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Abstract. In this paper, we introduce and study a new modified inertial subgradient extragradient method that includes
a self-adaptive step size and viscosity technique for approximating the solution of pseudomonotone equilibrium and
fixed point problems in the framework of real Hilbert space. We obtain a strong convergence result of the proposed
method under mild conditions. Furthermore, we apply our results to solve variational inequality. Finally, we present
some numerical experiments for our proposed method in comparison with existing methods in the literature. Our

result improves, extends and generalizes several existing results in the literature.

1. INTRODUCTION

Let C be a nonempty closed and convex subset of a real Hilbert space H. The Equilibrium
Problem (EP) introduced and studied by Blum and Oettli [12] is the problem of finding a point
x* € C such that

g(x",y) 20VyeC, (1.1)

where ¢ : CXC — R is a bifunction. For any point x* € C that solves EP is called an equi-
librium point of g. We denote SOL(g, C) the solution set of problem (1.1). Researchers have

paid close attention to the EP (1.1) because it unifies a good number of mathematical models,
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including optimization problem, fixed point problem, convex minimization problem, Nash equi-
librium, variational inequality problem, saddle point problem, and many more (see [1-4] and
the references therein). Regularization methods, proximal point methods, extragradient methods,
projection methods, gap-function methods, the auxiliary problem principle method, and the Breg-
man distance method are among the fundamental techniques for solving EP (1.1). In particular,
Moudafi [13,14] used the proximal point method to solve monotone equilibrium problem. How-
ever, the proximal point method fail to solve the pseudomonotone equilibrium problem. In the
light of this drawback Flam [10] and Tran et al. [15] introduced and studied a proximal-like method
known as the Extragradient Method (EGM) solve the pseudomonotone equilibrium problem. They
gave the following iterative method

x0 € C

Ym = argmin, (A (xm, y) + 3lly = xull’} (1.2)

X1 = argminyec{/\g(ym,y) + %Hy — xml%},
where A is a constant satisfying suitable assumptions. It is worth mentioning that when using this
method, one needs to solve two strongly convex optimization problems in the feasible set C per
iteration, and A depend on bifunctional Lipschitz-type constants. In addition, the sequence {x,,}
converges weakly to the solution set. The concept of inertial extrapolation was first introduced and
studied in 1964 by Polyak in [16] as a technique for accelerating the process of solving the smooth
convex minimization problem. Since then, researchers have used this technique to improve the
rate of convergence of different iterative processes. Numerous authors have improved, expanded,
and generalized the inertial extrapolation method since its inception, see [5-9,23-25,29-31] and
the references therein. In this area of research, relaxation techniques have proven to be a good
technique for better rate of convergence. It is well-known that combining the inertial and the
relaxation technique improve and give a better rate or convergence when compared with just

relaxation technique or the inertial technique. For example, Vinh and Muu [33] proposedthe
following iterative algorithm

x0,x1 € C,

Wy = Xy + O (X — Xip—1),

Y = argmin,c{Ag(wn, ) + 3lly = wal), (13)
Zm = argminyec{Ag(ym,y) + %Hy — W2}

If wy, = yn, then stop and y,, is a solution. Otherwise.

X1 = (1 = N — W) X + WZin.

where A is a constant satisfying suitable assumptions. As mentioned above one needs to solve
two strongly convex optimization problems in the feasible set C per iteration, and A depend on
bifunctional Lipschitz-type constants. These drawbacks limit the application of the above method.
Motivated by the above drawbacks, Lyashko et. al. [22] introduced and studied the following
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iterative process

