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Abstract. Using the subordination principle, this study explores two subclasses of bi-univalent functions associated with
shell-like curves via the g-analogue of Fibonacci numbers, namely the starlike and convex classes. We derive coefficient
bounds for the initial terms of these function classes and establish the corresponding Fekete- Szeg6 inequalities. Our

findings contribute to the advancement of biunivalent function theory and its interaction with special function spaces.

1. INTRODUCTION, PRELIMINARIES AND DEFINITIONS

Let A denote the family of all analytic functions defined on the open unit disk U, where U
is the set of all complex numbers z = a + ib (with 4,b € R) satisfying |z| < 1. Geometrically, U
represents the collection of all points in the complex plane that lie strictly inside the unit circle

centered at the origin.

The functions f € A are normalized to satisfy the following initial conditions:
f(0)=0 and f'(0)=1.

These normalization conditions ensure that the functions are uniquely determined and facilitate

the study of their properties within the unit disk. For every function f € A, the Taylor-Maclaurin
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series expansion can be expressed in the following form:
f(z) :z—i—Zanzn, (zeU). (1.1)
n=2

An analytic function f that satisfies |f(z)| < 1 and f(0) = 0 within the domain U is called a
Schwartz functions. When considering two functions f; and f, from A, f; is referred to as subor-
dinate to f,, denoted by f1 < f», ifa Schwarz function n exists such that f(z) = f2(n(z)) forallz € U.

Additionally, examine the class S, which includes all functions f € A that are univalent (injec-
tive) in the unit disk U. Let P represent the collection of functions within A that possess positive

real parts, defined as follows:

P(z) =1+ ) puz" =1+piz+poz® +psz>+..., (1.2)
n=1
where
Pl <2, forall n>1. (1.3)

This is in accordance with the renowned Carathéodory’s Lemma (for more details, see [1]).
Essentially, ¢ € P if and only if p(z) < (1 +z)(1—z)"! forz € U.

The class of starlike functions, represented as S*, can be defined by multiple methodologies

employing the principle of subordination. Ma and Minda [2] introduced the class
z2f'(z)
f(2)

In this formulation, () is an analytic function in A with positive real parts. Table 1 delineates

S*(Q):{fe,xzf: <Q(z), where QeP and ZEU}.

numerous categories of starlike functions, exemplifying the diverse methodologies employed by

writers in establishing supplementary subclasses through the selection of particular forms of .
As the foundation upon which many important subclasses of analytic functions are built, the

class P is crucial to the study of analytic functions. For any function f in the subfamily S of A,

there exists an inverse function denoted as f~! and defined by

z=f"(f(2)) and &= f(f7(&)), (ro(f) 2025 || <ro(f);ze ). (1.4)
where
X(E) = fHE) = E—a&® + (203 - 3) & — (503 + @y — Basa) £ + -+ (15)
function f € Sissaid to be bi-univalent if its inverse function ! € S. The subclass of S denoted
by ) contains all bi-univalent functions in U. A table illustrating certain functions within the class
Y. and their inverse functions is provided below.
Recently, quantum calculus, also known as g-calculus, has garnered significant interest in
the fields of physics and mathematics. Its historical origins date back to the 19th century
when Jackson [17,18] introduced the g-difference operator and integral. Subsequently, Aral and
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TasLe 1. Lists several of the starlike classes defined by the subordination principle.

The family of starlike functions Author/s | Ref.
e (32) = {f € ij(g) < 11%;} Janowski | [10,11]

/ 1+ (1-29
n*(9) = {f e L i’z) < aall )Z, 0<9< 1} Robertson | [15]

, 2.2
SL(S):{fe,sz%:zf(Z)< 149 3:1—@} Sokot [12]

SK(9) = {f € : @) <o V€ (—3,1]} Sokot [13]

f 1
iD= | @13
flz) = -log(1-2) | 1(z) = ;2_;11
- 22) 10 -

Gupta [19-21] expanded upon this foundational research by examining g analogues of many
operators, particularly in the realm of geometric function theory. Quantum calculus, grounded
in g-differences, extends classical calculus and offers a robust framework for exploring specific
subclasses of analytic functions, such as starlike and convex functions. In this context, the
parameter q is anticipated to satisfy 0 < g < 1, ensuring the requisite convergence and essential

attributes necessary for these analyses.
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Definition 1.1. [22] The g-bracket [A], is defined as follows:

