Neutrosophic Semi δ-pre Irresolute Mappings

Main Article Content

Wadei Al-Omeri, Ayman Hazaymeh, Tasneem Younis

Abstract

This study investigates and defined new concept of irresolute mappings called Neutrosophic semi δ-pre irresolute mappings via Neutrosophic topological spaces. Several preservation properties and some characterizations concerning Neutrosophic semi δ-pre irresolute have been obtained.

Article Details

References

  1. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  2. C. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182–190. https://doi.org/10.1016/0022-247x(68)90057-7.
  3. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  4. D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets Syst. 88 (1997), 81–89. https://doi.org/10.1016/s0165-0114(96)00076-0.
  5. Y.S. Eom, S.J. Lee, Intuitionistic Fuzzy $delta$-Continuous Functions, Int. J. Fuzzy Log. Intell. Syst. 13 (2013), 336–344. https://doi.org/10.5391/ijfis.2013.13.4.336.
  6. I. Hanafy, Intuitionistic Fuzzy Functions, Int. J. Fuzzy Log. Intell. Syst. 3 (2003), 200–205. https://doi.org/10.5391/ijfis.2003.3.2.200.
  7. I.M. Hanafy, Intuitionistic Fuzzy $gamma$-Continuity, Can. Math. Bull. 52 (2009), 544–554. https://doi.org/10.4153/cmb-2009-055-0.
  8. J.K. Jeon, Y.B. Jun, J.H. Park, Intuitionistic Fuzzy Alpha‐continuity and Intuitionistic Fuzzy Precontinuity, Int. J. Math. Math. Sci. 2005 (2005), 3091–3101. https://doi.org/10.1155/ijmms.2005.3091.
  9. H. Gurcay, A.H. Es, D. Coker, On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces, J. Fuzzy Math. 5 (1997), 365–378.
  10. D. Coker, A.H. Es, On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces, J. Fuzzy Math. 3 (1995), 899–909.
  11. N. Turanli, D. Çoker, Fuzzy Connectedness in Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets Syst. 116 (2000), 369–375. https://doi.org/10.1016/s0165-0114(98)00346-7.
  12. S.S. Thakur, R. Chaturvedi, Generalized Continuity in Intuitionistic Fuzzy Topological Spaces, Notes Intuitionistic Fuzzy Sets 12 (2006), 38–44.
  13. S.S. Thakur, R. Chaturvedi, Regular Generalized Closed Sets in Intuitionistic Fuzzy Topological Spaces, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, 16 (2006), 252–272.
  14. S.S. Thakur, R. Chaturvedi, Generalized Closed Sets in Intuitionistic Fuzzy Topology, J. Fuzzy Math. 16 (2008), 559–572.
  15. F. Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set, and Logic, American Research Press, Rehoboth, 1999.
  16. F. Smarandache, Neutrosophy and Neutrosophic Logic, in: First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, (2002).
  17. A.A. Salama, S.A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR J. Math. 3 (2012), 31–35.
  18. W. Al-Omeri, F. Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, in: F. Smarandache, S. Pramanik (Eds), Neutrosophic Operational Research, Pons Editions, Brussels, Belgium, Vol. I, pp. 189–209, 2017.
  19. W.F. Al-Omeri, Neutrosophic Crisp Sets via Neutrosophic Crisp Topological Spaces, Neutrosophic Sets Syst. 13 (2016), 96–104.
  20. I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces, Neutrosophic Sets Syst. 16 (2017), 16–19.
  21. F.G. Lupiáñez, Quasicoincidence for Intuitionistic Fuzzy Points, Int. J. Math. Math. Sci. 2005 (2005), 1539–1542. https://doi.org/10.1155/ijmms.2005.1539.
  22. M. Thakur, F. Smarandache, S.S. Thakur. Neutrosophic Semi $delta$-Preopen Sets and Neutrosophic Semi $delta$-Pre Continuity, Neutrosophic Sets Syst. 73 (2024), 35.
  23. A. Vadivel, M. Seenivasan, C. John Sundar, An Introduction to $delta$-Open Sets in a Neutrosophic Topological Spaces, J. Phys.: Conf. Ser. 1724 (2021), 012011. https://doi.org/10.1088/1742-6596/1724/1/012011.
  24. I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces, Neutrosophic Sets Syst. 16 (2017), 4.
  25. W. Al-Omeri, M.S.M. Noorani, A. Al-Omari, New Forms of Contra-Continuity in Ideal Topology Spaces, Missouri J. Math. Sci. 26 (2014), 33–47. https://doi.org/10.35834/mjms/1404997107.
  26. W. Al-Omeri, M.S.M. Noorani, A. Al-Omari, Weak Open Sets on Simple Extension Ideal Topological Space, Italian J. Pure Appl. Math. 33 (2014), 333–344.