X1 €H,

Ym = Pc(xm = Amdg(xm, ) (Xm)),

Xmt1 = Pr,, (Xm = And8(Ym, ) (Ym)),

T —{z € H: Xy — A0 (X, ) (Xm) = Yim, 2 — Ym) < 0},

where A, are positive numbers and dg(x, -)(y) is the Gateaux derivative of the functional g(x, -) at
a point y. It was established that the sequence generated by (1.4) converges weakly to the solution
set of the aforementioned problem. It is easy to see that, the iterative process (1.4) reduces the
computation time of the iterative process (1.3). Since in iterative process (1.4) only one metric
projection into the feasible set is required. However, it is well-known in this area of research that
strong convergence is more desirable. The main benefit of the Subgradient Extragradient Method
(SEM) over the extragradient method is the fact that the second convex optimization problem is
onto a half-space and has a closed form solution. So, compared to the extragradient approach,
its computational complexity is less expensive. In the light of this development, so many authors
have modified the SEM, see ( [17-21,27,28,32,37,38] and the references therein). In this area of
research, the notion of improving iterative algorithm to get a better rate of convergence is highly
sort after.

Motivated by the above literature and the research work in this direction, we introduce and study
a modified pseudomonotone equilibrium problem, and a new inertial-viscosity condition for the
subgradient extragradient method with self-adaptive step size for approximating a solution of the
pseudomonotne equilibrium problem in a real Hilbert space. We prove strong convergence result
for our proposed iterative method and present some numerical experiments to show the efficiency

and applicability of our proposed method in comparison with existing methods in the literature.

2. PRELIMINARIES

In this section, we present some existing results which will be useful in the sequel. Let H be
a real Hilbert space. The fixed point of the self mapping T : H — H is repented F(T), that is
F(T) = {x €e H: Tx = x}. Let ">" and "—" stand for weak and strong convergence, respectively.
For any %, € H and «a € [0, 1], it is well-known that

lIx = 7> = lII1* - 2¢x, ) + l|1>- (2.1)

Iz + 71> = 112”4 2¢x, ) + 711> (2.2)

Iz - 7> < &I + 2(7, 2 - ). (2.3)

laz 4+ (1-a)7ll* = all®lP* + (1 - a)l7lP* - a(1l - a)llx - 71> (2.4)

Definition 2.1. Let T : H — H be an operator. Then the operator T is called
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(a) L-Lipschitz continuous if there exists L > 0 such that
ITx - Tyl < Liix - 7ll,

forall %,y € H.IfL = 1, then T is called nonexpansive;

(b) monotone if
(Tx-Ty,x-7) 20, V%, € H;
(c) pseudomonotone if
(Tx,7—%y>0=(Ty,7—x) >0, V%, 7 € H;

(d) p- strongly monotone if there exists > 0, such that

(Tx-Ty,x-7) 2 pllx—7lI>, V%, 7€ H;
(e) firmly nonexpansive

Tz~ Tyl> <(Tx-Ty,x- )V %, 7 € H;

or equivalently
ITx - Tyl* <llx—gl* - I(I-T)x— (I-T)yI* V , 7 € H;
(f) directed (also called to be firmly quasi-nonexpansive) if F(T) # 0 and
(-7, Tx-Ty) 2 ||[Tx—pl*V x € Hand p € F(T);

(g) sequentially weakly continuous if for each sequence {X,}, we obtain {%,,} converges weakly to X

implies that TX,, converges weakly to TX.

Definition 2.2. Let ¢ : C X C — R is said to be:
(a) Strongly monotone on C if there exists a constant T > 0 such that
8(x,y) + gy, x) < —tllx — yIP (2.5)

forallx,y € G
(b) Monotone on C if

g(xy) +g(y,x) <0 (2.6)

forallx,y € G
(c) Strongly pseudomonote on C if there exists a constant y > 0 such that

(% y) 2 0= g(y,x) < —yllk—yl*, Yx,y € G
(d) Psuedomonotone on C if
gx,y)=20=¢(y,x) <0, Vx,yeC
(e) Satisfying a Lipschitz-like condition if there exist two positive constant Ly, Ly such that

g(x,y) +g(y,z) = g(x,z) = Lillx — yll = Lolly — 2> V x,y,z € C. (2.7)
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Let C be a nonempty, closed and convex subset of H. For any u € H, there exists a unique point
Pcu € C such that

Il = Pcull < [lu—yll Yy € C.

