A Modified Inertial Subgradient Extragradient Method for Solving Pseudomonotone Equilibrium Problem

Main Article Content

O. Joseph, C.F. Igiri, A. E. Ofem, A. A. Mebawondu, A. Maharaj, O. K. Narain

Abstract

In this paper, we introduce and study a new modified inertial subgradient extragradient method that includes a self-adaptive step size and viscosity technique for approximating the solution of pseudomonotone equilibrium and fixed point problems in the framework of real Hilbert space. We obtain a strong convergence result of the proposed method under mild conditions. Furthermore, we apply our results to solve variational inequality. Finally, we present some numerical experiments for our proposed method in comparison with existing methods in the literature. Our result improves, extends and generalizes several existing results in the literature.

Article Details

References

  1. A. Adamu, J. Deepho, A.H. Ibrahim, A.B. Abubakar, Approximation of Zeros of Sum of Monotone Mappings With Applications to Variational Inequality and Image Restoration Problems, Nonlinear Funct. Anal. Appl. 26 (2021), 411–432. https://doi.org/10.22771/NFAA.2021.26.02.12.
  2. S. Aggarwal, I. Uddin, N. Pakkaranang, N. Wairojjana, P. Cholamjiak, Convergence Theorems of Proximal Type Algorithm for a Convex Function and Multivalued Mappings in Hilbert Spaces, Nonlinear Funct. Anal. Appl. 26 (2021), 1–11. https://doi.org/10.22771/NFAA.2021.26.01.01.
  3. K.J. Arrow, G. Debreu, Existence of an Equilibrium for a Competitive Economy, Econometrica 22 (1954), 265–290. https://doi.org/10.2307/1907353.
  4. M. Bianchi, S. Schaible, Generalized Monotone Bifunctions and Equilibrium Problems, J. Optim. Theory Appl. 90 (1996), 31–43. https://doi.org/10.1007/bf02192244.
  5. F. Akutsah, A.A. Mebawondu, H.A. Abass, O.K. Narain, A Self Adaptive Method for Solving a Class of Bilevel Variational Inequalities with Split Variational Inequality and Composed Fixed Point Problem Constraints in Hilbert Spaces, Numer. Algebr. Control. Optim. 13 (2023), 117–138. https://doi.org/10.3934/naco.2021046.
  6. F. Akutsah, A.A. Mebawondu, G.C. Ugwunnadi, O.K. Narain, Inertial Extrapolation Method With Regularization for Solving Monotone Bilevel Variation Inequalities and Fixed Point Problems in Real Hilbert Space, J. Nonlinear Funct. Anal. 2022 (2022), 5.
  7. F. Akutsah, A.A. Mebawondu, G.C. Ugwunnadi, P. Pillay, O.K. Narain, Inertial Extrapolation Method with Regularization for Solving a New Class of Bilevel Problem in Real Hilbert Spaces, SeMA J. 80 (2022), 503–524. https://doi.org/10.1007/s40324-022-00293-2.
  8. F. Alvarez, H. Attouch, An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping, Set-Valued Anal. 9 (2001), 3–11. https://doi.org/10.1023/a:1011253113155.
  9. P.N. Anh, Strong Convergence Theorems for Nonexpansive Mappings and Ky Fan Inequalities, J. Optim. Theory Appl. 154 (2012), 303–320. https://doi.org/10.1007/s10957-012-0005-x.
  10. S.D. Flåm, A.S. Antipin, Equilibrium Programming Using Proximal-Like Algorithms, Math. Program. 78 (1996), 29–41. https://doi.org/10.1007/bf02614504.
  11. P.K. Anh, T.V. Anh, L.D. Muu, On Bilevel Split Pseudomonotone Variational Inequality Problems with Applications, Acta Math. Vietnam. 42 (2016), 413–429. https://doi.org/10.1007/s40306-016-0178-8.
  12. E. Blum, From Optimization and Variational Inequalities to Equilibrium Problems, Math. Student 63 (1994), 123–145.
  13. A. Moudafi, Proximal Point Algorithm Extended to Equilibrum Problem, J. Nat. Geom. 15 (1999), 91–100.
  14. A. Moudafi, Second-Order Differential Proximal Methods for Equilibrium Problems, J. Inequal. Pure Appl. Math. 4 (2003), 18.
  15. D. Quoc Tran, M. Le Dung, V.H. Nguyen, Extragradient Algorithms Extended to Equilibrium Problems¶, Optimization 57 (2008), 749–776. https://doi.org/10.1080/02331930601122876.
  16. B. Polyak, Some Methods of Speeding up the Convergence of Iteration Methods, USSR Comput. Math. Math. Phys. 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5.
  17. D.V. Thong, P. Cholamjiak, M.T. Rassias, Y.J. Cho, Strong Convergence of Inertial Subgradient Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problems, Optim. Lett. 16 (2021), 545–573. https://doi.org/10.1007/s11590-021-01734-z.
  18. H.U. Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems, Symmetry 12 (2020), 463. https://doi.org/10.3390/sym12030463.
  19. Y. Shehu, O.S. Iyiola, D.V. Thong, N.T.C. Van, An Inertial Subgradient Extragradient Algorithm Extended to Pseudomonotone Equilibrium Problems, Math. Methods Oper. Res. 93 (2020), 213–242. https://doi.org/10.1007/s00186-020-00730-w.
