Bi-Starlike and Bi-Convex Function Classes Connected to Shell-Like Curves and the q-Analogue of Fibonacci Numbers

Main Article Content

Abdullah Alsoboh, Ala Amourah, Khaled Al Mashrafi, Tala Sasa

Abstract

Using the subordination principle, this study explores two subclasses of bi-univalent functions associated with shell-like curves via the q-analogue of Fibonacci numbers, namely the starlike and convex classes. We derive coefficient bounds for the initial terms of these function classes and establish the corresponding Fekete- Szegö inequalities. Our findings contribute to the advancement of biunivalent function theory and its interaction with special function spaces.

Article Details

References

  1. P.L. Duren, Univalent Functions, Springer, New York, 1983.
  2. W.C. Ma, D. Minda, A Unified Treatment of Some Special Classes of Univalent Functions, in: Proceedings of the Conference on Complex Analysis, pp. 157–169, 1992. https://cir.nii.ac.jp/crid/1570572700543766144.
  3. A. Alsoboh, A. Amourah, O. Alnajar, M. Ahmed, T.M. Seoudy, Exploring q-Fibonacci Numbers in Geometric Function Theory: Univalence and Shell-Like Starlike Curves, Mathematics 13 (2025), 1294. https://doi.org/10.3390/math13081294.
  4. T. Al-Hawary, A. Amourah, A. Alsoboh, O. Ogilat, I. Harny, M. Darus, Applications of q-Ultraspherical Polynomials to Bi-Univalent Functions Defined by q-Saigo’s Fractional Integral Operators, AIMS Math. 9 (2024), 17063–17075. https://doi.org/10.3934/math.2024828.
  5. M. Ahmed, A. Alsoboh, A. Amourah, J. Salah, On the Fractional q-Differintegral Operator for Subclasses of Bi-Univalent Functions Subordinate to q-Ultraspherical Polynomials, Eur. J. Pure Appl. Math. 18 (2025), 6586. https://doi.org/10.29020/nybg.ejpam.v18i3.6586.
  6. A. Alsoboh, A.S. Tayyah, A. Amourah, A.A. Al-Maqbali, K. Al Mashraf, T. Sasa, Hankel Determinant Estimates for Bi-Bazileviˇc-Type Functions Involving q-Fibonacci Numbers, Eur. J. Pure Appl. Math. 18 (2025), 6698. https://doi.org/10.29020/nybg.ejpam.v18i3.6698.
  7. A. Almalkawi, A. Alsoboh, A. Amourah, T. Sasa, Estimates for the Coefficients of Subclasses Defined by the q-Babalola Convolution Operator of Bi-Univalent Functions Subordinate to the q-Fibonacci Analogue, Eur. J. Pure Appl. Math. 18 (2025), 6499.
  8. A. Alsoboh, A. Amourah, F.M. Sakar, O. Ogilat, G.M. Gharib, N. Zomot, Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions, Axioms 12 (2023), 512. https://doi.org/10.3390/axioms12060512.
  9. A. Alsoboh, M. Darus, On q-Starlike Functions with Respect to k-Symmetric Points, Acta Univ. Apulensis 60 (2019), 61–73.
  10. W. Janowski, Extremal Problems for a Family of Functions with Positive Real Part and for Some Related Families, Ann. Pol. Math. 23 (1970), 159–177. https://doi.org/10.4064/ap-23-2-159-177.
  11. W. Janowski, Some Extremal Problems for Certain Families of Analytic Functions I, Ann. Pol. Math. 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326.
  12. J. Sokół, On Starlike Functions Connected With Fibonacci Numbers, Zesz. Nauk. Politech. Rzeszow. Mat. 23 (1999), 111–116.
  13. J. Sokół, A Certain Class of Starlike Functions, Comput. Math. Appl. 62 (2011), 611–619. https://doi.org/10.1016/j.camwa.2011.05.041.
  14. V.S. Masih, A. Ebadian, S. Yalçin, Some Properties Associated to a Certain Class of Starlike Functions, Math. Slovaca 69 (2019), 1329–1340. https://doi.org/10.1515/ms-2017-0311.
  15. M.S. Robertson, Certain Classes of Starlike Functions, Mich. Math. J. 32 (1985), 135–140. https://doi.org/10.1307/mmj/1029003181.
  16. H.E.Ö. Uçar, Coefficient Inequality for Q-Starlike Functions, Appl. Math. Comput. 276 (2016), 122–126. https://doi.org/10.1016/j.amc.2015.12.008.
  17. F.H. Jackson, On q-Functions and a Certain Difference Operator, Trans. R. Soc. Edinb. 46 (1909), 253–281. https://doi.org/10.1017/s0080456800002751.