The operator Pc is called the metric projection of H onto C. It is well-known that P¢ is a nonexpan-

sive mapping and that P¢ satisfies
(x =y, Pcx = Pcy) = |IPcx = PeylP, (2.8)
for all x, y € H. Furthermore, P is characterized by the property
e = yI? = llx = Pexl? + lly — Pexd?
and
(x=Pcx,y—Pcx) <0, (2.9)

forall x € Hand y € C. A subset C of H is called proximal if for each x € H, there exists y € C such
that

llx — yll = d(x,C).

The normal cone N¢ to C at a point x € C is defined by N¢(x) ={z€ H: (z,x—y) > 0Vy € C}.

Lemma2.1. Let Cbea convex subset of a real Hilbert space H and ¢ : C — R be a subdifferential function on
C. Then x* is a solution to the convex problem: minimize{¢(x) : x € C}if and only if 0 € dp(x*) + Nc(x*),
where d(x*) denotes the subdifferential of p and Nc(x*) is the normal cone of C at x*.

Lemma 2.2. [34] Let {a,,} be a sequence of positive real numbers, {a,} be a sequence of real numbers in
(0,1) such that Y, ay = 00 and {d,,} be a sequence of real numbers. Suppose that
A1 < (1 —am)am + amdm, m > 1.
Iflimsup,_, dm, < 0 for all subsequences {a,, } of {an} satisfying the condition
lizfn inflay, 11 —am} >0,
then, lim a,, = 0.
m—00

3. PROPOSED ALGORITHM

In this section, we present our proposed method for solving the problem (1.1).

Assumption 3.1.

Condition A. Let C be a nonempty, closed convex subset of a real Hilbert space H. Suppose
g : Hx H — R satisfies the following conditions:

(1) g is pseudomonotone on C;
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(2) g satisfies the Lipschitz-type condition (2.7) on H and the constants Ly, Ly do not necessary need to

be known;

(3) g(-,y) is sequentially weakly upper semi-continuous on C for each fixed y € C;

(4) g(x,-) is convex, lower semi-continuous on H for every fixed x € H;
(5) f: H — H is a contraction with constant k € [0,1);
(6) SOL(g,C) is non empty.

Condition B. Suppose that {a,}, (.}, B}, l€n} and {n,} are positive sequences such that

(1) {nm} am} € (0,1), limy—oo ay = 0, such that Y1 iy = 00, limy—ye0

() Ay >0,u€(0,1),0>0,0< 0y <Oy

We present the following iterative algorithm.

Algorithm 3.1. An Hybrid Viscosity Iterative Method

Step 1: Choose xo, x1 € Hy, given the iterates x,,_1 and x,, for all m € IN.

. €m .
mm{e, ||xm—xm_1||}}' if X # X1

o, otherwise.

Step 2: Compute
Wy = amf(Xm) + (1= am) (X + Om (X — X-1)),

, 1
Y = argminyec{Ang (W, y) + Slly = wnll?).

If wy, = ym, then stop and y,, is a solution. Otherwise, go to Step 3.
Step 3: Select z,, € dg(wm, -) (Ym) and g € Nc(Ym) such that

m = Wm — Am,BZm = Ym,
and construct a half-space

Ty ={z€H:{(wy _/\mﬁzm _ym/z_ym> <0},

and
] II m— m||2+|| m— m”z .
min {Am, 2(8(£r[r17::11)_;é(winzy:)_gy(ynjum))} }’ Z'fg(wm, Mm) N g(wm, ym) - g(yl’VZ/ um) > 0
Ap1 =
A, otherwise.
compute

. 1
Uy = argmmyETm{/\mg(ym,y) + Elly — Wl ).

Step 4: Compute

X1 = (1= N) Wi + Nl

(3.1)

(3.2)

(3.3)

(3.7)

(3.8)
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Remark 3.1. If f = I (identity mapping), we obtain a relaxed type inertia.