  27. T.Rajesh Kannan, S. Chandrasekar Neutrosophic Pre$alpha$, Semi-$alpha$ Pre-$beta$-Irresolute Functions, Neutrosophic Sets Syst. 39 (2021), 6.
  28. S. Dey, G.C. Ray, Neutrosophic Pre-Compactness, Int. J. Neutrosophic Sci. 21 (2023), 105–120.
  29. A. Vadivel, C.J. Sundar, Somewhat Neutrosophic $delta$-Irresolute Continuousmappings inn Neutrosophic Topological Spaces, TWMS J. Appl. Eng. Math. 13 (2023), 773–781.
  30. A.A. Hazaymeh, Time-Shadow Soft Set: Concepts and Applications, Int. J. Fuzzy Log. Intell. Syst. 24 (2024), 387–398. https://doi.org/10.5391/ijfis.2024.24.4.387.
  31. A. Hazaymeh, Time Effective Fuzzy Soft Set and Its Some Applications with and Without a Neutrosophic, Int. J. Neutrosophic Sci. 23 (2024), 129–149. https://doi.org/10.54216/ijns.230211.
  32. A. Anwar, A. Hazaymeh, Time Fuzzy Parameterized Fuzzy Soft Expert Sets, Int. J. Neutrosophic Sci. 25 (2025), 101–121. https://doi.org/10.54216/ijns.250409.
  33. , Multiple Opinions in a Fuzzy Soft Expert Set and Their Application to Decision-Making Issues, Int. J. Neutrosophic Sci. 26 (2025), 191–201. https://doi.org/10.54216/ijns.260313.
  34. A. Bataihah, The Effect of the Weighted Expert Factor on Time Fuzzy Soft Expert Sets, Eur. J. Pure Appl. Math. 18 (2025), 5937. https://doi.org/10.29020/nybg.ejpam.v18i2.5937.
  35. Naser Odat, Estimation of Reliability Based on Pareto Distribution, Appl. Math. Sci. 4 (2010), 2743–2748.
  36. A. Vadivel, M. Seenivasan, C. John Sundar, An Introduction to $delta$-Open Sets in a Neutrosophic Topological Spaces, J. Phys.: Conf. Ser. 1724 (2021), 012011. https://doi.org/10.1088/1742-6596/1724/1/012011.
  37. W. AL-Omeri, Fuzzy Totally Continuous Mappings Based on Fuzzy $alpha ^m$-Open Sets in $check{S}ostaacute{k}s$ Sense, Int. J. Appl. Comput. Math. 10 (2024), 73. https://doi.org/10.1007/s40819-024-01710-y.
  38. R. Hatamleh, A. Hazaymeh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings, Neutrosophic Sets Syst. 70 (2024), 1–16.
  39. R. Raed, A. Hazaymeh, The Properties of Two-Fold Algebra Based on the N-Standard Fuzzy Number Theoretical System, Int. J. Neutrosophic Sci. 25 (2025), 172–178. https://doi.org/10.54216/ijns.250115.
  40. A.A. Hazaymeh, Fixed Point Results in Complete Neutrosophic Fuzzy Metric Spaces for NF-L Contractions, Neutrosophic Sets Syst. 82 (2025), 189–208.
  41. A. Hazaymeh, A. Bataihah, M. Abu Qamar, N. Alodat, A. Melhem, On Parameterized Time Neutrosophic Soft Set and Its Aplication, Eur. J. Pure Appl. Math. 18 (2025), 5940. https://doi.org/10.29020/nybg.ejpam.v18i3.5940.
  42. A. Bataihah, A. Hazaymeh, Quasi Contractions and Fixed Point Theorems in the Context of Neutrosophic Fuzzy Metric Spaces, Eur. J. Pure Appl. Math. 18 (2025), 5785. https://doi.org/10.29020/nybg.ejpam.v18i1.5785.
  43. W.F. Al-Omeri, The Property (P) and New Fixed Point Results on Ordered Metric Spaces in Neutrosophic Theory, Neutrosophic Sets Syst. 56 (2023), 261–275.
  44. R. Raed, A. Hazaymeh, On Some Topological Spaces Based on Symbolic N-Plithogenic Intervals, Int. J. Neutrosophic Sci. 25 (2025), 23–37. https://doi.org/10.54216/ijns.250102.
  45. A. admin, A. Hazaymeh, On the Topological Spaces of Neutrosophic Real Intervals, Int. J. Neutrosophic Sci. 25 (2025), 130–136. https://doi.org/10.54216/ijns.250111.
  46. R. Hatamleh, V.A. Zolotarev, On Two-Dimensional Model Representations of One Class of Commuting Operators, Ukr. Math. J. 66 (2014), 122–144. https://doi.org/10.1007/s11253-014-0916-9.
  47. R. Hatamleh, On the Form of Correlation Function for a Class of Nonstationary Field with a Zero Spectrum, Rocky Mt. J. Math. 33 (2003), 159–173. https://doi.org/10.1216/rmjm/1181069991.
  48. R. Hatamleh, V.A. Zolotarev, On Model Representations of Non-Selfadjoint Operators with Infinitely Dimensional Imaginary Component, Zurnal Mat. Fiz. Anal. Geom. 11 (2015), 174–186. https://doi.org/10.15407/mag11.02.174.
  49. R. Hatamleh, V.A. Zolotarev, Triangular Models of Commutative Systems of Linear Operators Close to Unitary Operators, Ukr. Math. J. 68 (2016), 791–811. https://doi.org/10.1007/s11253-016-1258-6.