  20. A.E. Ofem, A.A. Mebawondu, G.C. Ugwunnadi, H. Işık, O.K. Narain, A Modified Subgradient Extragradient Algorithm-Type for Solving Quasimonotone Variational Inequality Problems with Applications, J. Inequal. Appl. 2023 (2023), 73. https://doi.org/10.1186/s13660-023-02981-7.
  21. A.A. Mebawondu, A.E. Ofem, F. Akutsah, C. Agbonkhese, F. Kasali, et al., A New Double Inertial Subgradient Extragradient Algorithm for Solving Split Pseudomonotone Equilibrium Problems and Fixed Point Problems, Ann. Univ. Ferrara 70 (2024), 1321–1349. https://doi.org/10.1007/s11565-024-00496-7.
  22. S.I. Lyashko, V.V. Semenov, A New Two-Step Proximal Algorithm of Solving the Problem of Equilibrium Programming, in: B. Goldengorin, (eds) Optimization and Its Applications in Control and Data Sciences, Springer Optimization and Its Applications, vol 115, Springer, Cham, (2016). https://doi.org/10.1007/978-3-319-42056-1_10.
  23. A.E. Ofem, G.C. Ugwunnadi, R. Panicker, O.K. Narain, A Twice Extrapolated Algorithm for Solving Non-Lipschitz Bilevel Split Monotone Variational Inclusion Problem, Oper. Res. Forum 6 (2025), 158. https://doi.org/10.1007/s43069-025-00566-2.
  24. A.E. Ofem, A.A. Mebawondu, G.C. Ugwunnadi, P. Cholamjiak, O.K. Narain, A Novel Method for Solving Split Variational Inequality and Fixed Point Problems, Appl. Anal. (2025). https://doi.org/10.1080/00036811.2025.2505615.
  25. R. George, A.E. Ofem, A.A. Mebawondu, F. Akutsah, F. Alshammari, et al., A New Double Inertial Subgradient Extragradient Method for Solving Quasimonotone Variational Inequality Problems, J. Ind. Manag. Optim. 21 (2025), 2074–2090. https://doi.org/10.3934/jimo.2024163.
  26. G. Mastroeni, On Auxiliary Principle for Equilibrium Problems, in: Nonconvex Optimization and Its Applications, Springer US, Boston, MA, 2003: pp. 289–298. https://doi.org/10.1007/978-1-4613-0239-1_15.
  27. G. Mastroeni, Gap Functions for Equilibrium Problems, J. Glob. Optim. 27 (2003), 411–426. https://doi.org/10.1023/a:1026050425030.
  28. K. Muangchoo, A New Explicit Extragradient Method for Solving Equilibrium Problems With Convex Constraints, Nonlinear Funct. Anal. Appl. 27 (2022), 1–22. https://doi.org/10.22771/NFAA.2022.27.01.01.
  29. A.E. Ofem, J.A. Abuchu, G.C. Ugwunnadi, H.A. Nabwey, A. Adamu, et al., Double Inertial Steps Extragadient-Type Methods for Solving Optimal Control and Image Restoration Problems, AIMS Math. 9 (2024), 12870–12905. https://doi.org/10.3934/math.2024629.
  30. A.E. Ofem, A.A. Mebawondu, C. Agbonkhese, G.C. Ugwunnadi, O.K. Narain, Alternated Inertial Relaxed Tseng Method for Solving Fixed Point and Quasi-Monotone Variational Inequality Problems, Nonlinear Funct. Anal. Appl. 29 (2024), 131–164. https://doi.org/10.22771/NFAA.2024.29.01.10.
  31. F. Akutsah, A.A. Mebawondu, A.E. Ofem, R. George, H.A. Nabwey, et al., Modified Mildly Inertial Subgradient Extragradient Method for Solving Pseudomonotone Equilibrium Problems and Nonexpansive Fixed Point Problems, AIMS Math. 9 (2024), 17276–17290. https://doi.org/10.3934/math.2024839.
  32. A.E. Ofem, A.A. Mebawondu, G.C. Ugwunnadi, P. Cholamjiak, O.K. Narain, Relaxed Tseng Splitting Method with Double Inertial Steps for Solving Monotone Inclusions and Fixed Point Problems, Numer. Algorithms 96 (2023), 1465–1498. https://doi.org/10.1007/s11075-023-01674-y.
  33. N.T. Vinh, L.D. Muu, Inertial Extragradient Algorithms for Solving Equilibrium Problems, Acta Math. Vietnam. 44 (2019), 639–663. https://doi.org/10.1007/s40306-019-00338-1.
  34. S. Saejung, P. Yotkaew, Approximation of Zeros of Inverse Strongly Monotone Operators in Banach Spaces, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 742–750. https://doi.org/10.1016/j.na.2011.09.005.
  35. Z. Xie, G. Cai, B. Tan, Inertial Subgradient Extragradient Method for Solving Pseudomonotone Equilibrium Problems and Fixed Point Problems in Hilbert Spaces, Optimization 73 (2022), 1329–1354. https://doi.org/10.1080/02331934.2022.2157677.
  36. J. Yang, H. Liu, The Subgradient Extragradient Method Extended to Pseudomonotone Equilibrium Problems and Fixed Point Problems in Hilbert Space, Optim. Lett. 14 (2019), 1803–1816. https://doi.org/10.1007/s11590-019-01474-1.
  37. J. Oboyi, R.E. Orim, A.E. Ofem, A. Maharaj, O.K. Narain, On Ai-Iteration Process for Finding Fixed Points of Enriched Contraction and Enriched Nonexpansive Mappings with Application to Fractional BVPs, Adv. Fixed Point Theory 14 (2024), 56. https://doi.org/10.28919/afpt/8812.
  38. M.O. Udo, A.E. Ofem, J. Oboyi, C.F. Chikwe, S.E. Ekoro, et al., Some Common Fixed Point Results for Three Total Asymptotically Pseudocontractive Mappings, J. Anal. 31 (2023), 2005–2022. https://doi.org/10.1007/s41478-023-00548-9.