Lemma 3.1. The sequence {A,,} generated by (3.6) is monotonically non-increasing and

. ¢
1 =A>—"
ml—r>rolo /\m Az 2max{L1,L2}

Proof. Clearly, {A,} is monotonically non-increasing. Also, since g satisfies condition A (2), we

have

H“lwm_ymll2+|lum_ym”2] S ‘U[”wm_ymuz'{‘”um_ym”z] S 1% (3.9)
2(g(wm, m) = §(Wm, Ym) = & Ym, m)) — 2(Lallwm = Ymll? + Lollym — uml?) — 2max{L;, Lo}

Hence {A,,} is bounded below by m This implies that there exists

. U
IimA, =A>——.
oo T = 2max{Ly, Ly}

O

Lemma 3.2. Let {x,,} be a sequence generated by Algorithm 3.1 under Assumption 3.1. Then, {x,} is
bounded.

Proof. Let p € SOL(g, C) using (3.1) and the fact that 0 < 9,, < 0,,,, We have
Omllxm — X1l < ém”xm = Xp—1ll < €.

Therefore, it follows from lim,;;— e 2—: = (0, that

6
Hm 2 — Xl < lim <% = 0. (3.10)
m—c0 (yy, m—00 by

It follows that the sequence {%lem — xn-1ll} is bounded. Hence, there exists N > 0 such that

Om

a [l = Xm—1ll < Np, for all m € IN. Then using Algorithm 3.1, we have

lwm = pll = llam f(xm) + (1 = am) (Xm + Om (X — xm—1)) = pll
< awllf (xm) = pll + (1= am)llxm = pll + O (1 = am) 1Xm — X1l
< awllf (xm) = fF(P) + amllf (p) = pll + (1 = am)llxm = pll + Oullxm — xm-ll
< aykllxm = pll + amllf (p) = pll + (1 = am)llxm = pll + Onllxm = X1l

Om
= (1 - am(l - k))”xm _P” + am”f(p) _P” + ama_”xm — Xm—1l|

n

< (1= (1= K))lbw = pl +am(1—k)[”f(”)(1__p',l)+N2]
< max{liv —pl, L )(1_ F ',l; 2, (3.11)

From Algorithm 3.1, we have u,, = argminyeTm{/\m,Bg(ym, y)+ %Hy — wy||*}, and using Lemma 2.1,

we get

BAm [8(Ym, Y) = &(Ym, tm)] = W — Ui, Y = tm), VY € Ty (3.12)
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Since p € SOL(g,C) c C ¢ Ty, and taking y := p, we get

BAn(§(Ym,P) = §(Ym, tm)) = (W — thm, P — ). (3.13)

Since y,, € C, we have g(p, ym) = 0, and by the pseudomonotonicity of g, we get g(ym,p) < 0.
Thus, (3.13) becomes

~BAng (Y, thin) = (W — thy, P = Un). (3.14)
In addition, from z,, € dg(wy, -)(ym), we obtain
BAm (& (Wi, tim) = &( Wiy Ym)) 2 BAwSZm, Y = Ym)- (3.15)

Using the definition of T}, we get

(Wi = APz = Ym, Um — Ym) < 0, (3.16)
it follows that
BAmCzZm, W = Ym) = Wi = Y, U = Yim)- (3.17)
From (3.17) and (3.15), we get
BAm (& (W, i) = §( Wi, Ym)) = Wi = Y i = Yom).- (3.18)

Also, adding (3.18) and (3.14), we obtain
BAm (g (Wi, thn) = §(Wi, Ym) — §(Ym, thm)) = Wit = Yimy U — Yim) + Wiy — Uy, P — Up)
=2BAm (§(Wm, thm) — §( Wi, Yim) = §(Ymy Um)) = 2€Wi = Yoy i — Ym) + 2(Wim — Uy, P — Up)
= |[wm = Ymll* + Ntk = Youll* = Wtk — Wil * =+ [0 = teall* + Ntk = pIP = [0 = pIIP
= |[wm = Ymll* + Nt = Yl + Nt = pIF = vy = plI>. (3.19)