1—qA .
— 0<g<1, AeC =C\{0}
1, g—0t, 1eC
Al =
A, A, g1, AeC*
y-1
P4+ 2+ +q+1=Y q", 0<q<l, A=yeN,
n=0

with the useful identity [« + 1, =Txl, +q*

Definition 1.2. [22] The g—derivative, also known as the q—difference operator, of a function f is defined

by
(f(z) = f(q2))(z—q2)7", if 0<q<1,z#0,

0if(z)) =4 f(0), if z=0,

), if g1, z#0.
Remark 1.1. For f € A of the form (1.1), it is straightforward to verify that

04(f(2)) = 9y <z + Zl'njqan z”> =1+ Zf”ann 2", (zeU),
n=2 n=2

and for the inverse function f=1 of the form (1.4), we have
S f 1)) = 1-T2) a0 + 3], (203 — a3) £ = T4], (503 + atg — 53) & + -+ |

More recently, by employing the g-Jackson difference operators, Alsoboh et al. [3] introduced a

significant class of functions, termed g-starlike functions and denoted by SL,. This class is formally

defined as 5.(F(2))
z z
SLq:{fed: L<\{(z;q) (zeIU)}, (1.6)
f(z)
where the function Y(z; q) is explicitly given by
v 1+¢972 r
<Z'q)_1—8qz—q8§zzl a7
and
1-+49+1
9 = il i (1.8)

2
denotes the g-analogue of the Fibonacci numbers. Furthermore, Alsoboh et al. [3] established a fun-
damental link between the g-analogue of Fibonacci numbers, denoted by 9,, and their associated

Fibonacci polynomials ¢s(g). In particular, they showed that if

Y(z;q) =1+ Z Ps z°,
s=1



Int. J. Anal. Appl. (2025), 23:201 5

then the coefficients pg satisfy the recurrence relation:

Sqr fors = 1,

—~ (29 +1)97 fors =2,

Ps = (1.9)
(3174'1) fors =3,
(pst1(q ) +qps-1(g9)) 93, fors >4

where the g-Fibonacci polynomials ¢s(gq) are defined as

Ps(q) = , seN. (1.10)

V4q+1

This result provides a comprehensive framework for analyzing the interplay between g-deformed

Fibonacci numbers and their polynomial counterparts.

The initial terms of the g-Fibonacci numbers, whichserve as a generalization of the classical

Fibonacci numbers in the limit as approaches g — 17 (see [28,29]), are provided in Table 2.

TasLE 3. The first initial terms of the sequence g-Fibonacci.

The g-analogue of Fibonacci num- | The classical Fibonacci numbers
bers

Po(q) =0 Po =0

P1(q) =1 p1=1

P2(q) =1 P2 =1

P3(q) =1+q P3 =2

Pa(g) =1+2g s =3

It is worth noting that the function Y(z;g) is not univalent in the domain U. Specifically, it

attains the same value at two distinct points:

1
Y(0;9) =1 and Y(—m,q) =1
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Example 1.1. If g — 17 in Definition 2.1, we obtain the class SL = 111{1 SL; defined as follows:
q—=1
A function f belongs to the class SL if and only if

2f (2)
@ <Y(z),
where L 9222

and 9 = % corresponds to the classical Fibonacci numbers.

In addition, Alsoboh et al. [4] introduced a g-convex class and denoted by KSL, if and only if

DXf()
+ W <Y(z9) (ze ), (1.12)

where the function Y(z; q) is explicitly given by (1.7) and 9, given by (1.8).

The advent of g-calculus has significantly advanced the study of analytic function theory by
enabling the discovery of novel subclasses with intricate geometric and algebraic properties.
These developments underscore the versatility of g-calculus, demonstrating its potential to enrich
classical function theory and uncover new mathematical phenomena. The relevance of these
findings extends to both theoretical and applied settings, providing a robust foundation for future
research and innovation in the field [5-9,23,24,30-36].

