolute Continuousmappings inn Neutrosophic Topological Spaces, TWMS J. Appl. Eng. Math. 13 (2023), 773–781.
- A.A. Hazaymeh, Time-Shadow Soft Set: Concepts and Applications, Int. J. Fuzzy Log. Intell. Syst. 24 (2024), 387–398. https://doi.org/10.5391/ijfis.2024.24.4.387.
- A. Hazaymeh, Time Effective Fuzzy Soft Set and Its Some Applications with and Without a Neutrosophic, Int. J. Neutrosophic Sci. 23 (2024), 129–149. https://doi.org/10.54216/ijns.230211.
- A. Anwar, A. Hazaymeh, Time Fuzzy Parameterized Fuzzy Soft Expert Sets, Int. J. Neutrosophic Sci. 25 (2025), 101–121. https://doi.org/10.54216/ijns.250409.
- , Multiple Opinions in a Fuzzy Soft Expert Set and Their Application to Decision-Making Issues, Int. J. Neutrosophic Sci. 26 (2025), 191–201. https://doi.org/10.54216/ijns.260313.
- A. Bataihah, The Effect of the Weighted Expert Factor on Time Fuzzy Soft Expert Sets, Eur. J. Pure Appl. Math. 18 (2025), 5937. https://doi.org/10.29020/nybg.ejpam.v18i2.5937.
- Naser Odat, Estimation of Reliability Based on Pareto Distribution, Appl. Math. Sci. 4 (2010), 2743–2748.
- A. Vadivel, M. Seenivasan, C. John Sundar, An Introduction to $delta$-Open Sets in a Neutrosophic Topological Spaces, J. Phys.: Conf. Ser. 1724 (2021), 012011. https://doi.org/10.1088/1742-6596/1724/1/012011.
- W. AL-Omeri, Fuzzy Totally Continuous Mappings Based on Fuzzy $alpha ^m$-Open Sets in $check{S}ostaacute{k}s$ Sense, Int. J. Appl. Comput. Math. 10 (2024), 73. https://doi.org/10.1007/s40819-024-01710-y.
- R. Hatamleh, A. Hazaymeh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings, Neutrosophic Sets Syst. 70 (2024), 1–16.
- R. Raed, A. Hazaymeh, The Properties of Two-Fold Algebra Based on the N-Standard Fuzzy Number Theoretical System, Int. J. Neutrosophic Sci. 25 (2025), 172–178. https://doi.org/10.54216/ijns.250115.
- A.A. Hazaymeh, Fixed Point Results in Complete Neutrosophic Fuzzy Metric Spaces for NF-L Contractions, Neutrosophic Sets Syst. 82 (2025), 189–208.
- A. Hazaymeh, A. Bataihah, M. Abu Qamar, N. Alodat, A. Melhem, On Parameterized Time Neutrosophic Soft Set and Its Aplication, Eur. J. Pure Appl. Math. 18 (2025), 5940. https://doi.org/10.29020/nybg.ejpam.v18i3.5940.
- A. Bataihah, A. Hazaymeh, Quasi Contractions and Fixed Point Theorems in the Context of Neutrosophic Fuzzy Metric Spaces, Eur. J. Pure Appl. Math. 18 (2025), 5785. https://doi.org/10.29020/nybg.ejpam.v18i1.5785.
- W.F. Al-Omeri, The Property (P) and New Fixed Point Results on Ordered Metric Spaces in Neutrosophic Theory, Neutrosophic Sets Syst. 56 (2023), 261–275.
- R. Raed, A. Hazaymeh, On Some Topological Spaces Based on Symbolic N-Plithogenic Intervals, Int. J. Neutrosophic Sci. 25 (2025), 23–37. https://doi.org/10.54216/ijns.250102.
- A. admin, A. Hazaymeh, On the Topological Spaces of Neutrosophic Real Intervals, Int. J. Neutrosophic Sci. 25 (2025), 130–136. https://doi.org/10.54216/ijns.250111.
- R. Hatamleh, V.A. Zolotarev, On Two-Dimensional Model Representations of One Class of Commuting Operators, Ukr. Math. J. 66 (2014), 122–144. https://doi.org/10.1007/s11253-014-0916-9.
- R. Hatamleh, On the Form of Correlation Function for a Class of Nonstationary Field with a Zero Spectrum, Rocky Mt. J. Math. 33 (2003), 159–173. https://doi.org/10.1216/rmjm/1181069991.
- R. Hatamleh, V.A. Zolotarev, On Model Representations of Non-Selfadjoint Operators with Infinitely Dimensional Imaginary Component, Zurnal Mat. Fiz. Anal. Geom. 11 (2015), 174–186. https://doi.org/10.15407/mag11.02.174.
- R. Hatamleh, V.A. Zolotarev, Triangular Models of Commutative Systems of Linear Operators Close to Unitary Operators, Ukr. Math. J. 68 (2016), 791–811. https://doi.org/10.1007/s11253-016-1258-6.