It follows that

Nt — pIP < Nwm = pIP = lwm — Yll® = Ntk = Youll* + 280 (8@, i) = § (Wi, Yin) = & (Yo, tim))-

(3.20)
and using the step size (3.6), we obtain
A
it = pIP < N = I = (1= =) 0o = Yol + s = Yl (321)
m+1
Since u € (0,1) and by Lemma 3.1, lim A,, = A, we have
m—o0
lim (1— A )>O (3.22)
M— 00 ‘U/\erl ’ ’

Thus, from (3.21) and (3.22)

It = pll < llwn = pll- (3.23)
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In addition, using Algorithm 3.1, (3.23) and (3.11), we have

X1 = PP = 11(L = o)W + 1t — pI
= (1= )0 = pIP + Nalltte = PIP = 100 (1 = 100 20, = 0>
< (1= )llwn = pIP + fllit, — pIP
< (1= 1) llwm = pIP + nllws, — pll*
= |l — pI*. (3.24)
This implies
IXnt1 = pll < llwn — pll.

Thus, we have

”xm+1 _P” < |ws, _P”

-~ N
< maxflley - pl, L 21 _’“',l; 2)
<
-pll+ N
< max{llxo — pll, If(p )(1 _p Ll) 2}, (3.25)
Thus, {x,,} is bounded. |

Theorem 3.1. Let {x,,} be the sequence generated by Algorithm 3.1. Then, under the Assumption 3.1, {x,,}
converges strongly to p € SOL(g, C).

Proof. Let p € sol(g,C) and sy = X + O (X — Xp-1), thus, wy, in Algorithm 3.1 becomes w,, =
A f(Xm) + (1 — am)s,. We have
lIsm = PIP = m + O (X — X-1) = pII?
= Il = PIP + 26, C0m = p, X = X1 + O3, = X [P
< [ = PIP + 205l = X1 M1 = pll + 67,1 = X1 I
< M = pIP + Ol = X 120150 = pll + Oumllxin = X1 ]
= [bem = pI* + Ol = X1l 20l — pll + anz—Zme = xXm-1ll]
< |lxm = pI* + Oullxim — Xpu-all 201 — pll + € N2)]
< = pIP* + Ol = xin-1[IN3, (3.26)
where N3 > 0. Furthermore, using (2.1) and (3.26), we get
[0 = pIP = et f () + (1= @) = pII”
= apllf (xm) = I + (1= m)?llsm = pIF + 200 (1 = )< f (X)) = p, S = )
= 0‘%1||f(xm) _P”z +(1- am)2||sm - P||2
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+ 2am(1 = am) [{f (xm) = £(P), sm —p) +{f(P) = P, Sm = P))]
< @ ) = pIP (1= @)l = I + 2000 (1 = @) 3117 (i) = FP)IE + o = pIP
+f(P) = psm—p)]
< @2 |1f (xm) = pIP + (1= am)?llsm — pIP* + am(1 = am)K2llxm — plI?
+2am(1 = aw){f(p) —p,sm—p)
< apllf (xm) = pIP + (1= )l — pIP + Ol — xim-1lIN2 + kllx — plI?
+ 2am(1 = aw){f(p) =P sm =P
= (1= am(1 = k))llxm — plP* + ap |l f (xm) = pII?
+ Ol — xm—1lIN2 + 200, (1 — a0 ){f (p) — P, S — P)- (3.27)

In addition, we get

X1 = PIP = 1L = 1) i + Tt — pIP
< (1 =)l = pIP + it = pIF = (1 = ) 1w, = sl
< (1= n)llw = pIP + ullcwm = pIF = 1 (1 = 1)l — el
= llwm = pIF = (1 = 1)l — sl ®
< (1= am(1=k))llxm = plII* + ag llf (xm) = pIF + Ollxm — xim—1lIN2
+ 20 (1 = )X F(P) =P, S = P) = N (1 = ) [ — 1| (3.28)