2. DEeFINITION AND EXAMPLE

Motivated by g-Fibonacci numbers, this section will now look at a novel subclasses of bi-

univalent functions related to shell-like curves.

Definition 2.1. A bi-univalent function f of the form (1.1) belongs to the class SLy (Y(z;q)) if and only if
204(f (2)) ‘ 1+¢9:2°

W <Y(z9q) = 1—8qz—q8322, (2.1)
and . o
&) L 1+g8
X(E) < Y(é,Q) - 1 _Sqé_q‘9§52, (22)

where 9 is given by (1.8).

Definition 2.2. A bi-univalent function f of the form (1.1) belongs to the class KLy (Y(z;q)) if and only if
205(f (2)) ‘ 1+¢972

— <Y = 7
0(f(2)) = = 1—qu—q8322' (2.3)
ﬂnd 562< (£)> 1 ‘9252
g\X +q q
X I ety 2.4)

where 9 is given by (1.8).
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Definition 2.3. A bi-univalent function f of the form (1.1) belongs to the class SLy (Y(z)) if and only if

SE) o 1482
f(z) <Yz = 1-z—9222'

and )
EX(£) __Lhg¥e
1 -9&— 92827

S

where 9 = 1_T

Definition 2.4. A bi-univalent function f of the form (1.1) belongs to the class KLy (Y(z)) if and only if
' (2) g o222

T Al ]
and bes
&X' (&) o 1+g8%
e YW
where § = #

3. MaiIN Resurts

In this section, we obtain the initial Taylor coefficients |a;| and |a3| for the bi-univalent starlike

and convex subclasses SLy (Y(z;q)) and KLy (Y(z;q)), respectively.

Firstly, let p(z) = 1+ p1z + p2z® + p3z> + ..., and p(z) < Y(z;q). Then there exist ¢ € P such
that |p(z)| < 1in U and p(z) = Y(¢(z);9), we have

hz) = (1+¢(z)1-¢E) " =1+bz+ 622+ €P (ze ). (3.1)
It follows that , X
_512 1 Z2 {}1 Z3
(Z)—7+(52—3 5+ 53—5152—Z 5t (3.2)
and
bz G 22 B2
Y(p(z);9) =1+p 7+(€2—3 S t|6-tb-4 |5+
2
|61z 2 2 AP
+ P2 74-(52—? 3-1- 53—5152—2 E+
3
HLE a)z2 AL (3.3)
+p3 74—(52—3 E-I— fg—flfz—z E-l- +---
—~ 2 2
PR TSV 8 | PR PO P I
=1+ ZZ+2|:[€2 > p1+2p22
+§ (53—5152%-21 p1+ & fz—il)p2+zlp3lz3+...
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And similarly, there exists an analytic function v such that [v(&)| < 1in U and p(&) = Y(v(&);9).
Therefore, the function

k(&) = (1+v(&)1-v(&) " =14+ 1E+ 102 +---€P. (3.4)
It follows that
72\ &2 3 &3
V(g):T;—E+(T2—§J%+(T3—T1T2—Zl]%+---, (3.5)

and

D1 1 T2 . 72 .
Y(v(£);9) =1+ %E +5 [[Tz - 71] p1 + Elpzl &
X (3.6)

+ il —mm+ 2L+ 4 A+T—?A &+
5 3 —T1T2 1 P1+T1|T2 5 P2 4p3 .

In the following theorem we determine the initial Taylor coefficients |a,| and |a,| for the sub-
classes SLy (Y(z);q) and KLy (Y(z);q). Later we will reduce these bounds to other classes for

special cases.