  18. F.H. Jackson, On q-Definite Integrals, Q. J. Pure Appl. Math. 41 (1910), 193–203.
  19. A. Aral, V. Gupta, Generalized Q-Baskakov Operators, Math. Slovaca 61 (2011), 619–634. https://doi.org/10.2478/s12175-011-0032-3.
  20. A. Aral, V. Gupta, On the Durrmeyer Type Modification of the q-Baskakov Type Operators, Nonlinear Anal.: Theory Methods Appl. 72 (2010), 1171–1180. https://doi.org/10.1016/j.na.2009.07.052.
  21. A. Aral, V. Gupta, R. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
  22. A. Alsoboh, G.I. Oros, A Class of Bi-Univalent Functions in a Leaf-Like Domain Defined Through Subordination via q-Calculus, Mathematics 12 (2024), 1594. https://doi.org/10.3390/math12101594.
  23. A. Amourah, A. Alsoboh, D. Breaz, S.M. El-Deeb, A Bi-Starlike Class in a Leaf-Like Domain Defined Through Subordination via q-Calculus, Mathematics 12 (2024), 1735. https://doi.org/10.3390/math12111735.
  24. A. Alsoboh, M. Ça ˘glar, M. Buyankara, Fekete-szegö Inequality for a Subclass of Bi-Univalent Functions Linked to q-Ultraspherical Polynomials, Contemp. Math. 5 (2024), 2531–2545. https://doi.org/10.37256/cm.5220243737.
  25. S. Elhaddad, H. Aldweby, M. Darus, Some Properties on a Class of Harmonic Univalent Functions Defined by q-Analogue of Ruscheweyh Operator, J. Math. Anal. 9 (2018), 28–35.
  26. G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.
  27. H.Ö. Güney, G. Murugusundaramoorthy, J. Sokół, Subclasses of Bi-Univalent Functions Related to Shell-Like Curves Connected with Fibonacci Numbers, Acta Univ. Sapientiae Math. 10 (2018), 70–84. https://doi.org/10.2478/ausm-2018-0006.
  28. J. Dziok, R.K. Raina, J. Sokół, Certain Results for a Class of Convex Functions Related to a Shell-Like Curve Connected with Fibonacci Numbers, Comput. Math. Appl. 61 (2011), 2605–2613. https://doi.org/10.1016/j.camwa.2011.03.006.
  29. J. Dziok, R.K. Raina, J. Sokół, On α-Convex Functions Related to Shell-Like Functions Connected with Fibonacci Numbers, Appl. Math. Comput. 218 (2011), 996–1002. https://doi.org/10.1016/j.amc.2011.01.059.
  30. B. Khan, H.M. Srivastava, N. Khan, M. Darus, M. Tahir, Q.Z. Ahmad, Coefficient Estimates for a Subclass of Analytic Functions Associated with a Certain Leaf-Like Domain, Mathematics 8 (2020), 1334. https://doi.org/10.3390/math8081334.
  31. M. Arif, O. Barkub, H. Srivastava, S. Abdullah, S. Khan, Some Janowski Type Harmonic q-Starlike Functions Associated with Symmetrical Points, Mathematics 8 (2020), 629. https://doi.org/10.3390/math8040629.
  32. H.M. Srivastava, M.K. Aouf, A.O. Mostafa, Some Properties of Analytic Functions Associated with Fractional q-Calculus Operators, Miskolc Math. Notes 20 (2019), 1245–1260. https://doi.org/10.18514/mmn.2019.3046.
  33. H.M. Srivastava, S.M. El-Deeb, A Certain Class of Analytic Functions of Complex Order Connected with a qAnalogue of Integral Operators, Miskolc Math. Notes 21 (2020), 417–433. https://doi.org/10.18514/mmn.2020.3102.
  34. M. Shafiq, H.M. Srivastava, N. Khan, Q.Z. Ahmad, M. Darus, S. Kiran, An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers, Symmetry 12 (2020), 1043. https://doi.org/10.3390/sym12061043.
  35. S. Mahmood, Q.Z. Ahmad, H.M. Srivastava, N. Khan, B. Khan, M. Tahir, A Certain Subclass of Meromorphically q-Starlike Functions Associated with the Janowski Functions, J. Inequal. Appl. 2019 (2019), 88. https://doi.org/10.1186/s13660-019-2020-z.
  36. S.Mahmood, H.M. Srivastava, N. Khan, Q.Z. Ahmad, B. Khan, I. Ali, Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions, Symmetry 11 (2019), 347. https://doi.org/10.3390/sym11030347.
  37. H. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with the q-Exponential Function, Bull. Sci. Math. 167 (2021), 102942. https://doi.org/10.1016/j.bulsci.2020.102942.