= (1= (1 =K))lbon = pIF + an(1 _k>[—(1“fk>||f(xs> —plp + Sl ot ax_m,;;”NZ
2(1—ay)

amnm(l _T]m>
+ W(f(p) —PSm—p)— —— o lwy, — “m”z]

(1-k)
= (1= am(1=k)llxm = plI* + (1= k) ¥,

where ¥y, = [J‘T’"k)”f () = pIP +- 9 Lol 2ted (£ (p) —p, 5, = p) = 228 E )y = P
By Lemma 2.2, next, it is suffices to show that lim supk_m Y., < 0forevery subsequence {||x,;, —pll}
of {|[x;, — pll} fulfilling the condition:

Hon i1 =PIl = [, —pII} 2 0. (3.29)

From (3.28), we have

o1 =PI < e = pIP + a2 )f (xm) = pIF 4 Ollxim — x-1lIN2 + 20 (1 = ) ){F(p) = P, S — P)
= (L = )|, = 1|, (3.30)
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which implies

lim sup (nmk (1 = 1 )y, — Mmk“z)

k—o0
. 0
<limsup [lemk = PIP + a1 (o) = pIP - o, —* I, = m 1[IN2 (3.31)
k— 00 my

200, (1=} () =S == i1 = P
< = lim inf{l| 11 = pIF* = lbow, = pIP] < 0.
Thus, we have
lim [0y, = 1 = 0. (3.32)
From 3.28 and (3.23), we have
X1 = pIP = 1L = )W + Nt — pIP

< (1 - nm)”wm - P”z + T]m”um _PHZ - T]m(l - 77m)||wm - Mm”2

pAm
/\m+1

< (1 - Um)”wm - P||2 + nm[”wm _P”z - (1 - )[”wm - ]/m”z + | — ]/n”Z]]

- Um(l - nn)me - ”m“z

HAm

/\n—o—l
< e = pIP + @21 f (x) =PI + Ol — Xm-1lIN2 4 20 (1 = @) f () = P, $m — P)

pAm
Am+1

= ||wy, _PHZ - T]n(l - )[”wm - ymllz + |y — ymnz]] - T]m(l - nn)”wm - umllz

_Um(l_ )[”wm_]/m||2+||um_]/m||2]] _Um(l_ﬂm)”wm_umuzr (3.33)

which implies

Am
llm Sup (nmk(l - il ‘ )[”wmk - ]/mk”z + ”umk - ymk“z”)
k—o0 my+1

0
< limsup [Ixmk —pIP + g, IIf (xm,) = pIP + Ofmka_nk”xmk = Xip=1 N2 = 1 (1 = T )|, — 11, |I*
k—c0 03

200, (1 }F () =S~ Pl = |
< —lim inf{l, 11 = pIF* = lbow, = pIF’] < 0.
Thus, we have
Bim [, = Yoyl = 0 = im [t = i I (3.34)
It is also, easy to see that

lwm, — Sl < @l f (X ) = Sm, |l = 0 as k — oo. (3.35)



12 Int. ]. Anal. Appl. (2025), 23:322

Mg
”5mk _xmk” = amk_”xm _xmk—ln — 0ask — oo.
amk

Wi, — Xl < Wi, — Syl + lSmy — X |l = 0 as k — oo.
””mk _xmk” < ||umk - wmk” + ”wmk _xmk” —0as k — ©00.
Thus, we obtain

”xkarl _xmk” < (1 - nmk)”umk - wmk” + Umkllwmk _xmk” — 0ask — oo.