Theorem 3.1. Let f given by (1.1) be in the class SLy (Y(z);q). Then

< — . (3.7)
qy1=2q9%
llg— (1+9+24%)9
o = 21 ) o
P(1+q)(1-29%)
Proof. Let f € SLy (Y(z)) and & = f~!. Considering (2.1) and (2.2) we have
20,(f(z)) ,
O Y(p(2);9),  (z€U), (39)
and
£05(x (&)
Ay . ) )
TET =Y, (Eeu) (.10
Since
0
Z%j;()z» =1+qmz+q((1+q)as—ad)? +--, (3.11)
and
£04(x (£))
Z((—é) = 1-ga2é +q((1+29)a3 - (1 +9)az)e® +---, (3.12)
By comparing (3.9) and (3.11), along (3.3), yields
2\,2 piti_ 1 )~ G- 2
510‘224'67((14“1)0‘3—“2)2 S N | R Ly ] ERR (3.13)
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Besied that, by comparing (3.10) and (3.12), along (3.6), yields
1T1 )~ T
—qazé + q((l +2g)a5 - (1+ q)a3)£2 +oo ==&+ l(Tz - EJ P11+ 7[32] &+ (3.14)
Equating the pertinent coefficient in (3.13) and (3.14), we obtain
4
qap = P11 (3.15)
2
—qap = p 2 (3.16)
£2
((1+q)as - — e —1p+ p (3.17)
q q)as 2 5 5 |P1 ) .
1 2 2
g((1+29)a3 - (1+q)as) =5 H 31] p1 + —1p2] (3.18)
From (3.15) and (3.16), we have
h=-11 < =1, (3.19)
and
2 8q2
2
a% 572 (52 4+ ) — f% + ’c% = Eaz. (3.20)
q
Now, by summing (3.17) and (3.18), we obtain
R RS o NS e
’ 2 4 4 (3.21)
_ (bt [24D% 8], |
-T2 3 |(E+)
By putting (3.20) in (3.21), we obtain
) (fz + Tz)S?i
= o o\ (3.22)
42(1 - 298,
Using (1.3) for (3.22), we have
2| I (3.23)
qy1=2q9%
Now, so as to find the bound on |a3|, let’s subtract from (3.17) and (3.18) along (3.20), we obtain
fz — T2 d
ay = a2+ w (3.24)
4q(1+q)
Hence, we get
2 |‘9q|
az| < |az| + (3.25)
ol =l 5
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Then, in view of (3.23), we obtain

194/(7 - (1 + 9+ 29%)9,)
P2(1+9)(1-298,)

|0t3| =

Theorem 3.2. Let f given by (1.1) be in the class KLy (Y(z);q). Then

|a2| < ’9q| ,

r21,(121, - (731, -+ 20)9,)

and
[9[(r21, -~ 2(131, +9)9,)
r24,731,(721, - (131, +24) %)

az| =

Proof. Let f € SLy (Y(z)) and & = f~!. Considering (2.3) and (2.4) we have

205(f(2))
1+ =Y ;q), U),
3,(f(z)) (p(2);9) (ze )
and
EO3(x (&)
= ; 7 U
ey e (Eel)
Since
205(f(2))
L gy — e 12 (Bhas -2l eg)t 4
and
EOT(X (&) 2 2
6q<)((§)> =1- |—2an25 + fZJq((2F3Jq - |-2Jq)a2 - |'3an3)<§ +
By comparing (3.29) and (3.31), along (3.3), yields
2),2 P& 1 e &,
21,02 + 121, (1305 - 124, + - = Bz 4 Ll S 1 T2

Besied that, By comparing (3.10) and (3.12), along (3.6), yields

2], @08 + FZJq((ZBJq ~2))a2 - [3an3)éz+m _ %54- 1

T2 Tz
{Tz - _]pl + —pz] &2 4

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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Equating the pertinent coefficient in (3.13) and (3.14), we obtain

—

p1t1

|—2an2 = T (335)
1T
—2),a2 = % (3.36)
1 2\ . 2
r21,(13),03 = [2],03) = 5 [(fz - 31] p1 + - P2 (3.37)
2 1 )~ T
r21,((213), - 121, )2 - 13),5) = 5 || 2 - 2|6 + 262 (3.38)
From (3.35) and (3.36), we have
h=-11 < (=1, (3.39)
and
92 822
a3 = 8[212(5% +1) = G+41= TRt (3.40)
q q
Now, by summing (3.37) and (3.38), we obtain
o, (LT, ({’f + ﬁ)sq (29 + 1)(5% + ﬁ)sf,
2q7[2] 5 = - +
2 4 4 (3.41)
(L+12)% [(g+1)87 3, '
= - — (52 + 7:2).
2 4 4 (V10
By putting (3.40) in (3.41), we obtain
) (fz + Tz)Sé
& = : (3.42)
a2} (121, - (131, +24)9,)
Using (1.3) for (3.42), we have
9
o2] < ul ' (3.43)
\/ 123, (121, - (131, +24)9,)
Now, so as to find the bound on |as|, let’s subtract from (3.17) and (3.18) along (3.20), we obtain
52 - T2)9
_ 2 ( 9 3.44
az =a; + 4r2J,,|_3Jq . ( )
Hence, we get
2 19
Jas| < Jaa|” + (3.45)

