Solvability of a Nonlocal Integral Problem of a Mixed Type Derivatives Functional Integro-Differential Equation

Main Article Content

Ahmed M. A. El-Sayed, Hanadi Zahed, Amna B. Humieda, Eman M. A. Hamdallah

Abstract

In this work, we study a nonlocal integral problem of a mixed-type (integer and fractional-order derivatives) functional integro-differential equation. The existence of absolutely continuous nondecreasing solutions will be proved. The sufficient conditions for the uniqueness of the solution will be given. The continuous dependence of the unique solution, on the parameters of the problem will be proved. Finally, Hyers-Ulam stability of the problem itself will be studied.

Article Details

References

  1. R.P. Agarwal, B. Xu, W. Zhang, Stability of Functional Equations in Single Variable, J. Math. Anal. Appl. 288 (2003), 852–869. https://doi.org/10.1016/j.jmaa.2003.09.032.
  2. B. Ahmad, J.J. Nieto, Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with Three-Point Boundary Conditions, Comput. Math. Appl. 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091.
  3. C. Alsina, R. Ger, On Some Inequalities and Stability Results Related to the Exponential Function, J. Inequal. Appl. 1998 (1998), 246904. https://doi.org/10.1155/s102558349800023x.
  4. R.F. Curtain, A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, 1977. https://doi.org/10.1016/s0076-5392(08)x6072-2.
  5. M.M. El Borai, M.I. Abbas, On Some Integro-Differential Equations of Fractional Orders Involving Caratheodory Nonlinearities, Int. J. Mod. Math. 2 (2007), 41–52.
  6. E. Elghanam, A.M.A. El-Sayed, M. Elalem, A Constrained Problem of a Nonlinear Functional Integral Equation Subject to the Pantograph Problem, Alex. J. Sci. Technol. 1 (2023), 80–83. https://doi.org/10.21608/ajst.2024.257068.1023.
  7. A.M.A. El-Sayed, E.O. Bin-Taher, Positive Nondecreasing Solutions for a Multi-Term Fractional-Order Functional Differential Equation with Integral Conditions, Electron. J. Differ. Equ. 2011 (2011), 166.
  8. A.M.A. El-Sayed, E.O. Bin-Taher, A Multi-Term Fractional-Order Differential Equation With Nonlocal Condition, Egypt.-Chin. J. Comput. Appl. Math. 1 (2012), 54–60.
  9. A.M.A. El-Sayed, F.M. Gaafar, Fractional Calculus and Some Intermediate Physical Processes, Appl. Math. Comput. 144 (2003), 117–126. https://doi.org/10.1016/s0096-3003(02)00396-x.
  10. A.M.A. El-Sayed, M.M.S. Ba-Ali, E.M.A. Hamdallah, An Investigation of a Nonlinear Delay Functional Equation with a Quadratic Functional Integral Constraint, Mathematics 11 (2023), 4475. https://doi.org/10.3390/math11214475.
  11. A.M.A. El-Sayed, M.A.H. Alrashdi, On a Functional Integral Equation With Constraint Existence of Solution and Continuous Dependence, Int. J. Differ. Equ. Appl. 18 (2019), 37–48.
  12. A.M.A. El-Sayed, A.A.A. Alhamali, E.M.A. Hamdallah, H.R. Ebead, Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint, Fractal Fract. 7 (2023), 835. https://doi.org/10.3390/fractalfract7120835.
  13. A.M.A. El-Sayed, E.M.A. Hamdallah, M.M.S. Ba-Ali, Qualitative Study for a Delay Quadratic Functional Integro-Differential Equation of Arbitrary (Fractional) Orders, Symmetry 14 (2022), 784. https://doi.org/10.3390/sym14040784.
  14. K.M. Furati, N. Tatar, Power-type Estimates for a Nonlinear Fractional Differential Equation, Nonlinear Anal.: Theory Methods Appl. 62 (2005), 1025–1036. https://doi.org/10.1016/j.na.2005.04.010.
  15. F. Gaafar, Continuous and Integrable Solutions of a Nonlinear Cauchy Problem of Fractional Order with Nonlocal Conditions, J. Egypt. Math. Soc. 22 (2014), 341–347. https://doi.org/10.1016/j.joems.2013.12.008.
  16. G.M. N’Guérékata, A Cauchy Problem for Some Fractional Abstract Differential Equation with Non Local Conditions, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 1873–1876. https://doi.org/10.1016/j.na.2008.02.087.
  17. K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. https://doi.org/10.1017/cbo9780511526152.
  18. A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, (2003).
  19. G.M. N’Guérékata, A Cauchy Problem for Some Fractional Abstract Differential Equation with Non Local Conditions, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 1873–1876. https://doi.org/10.1016/j.na.2008.02.087.
  20. J. Huang, Y. Li, Hyers–ulam Stability of Delay Differential Equations of First Order, Math. Nachr. 289 (2015), 60–66. https://doi.org/10.1002/mana.201400298.
  21. A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis, Dover Publications Inc., 1975.
  22. B. Liu, Existence and Uniqueness of Solutionsto First-Order Multipoint Boundary Value Problems, Appl. Math. Lett. 17 (2004), 1307–1316. https://doi.org/10.1016/j.aml.2003.08.014.
  23. D. Otrocol, V. Ilea, Ulam Stability for a Delay Differential Equation, Open Math. 11 (2013), 1296–1303. https://doi.org/10.2478/s11533-013-0233-9.