Bi-Starlike and Bi-Convex Function Classes Connected to Shell-Like Curves and the q-Analogue of Fibonacci Numbers
Main Article Content
Abstract
Using the subordination principle, this study explores two subclasses of bi-univalent functions associated with shell-like curves via the q-analogue of Fibonacci numbers, namely the starlike and convex classes. We derive coefficient bounds for the initial terms of these function classes and establish the corresponding Fekete- Szegö inequalities. Our findings contribute to the advancement of biunivalent function theory and its interaction with special function spaces.
Article Details
References
- P.L. Duren, Univalent Functions, Springer, New York, 1983.
- W.C. Ma, D. Minda, A Unified Treatment of Some Special Classes of Univalent Functions, in: Proceedings of the Conference on Complex Analysis, pp. 157–169, 1992. https://cir.nii.ac.jp/crid/1570572700543766144.
- A. Alsoboh, A. Amourah, O. Alnajar, M. Ahmed, T.M. Seoudy, Exploring q-Fibonacci Numbers in Geometric Function Theory: Univalence and Shell-Like Starlike Curves, Mathematics 13 (2025), 1294. https://doi.org/10.3390/math13081294.
- T. Al-Hawary, A. Amourah, A. Alsoboh, O. Ogilat, I. Harny, M. Darus, Applications of q-Ultraspherical Polynomials to Bi-Univalent Functions Defined by q-Saigo’s Fractional Integral Operators, AIMS Math. 9 (2024), 17063–17075. https://doi.org/10.3934/math.2024828.
- M. Ahmed, A. Alsoboh, A. Amourah, J. Salah, On the Fractional q-Differintegral Operator for Subclasses of Bi-Univalent Functions Subordinate to q-Ultraspherical Polynomials, Eur. J. Pure Appl. Math. 18 (2025), 6586. https://doi.org/10.29020/nybg.ejpam.v18i3.6586.
- A. Alsoboh, A.S. Tayyah, A. Amourah, A.A. Al-Maqbali, K. Al Mashraf, T. Sasa, Hankel Determinant Estimates for Bi-Bazileviˇc-Type Functions Involving q-Fibonacci Numbers, Eur. J. Pure Appl. Math. 18 (2025), 6698. https://doi.org/10.29020/nybg.ejpam.v18i3.6698.
- A. Almalkawi, A. Alsoboh, A. Amourah, T. Sasa, Estimates for the Coefficients of Subclasses Defined by the q-Babalola Convolution Operator of Bi-Univalent Functions Subordinate to the q-Fibonacci Analogue, Eur. J. Pure Appl. Math. 18 (2025), 6499.
- A. Alsoboh, A. Amourah, F.M. Sakar, O. Ogilat, G.M. Gharib, N. Zomot, Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions, Axioms 12 (2023), 512. https://doi.org/10.3390/axioms12060512.
- A. Alsoboh, M. Darus, On q-Starlike Functions with Respect to k-Symmetric Points, Acta Univ. Apulensis 60 (2019), 61–73.
- W. Janowski, Extremal Problems for a Family of Functions with Positive Real Part and for Some Related Families, Ann. Pol. Math. 23 (1970), 159–177. https://doi.org/10.4064/ap-23-2-159-177.
- W. Janowski, Some Extremal Problems for Certain Families of Analytic Functions I, Ann. Pol. Math. 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326.
- J. Sokół, On Starlike Functions Connected With Fibonacci Numbers, Zesz. Nauk. Politech. Rzeszow. Mat. 23 (1999), 111–116.
- J. Sokół, A Certain Class of Starlike Functions, Comput. Math. Appl. 62 (2011), 611–619. https://doi.org/10.1016/j.camwa.2011.05.041.
- V.S. Masih, A. Ebadian, S. Yalçin, Some Properties Associated to a Certain Class of Starlike Functions, Math. Slovaca 69 (2019), 1329–1340. https://doi.org/10.1515/ms-2017-0311.
- M.S. Robertson, Certain Classes of Starlike Functions, Mich. Math. J. 32 (1985), 135–140. https://doi.org/10.1307/mmj/1029003181.
- H.E.Ö. Uçar, Coefficient Inequality for Q-Starlike Functions, Appl. Math. Comput. 276 (2016), 122–126. https://doi.org/10.1016/j.amc.2015.12.008.
- F.H. Jackson, On q-Functions and a Certain Difference Operator, Trans. R. Soc. Edinb. 46 (1909), 253–281. https://doi.org/10.1017/s0080456800002751.
