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Abstract. In this work, we study a nonlocal integral problem of a mixed-type (integer and fractional-order derivatives)
functional integro-differential equation. The existence of absolutely continuous nondecreasing solutions will be proved.
The sufficient conditions for the uniqueness of the solution will be given. The continuous dependence of the unique
solution, on the parameters of the problem will be proved. Finally, Hyers-Ulam stability of the problem itself will be
studied.

1. INTRODUCTION

The nonlocal integral problems of the differential equations have gained significant attention
in the recent years. These problems naturally arise in control theory, population dynamics and
thermal conduction. The mathematical analysis of such problems is to study the existence of
solutions and some of its properties (boundedness, monotonicity continuous dependence) and the
stability of the problem it self ( Hyers-Ulam) (see [10] - [13]).

Here we are concerning with the initial value problem of the functional integral equation.

d p(t)
d_JtC = (t,A]O‘ g(s, D“x(s)ds)), ae., te(0,T] (1.1)

with the non-local internal condition

x(0) + ‘L‘T_T h(s,x(s),Dyx(s))ds = X0, T €[0,T] (1.2)

Received: Jun. 27, 2025.

2020 Mathematics Subject Classification. 26A33.
Key words and phrases. functional integro-differential equation; mixed-type fractional and integer order derivatives;

existence of solutions; continuous dependence; Hyers-Ulam stability.

https://doi.org/10.28924/2291-8639-23-2025-190 © 2025 the author(s).
ISSN: 2291-8639


https://doi.org/10.28924/2291-8639-23-2025-190

2 Int. J. Anal. Appl. (2025), 23:190

where D%, D7 ares the Caputo fractional derivative of orders , y € (0,1].
Remark:

(1) If T = 0, then the nonlocal integral condition will be of the form

x(0) + fo Th(s,x(s),mx(s))ds = xo

(2) If Tt = T, we obtain (2) in the form

x(0) - fo Th(s,x(s),mx(s))ds = X

B)Ift= %, the (2) will be the initial value

Here, we study the existence of at least one absolutely continuous nondecreasing solution x €
AC[0,T] of the problem (1.1)-(1.2). The sufficient condition for the uniqueness of the solution will
be given.

The continuous dependence of the solution x € AC[0,T| on the parameter A > 0, the delay
function ¢ and on its derivative % = y will be studied. Finally the Hyers-Ulam stability of the
problem (1.1)-(1.2) itself will be proved.

The structure of the paper is as follows: In Section 2, we present the problem formulation and
preliminary definitions. Section 3 is devoted to the existence and uniqueness results. Section 4
examines the continuous dependence and Hyers-Ulam stability of the solutions. An illustrative
example is provided in Section 5, and concluding remarks are given in Section 6.

2. PROBLEM FORMULATION
Let % = vy, then we obtain
t
x(t) = x(0) —|—f y(s)ds
0
and from the properties of the fractional order derivative [19], we can get

D%(t) = I'"*y(t) and D”x(t) = I'7Vy(t). (2.1)

Then the solution of the problem (1.1)-(1.2) will be given by

x(t) = x0 + fT_Th(s,x(s),Il_yy(s))ds+ fty(s)ds (2.2)
T 0

where y is the solution of the functional integral equation

¢(t)
y(t) = f(t, A f o5, 1"y (s)ds)). 23)

Conversely, differentiating (2.2) and using (2.1) we obtain

(1)
Ex(t) = y(t) = f(t,/\\[ov g(SIDax(S>dS>)
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and from (2.2) with { = 0 we obtain (1.2).

So, we have proved thefollowing equivalent lemma
Lemma 2.1. The problem (1.1)-(1.2) is equivalent to the problem (2.2)-(2.3).

Now, our problem will be considered under the following assumptions
(i) ¢:[0,T] - [0,T],  ¢(t) <tiscontinuouson [ = [0, T].

(i) f : IXR — R' is measurable int € [ , ¥ x € R, and continuous in x € R, ¥t € I and

there exists aa; € L1(I) and a constant b; > 0 such that
ft,x) <lar(t) + balx]

(iii) g : IXR — Ris measurableint € I, ¥ x € R, and continuous in x € R, ¥ t € I and there exists
ay € L1(I) and a constant by > 0 such that

Ig(t, x)| <lax(t)| + bolx]

(iv)h : IXRXR — Rismeasurableint €1,V x,y € R, and continuousinx,y € R, YVt €I and
there exists a3 € L1(I) and a constant b3 > 0 such that

I(t,x, y)| <laz(t)] + bs(lx| + [yl).