(3.36)

(3.37)
(3.38)

(3.39)

Now, since {x,} is bounded, then, there exists a subsequence {xmk]_} of {x;,} such that {xmkj}

converges weakly to x* € H. From the fact that lim infi_,, ||w, — x|l = 0, and liminfy_, |y, —

Xn, |l = 0, then {wmkj }, and {unkj} converges weakly to x*. From, (3.34), we obtain that { ynkj} converges

weakly to x*. Next, we claim that x* € SOL(g, C). To see this, from the definition of y,,, and Lemma

2.1, we get
1
0e 9(ﬁAmkg(wmk, Y) + llwm, - yllz)(ymk) +Ne(Ym,)-

Thus, there exists q € Nc (Y, ) and zy, € dg(wm,*)(Ym,) such that

BAmzZm, + Yy, — Wi, +4q = 0. (3.40)
Since q € Nc(Ym, ), it follows that (g, y — ¥, ) < 0, for all y € C. From (3.40), we have
Amkﬁ<zmk’y - ymk> 2 <wmk ~Ym, Y — ymk> N VAS C. (3.41)
Also, since zy,, € dg(Wm,, *) (Ym, ), we have
§(Wm, ¥) = §( Wiy Ym,) = Zmpy Y = Ym) ¥ y € C. (3.42)
Thus,
B | §(@Wms y) = &(Wnys Yy ) | Z W = Yy Y = Ym) ¥ y € C. (3.43)
Taking limit as k — oo, and using conditions and (3.34), we have
g((x"y))20v¥yeC.
Thus, x* € SOL(g, C).
Furthermore, we get
lim sup(f(p) = p, Xm, = p) = limsup(f(p) =p, xm, —p) = {f(p) =p,x" =p) <0, (3.44)

k—o00 j—oo

using (3.39) and (3.44), we have

lim sup(f(p) = p, Xm,+1 — p) = Wimsup{f(p) — p, X +1 — Xu,) + limsup{f(p) — p, xm,

k—o0 k— o0 k—o0

which implies that

lim sup{f(p) = p, Xm+1 —p) < 0.

k—o00

—-p)={f(p) —p.x"—p) <0.

(3.45)

(3.46)
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Also, using (3.36) and (3.44), we get

limsup(f(p) = p,sm, — p) = limsup{f(p) = p, sm, — Xm,) + limsup{f(p) —p, xm —p) = {f(p) —p,x" —p) < 0.

k— o0 k— o0 k— o0

(3.47)

Thu, we have

lim sup(f(p) = p,sm, —p) = {f(p) —p, X" —p) 0. (3.48)

k—o0

Using our Condition B (1) and the above inequality, we have that limsup,_ ¥y,

. m 6”1 || m m ||N 1 m n m 1 m

lim sup ., [ FEf () — pl? + o Bty 20 £ () — s, = py — 2 C g,

umkllz] < 0. Thus, by Lemma 2.2, we have lim ||x,, —pll = 0. Thus, {x,,} converges strongly to
n—oo

p € SOL(g,C). o

4. APPLICATION TO VARIATIONAL INEQUALITY PROBLEM

In this section, we will apply our results to variational inequality problem (VIP). The classical VIP
for an operator B : H — H is formulated as follows: find w* € C such that

(Bw*,y—w*) >0,Yy € H. (4.1)

The solution set of the VIP (4.1) is denoted by VI(C, B). Now, we consider the following condition
for solving the VIP (4.1):

(A1) B: H — H is a pseudoonotone operator, i.e.
(Bw,y—w)>0 = (By,w—-y) <0,Vw,y € H.
(A2) B:H — His aL-Lipschitz continuous operator, i.e. there exist L > 0 such that
IBw - Byll < Lilw - Il Ve, y € H.

(A3) B: H — His a sequentially weakly continuous operator.
Set ¢(w,y) = (Bw,y —w), Yw,y € C, then the (EP) becomes the (VIP) with L = 2L; = 2L,.
Moreover, we have
. 1
Ym = argmmyec{ﬁ)\mg(wm, y) + Elly — w|*} = Pc(wy, — BAnBwy,).

where Pc is called the metric projection of H onto C. Hence, we obtain the following result:
Corollary 4.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Assume that
condition B and assumption (A1)—(Asz) hold. Let f : H — H be a contraction mapping with contraction

constant k € [0,1) and the solution set VI(C,B) # 0. Then the sequence generated by Algorithm 4.1
strongly converges to an element p € VI(C, B).
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Algorithm 4.1. An Hybrid Viscosity Iterative Method
Step 1: Choose xo, x1 € Hy, given the iterates x,,—1 and x,, for all m € IN.