21,131,
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Then, in view of (3.23), we obtain
194](r21, - 2(131, + 9)9,)
124,731,721, - (131, +24) %)

0(3| <

In the following theorem, we find the Fekete-Szego functional for f € SLy (Y(z); 7).

Theorem 3.3. Let f given by (1.1) be in the class SLy (Y(z);q) and u € R. Then we have

19l
< —
q(1+q)’ |1 “' (1+4)1]
a3 — Has| <
| H 2| |1_y|9§ T—ul> (l quq)
2 ’ | [J’ (1+9)19]
37\ 1-2q%

Proof. Let f € SLy (Y(z);q), from (3.22) and (3.24) we have

where
Q-9
4g(1-299,)
Then, by taking modulus of (3.48), we conclude that

19 19l
p ﬁ(lj‘ﬁl)’ 0= |‘%/ = 4q 114)
o — ped) 19,
4|‘%/(tu)|’ | = 4q 1+4)

(3.46)

(3.47)

(3.48)

(3.49)

O

In the last theorem of this section, we find the Fekete-Szeg6 functional for functions belong to

the class KLy (Y(z2);9).

Theorem 3.4. Let f given by (1.1) be in the class KLy (Y(z);q) and £ € R. Then we have

21,(731,+24)q,
BN

%, [1-£] <
s —£a3] < 121,~(131, +24)9,

3L,15]

2
[1-£]92

rZJq(rzjq—(ranﬂq)Sq)/

[1-£]>

(3.50)
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Proof. Let f € SLy (Y(z);q), from (3.22) and (3.24) we have
(1-£)92 9
0(3—£6¥§ = 1 ([2—}—"(2) + m(fz—’fz)
412} (124, - (13, + 20)) o o5
(.Z(E) L )f + ($(£) % )
= —_ - —— 12
ar2) 13}, ar2) i3], )
where
1-£)92
2(£) = 0-5)% : (3.52)
42 Jq(rz ], - (r3 I+ 2q)9q)
Then, by taking modulus of (3.51), we conclude that
191 19l
.| e 020 < mp
|0¢3 — £0¢2| < 5
4|$(£)|' |'$(£)| = 12], 13,
mi

Taking g = 17, we have the following corollaries.

|0z2| < |‘9| | | |‘9|(1 _4‘9)
T VT-29 2(1-29)
and
o ] < 7 [1-uf < 155
a3 — pa; B
(11—é)§92' |1 - P‘l a %

Corollary 3.2. [27] Let f given by (1.1) be in the class KLy (Y(z)). Then

|0(2' < —|8q' |0(3| < —|Sq|(l _4‘917).
T Vi-109 - 3(1—29)
and
4, 1-£ < 53¢
2
|0(3 —£a2| < [1-£]92 |1 _£| Z %

4. CONCLUSION

In this work, we investigated two subclasses of bi-univalent functions associated with shell-

like curves through the g-analogue of Fibonacci numbers, namely the starlike and convex classes.

Utilizing the subordination principle, we established coefficient bounds for the initial terms of these

function classes and derived the corresponding Fekete-Szegt inequalities. These results enhance
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the theoretical framework of bi-univalent function theory and elucidate its deeper connections
with special function spaces.

Future research could extend these findings by exploring higher-order coefficient estimates,
refining the structural characteristics of these subclasses, and examining their geometric properties.
Moreover, investigating upper bounds related to the Zalcman conjecture and analyzing Hankel
determinants of orders two and three within these subclasses could provide new insights and open

further avenues in the study of analytic and bi-univalent function theory.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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