(V) PAT?>% < 1,b = max{by,by, b3}, a = Max {|la1lly,llazll1, llaslly } and

T
||az-||1 = Sup f |€li(t)|dt, 1= 1,2,3.
0

3. EXISTENCE OF SOLUTION

3.1. Solutions of the functional integral equation (2.3). Now we have the following theorem.

Theorem 3.1. Let the assumptions (i) — (iii) and (v) be satisfied. Then the functional integral equation
(2.3) has at least one solution y € Ly (I).

Proof. Let Q,, be the closed ball of positive integrable functions
a+ bTaA
Qn ={yeLi(I):llylh <} cLi(I), rn = 1T

and define the operator F by

o (t)
Fy(t) = £(t,A fo §(5, 1y (s))ds).
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Let y € L1(I), then we have

o (t)
IWWﬂNJL $(5, 1y (s))ds)|
< lag(t)] + biA fot(|a2(s)| + bolI' ™y (s)|)ds

t
< lar ()] + biA llaally + bibaA Il“*f ly(s)|)ds
0

and

tl—[x

(DI < lar ()] + bAa + b*A Iih 7 (3.1)

(2-a)

then

T t
ey = [ 172 [ gle (s s
0 0
<a+ bTAa+ PTAYhT>® = n.

This proves that F : Q,, — Q,, and the class {Fy} is uniformly bounded on Qy,.
Now, let ) € Q,,, y € ), then

t+h
() -Fy0l =1 [ Fu(o)d0 - Fyr)

1 t+h
< f IFy(6) — Fy(t)|do
t
and
T tth
IFyn — Fyhl < f A f |Fy,(0) — Fy(t)|dO dt.
0 t
But F € L1(I), then from the properties of the Lebesgue point [18] we have
|Fy,(0) —Fy(t) =0 as  h—0.

Hence,

[Fyy, — Fyllh — 0

this means that Fy(t), — Fy uniformly in Li(I). Thus the class of functions {Fy} is relatively
compact [18].
Now, let y, € Q,,, and y, — y, then

o (t)
%MzﬂML 95,1y (5))ds)
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and

lim Fy,(f) = lim f(t, Af g(s, "y, (s))ds)

n—00 n—00

= f(t,A lim g( 1'%y, (s))ds)

—00
n 0

Applying the Lebesgue Dominated Convergence Theorem [4], then from our assumptions we get

n—->o0

lim Fy,(t) = f(¢, /\f g(s, 1" lim v, (s)ds)

— f(t,A fo g5, Iy (s))ds) = Fy()

This means that Fy, (t) — Fy(t).
Hence the operator F is continuous and by Schauder fixed point Theorem [4] there exist at least

one positive solution y € L1(I) of the functional integral equation (2.3).

Now, from the first part of the proof of Theorem 1, the following corollary can be proved.

Corollary 3.1. Let y € Li(I) be a solution of (2.3), then from(3.1) we have

2—a—y

My <A + PPrp ——
ly(HOI <A + Ve —

where

A = sup I'7(lay(t)| +abA).
tel

3.1.1. Uniqueness of the solution. Consider the assumptions
(ii)* f:IXR — R" ismeasurableint €,V x € R, and satisfies the Lipschitz condition

If(t,x) — f(t,x")| < bilx —x7|, f(t,0) = a1(t) € L1(I)
from which we can deduce that
[f(t,x(t)] < lag (#)] + balx(t)].

(iii)* ¢:IXR — Ris measurableint e (I),VY x € R, and is measurable in t € [0,T] , ¥ x € R, and

satisfies the Lipschitz condition
lg(t,x) — g(t,x")| < balx — x*|, g(t,0) = ax(t) € Li(I)
from which we can deduce that
lg(t, x(t)] < laz ()] + balx(t)].