min{@ L}, if X # X1

_ 7 X =21 |1}
Om = 4.2)
0, otherwise.
Step 2: Compute
Wy = amf(Xm) + (1= am) (o + Om (X — X-1)), 4.3)
Ym = Pc(wm — BAmBwy,). (4.4)

If wy, = Ym, then stop and y,, is a solution. Otherwise, go to Step 3.
Step 3: Construct a half-space

T =1z € H : (Wy — AufPBWy — Ym, 2 — Ym) < 0}, (4.5)
and
. ” m— m||2+” m— m”z .
min {)\m, ”[zéligwi-gymim-im> ]}, if (Bwy — BY, iy — YY) > 0
A1 = (4.6)
A, otherwise.
compute
Uy = Pr, (W — BAmBYm)- 4.7)

Step 4: Compute

X1 = (1= )W + Nt (4.8)

5. NuMERricAL ExaMPLE

In this section, we present a numerical example to further test the computational advantage of the
proposed Algorithm 3.1 with Algorithm 3 of Xie et al. [35] (shortly, XCT Alg. 3), Algorithm 3.1 of
Yang and Liu [36] (shortly, YL Alg.3.1) and Algorithm 2.1 of Yekini el al. [19] (shortly, SSTT Alg. 2 1).
For Algorithm 4.1, we choose the following parameters: fx = 3, em = m, Am = T = TomrT)

p =060 =04and Ay = 2.5. For XCT Alg. 3, choose a;, = 2m+1 , B = (1 —Qy), b=

A =25,Ts =35, f(x) = § and k = 0.8. For YL Alg. 3.1, choose A; = 2.5, u = 0.6, Ss = 5, B =
For SSTT Alg. 2.1, choose A1 = 2.5, 1 = 0.6, = 0.1.

+1)7
0.6,
1
2

Example 5.1. Let the feasible set C be defined by C = {x € R" : -5 < x; < 5,j = 1,2---,n}, and
g : Cx C — R be a bifunction defined by

gl y) =(Px+Qy+r,y—x),Vx,yeC,
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where r € R" and P,Q € R™". The matrix P is symmetric positive semi-definite and the matrix (Q — P)
is symmetric negative semi-definite with Lipschitz constant Ly = Ly = ”P;ﬂ (for more details, see [35]).
In this experiment. We consider the stopping criterion Ey = ||x;41 — Xmll < 1077 and for n = 40,80, we

obtain the following table and figure.

TaBLE 1. Results of the Numerical Simulations for Different Dimensions

Numerical Results for n = 40, 80,120 in Example 5.1
MOAAN Alg. 3.2 XCT Alg. 3 YL Alg.3.1 SSTT Alg. 2.1
n Iter CPU time (sec.) | Iter CPU time (sec.) | Iter CPU time (sec.) | Iter CPU time (sec.)
n=40| 10 0.0010 19 0.0021 29 0.0032 92 0.0092
n=280| 17 0.0015 20 0.0022 22 0.0025 110 0.0213

—6— XCT Alg

—%— SSTT Alg

—0— MOAAN AIG
YL Alg 1

. . . . .
0 20 40 60 80 100 120
Number of iterations

—6— XCT Alg

—%— SSTT Alg

—0— MOAAN AIG
YL Alg 1

. . . . .
0 20 40 60 80 100 120
Number of iterations

Ficure 1. Example 5.1, n=40 (top); n=80 (bottom).

6. CONCLUSION

In this work, we have introduced an efficient method for approximating the solution of equilibrium

problem. The strong convergence result of the proposed method is achieved under some mild
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conditions on the control parameters. Furthermore, we apply our results to solve variational
inequality problem and image recovery problem. We carried out some numerical experiments
to show the applicability of our method and also illustrate that our method outperforms several

existing methods.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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