- F.H. Jackson, On q-Definite Integrals, Q. J. Pure Appl. Math. 41 (1910), 193–203.
- A. Aral, V. Gupta, Generalized Q-Baskakov Operators, Math. Slovaca 61 (2011), 619–634. https://doi.org/10.2478/s12175-011-0032-3.
- A. Aral, V. Gupta, On the Durrmeyer Type Modification of the q-Baskakov Type Operators, Nonlinear Anal.: Theory Methods Appl. 72 (2010), 1171–1180. https://doi.org/10.1016/j.na.2009.07.052.
- A. Aral, V. Gupta, R. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
- A. Alsoboh, G.I. Oros, A Class of Bi-Univalent Functions in a Leaf-Like Domain Defined Through Subordination via q-Calculus, Mathematics 12 (2024), 1594. https://doi.org/10.3390/math12101594.
- A. Amourah, A. Alsoboh, D. Breaz, S.M. El-Deeb, A Bi-Starlike Class in a Leaf-Like Domain Defined Through Subordination via q-Calculus, Mathematics 12 (2024), 1735. https://doi.org/10.3390/math12111735.
- A. Alsoboh, M. Ça ˘glar, M. Buyankara, Fekete-szegö Inequality for a Subclass of Bi-Univalent Functions Linked to q-Ultraspherical Polynomials, Contemp. Math. 5 (2024), 2531–2545. https://doi.org/10.37256/cm.5220243737.
- S. Elhaddad, H. Aldweby, M. Darus, Some Properties on a Class of Harmonic Univalent Functions Defined by q-Analogue of Ruscheweyh Operator, J. Math. Anal. 9 (2018), 28–35.
- G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.
- H.Ö. Güney, G. Murugusundaramoorthy, J. Sokół, Subclasses of Bi-Univalent Functions Related to Shell-Like Curves Connected with Fibonacci Numbers, Acta Univ. Sapientiae Math. 10 (2018), 70–84. https://doi.org/10.2478/ausm-2018-0006.
- J. Dziok, R.K. Raina, J. Sokół, Certain Results for a Class of Convex Functions Related to a Shell-Like Curve Connected with Fibonacci Numbers, Comput. Math. Appl. 61 (2011), 2605–2613. https://doi.org/10.1016/j.camwa.2011.03.006.
- J. Dziok, R.K. Raina, J. Sokół, On α-Convex Functions Related to Shell-Like Functions Connected with Fibonacci Numbers, Appl. Math. Comput. 218 (2011), 996–1002. https://doi.org/10.1016/j.amc.2011.01.059.
- B. Khan, H.M. Srivastava, N. Khan, M. Darus, M. Tahir, Q.Z. Ahmad, Coefficient Estimates for a Subclass of Analytic Functions Associated with a Certain Leaf-Like Domain, Mathematics 8 (2020), 1334. https://doi.org/10.3390/math8081334.
- M. Arif, O. Barkub, H. Srivastava, S. Abdullah, S. Khan, Some Janowski Type Harmonic q-Starlike Functions Associated with Symmetrical Points, Mathematics 8 (2020), 629. https://doi.org/10.3390/math8040629.
- H.M. Srivastava, M.K. Aouf, A.O. Mostafa, Some Properties of Analytic Functions Associated with Fractional q-Calculus Operators, Miskolc Math. Notes 20 (2019), 1245–1260. https://doi.org/10.18514/mmn.2019.3046.
- H.M. Srivastava, S.M. El-Deeb, A Certain Class of Analytic Functions of Complex Order Connected with a qAnalogue of Integral Operators, Miskolc Math. Notes 21 (2020), 417–433. https://doi.org/10.18514/mmn.2020.3102.
- M. Shafiq, H.M. Srivastava, N. Khan, Q.Z. Ahmad, M. Darus, S. Kiran, An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers, Symmetry 12 (2020), 1043. https://doi.org/10.3390/sym12061043.
- S. Mahmood, Q.Z. Ahmad, H.M. Srivastava, N. Khan, B. Khan, M. Tahir, A Certain Subclass of Meromorphically q-Starlike Functions Associated with the Janowski Functions, J. Inequal. Appl. 2019 (2019), 88. https://doi.org/10.1186/s13660-019-2020-z.
- S.Mahmood, H.M. Srivastava, N. Khan, Q.Z. Ahmad, B. Khan, I. Ali, Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions, Symmetry 11 (2019), 347. https://doi.org/10.3390/sym11030347.
- H. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with the q-Exponential Function, Bull. Sci. Math. 167 (2021), 102942. https://doi.org/10.1016/j.bulsci.2020.102942.