Theorem 3.2. Let the assumptions (i), (ii)*, (iii)* and (iv) be satisfied, then the solution y € L1(I) of the
functional integral equation (2.3) is unique.
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Proof. From the assumptions (i), (i1)*, (iii)* and (iv) we deduce that the assumptions of

Theorem 3.1 are satisfied. Then the functional integral equation (2.3) has at least one solution

ye L1 (I)
Let y1,y2 be two solution of (2.3), then

¢ (t) ¢ (t)
y2(t) = (D] = IF(t,A f o5, I ya(s))ds) — £(1,A f g5, 11 (s))ds)
0 0
o (t) . .
<hA fo 19(5, Ty (s)) — g5, I~y (5))Ids
(t)
< bibA ﬁ I=%ya(s) = I%ya(s)|ds
0
(t) .
< bibA ﬁ I'™y2(s) — ya(s)lds
0

£
< b1b2)\f Il_“lyz — y1lds
0

1-a
<PA—m -
VA T ly2 — yall,

then
ly2 = yilh S B*A T lly2 = yall, (1=D*AT>)llya =l < 0
and
ly2 —yilh < 0.
Which implies that y1(t) = y2(t) and the solution of (2.3) is unique.

3.2. Solution of functional integral equation (2.2).

Theorem 3.3. Let the assumptions (i)-(v) be satisfied. If b T < 1 then the functional integral equation
(2.2) has at least one nondecreasing solution x € AC(I).

Proof. Let Q,, be the closed ball

Xl +a4+AbT+B AT ri+1

Qn = {x e AC(I) : x|l < 12}, 12 = 1-bT

and define the operator F by

7T t
Fx(t) = xo —|—f h(s,x(s), "7 y(s))ds —|—j0‘ y(s)ds.

Now, let x € Q,,, then
T—1 t
Fx(t) = xo —|—f h(s,x(s), "V y(s))ds —|—f y(s)ds
T 0
T-1 t
[Fx(£)| = |xo +f h(s,x(s), "7y (s))ds +f y(s)ds|
T 0

T—1 t
slxo|+f (Iczs(zf)|+193|96(t)lers|11_7’y(5)|)6ls+fO ly(s)lds
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T
< Ixol +f0 (las ()] + b3 Jx(s)| + b3 17 y(s))ds + llylh

and from Corollary 1, we obtain

T . f2—a-y
< blxlT+b | (A4 b Arp =——————
< |xol +a + b ||x]|. T + fo( + b= Any TG-ay)

<lvol+a+blxll.T +bAT + B3Ar T® + 1.

)dt +nr

Then
IFxllc < lvol+a+bTr+ AbT + BPAT3 ri+11 = 1o.

This proves that F : Q,, — Q,, and the class { Fx } is uniformly bounded on Q,,.
Now, let x € Q,, and t1, t € I, such that t; > t1, and |t — t1| < 0, then
T-1 t2
|Fx(t2) = Fx(t1)| = |xo+ f h(s,x(s), 1" 7y(s))ds + f y(s)ds
T 0
T-t t1
= ([ Hs (e, s+ [ o)
T 0
T-1 t2
= |xo + f h(s,x(s), "7 y(s))ds + f y(s)ds
T 0
T-1 t1
—Xx0— f h(s,x(s), "7 y(s))ds — f y(s)ds)|
T 0

_ fo (s - fo " (o)

< ly(s)lds = e.

5]
Then the class {Fx} is equicontinuous on Q,, and by the Arzela-Ascoli Theorem [4], the class {Fx}
is relatively compact. Now, let x € Qy,, x,(t) = x(t) € Q,.

lim Fx,(t) = lim (xo + fT_Th(s,xn(s),ll‘yy(s))ds+ fty(s)ds)
T 0

n—00 n—00

Applying Lebesgue dominated convergence Theorem [4], then from our assumptions we get

n—-oo

T-1 t
lim Fx, () = xo +f h(s, lim x,(s), I'7y(s))ds +f y(s)ds
T n—oo 0
t

T-1
=x s, x(s), "7 y(s))ds s)ds
[ (e, 1y + [ yie)a
= Fx(t).

This means that Fx, (t) — Fx(t). Hence the operator F is continuous. Now, by the Schauder fixed
point theorem [18], there exists at least one fixed point x € Q,, € AC(I) of the integral equation
(2.2).
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Then there exists at least one solution x AC(I) of the functional integral equation (2.2).

Now, from the integral equation (2.2) and the positivity of the solution y we deduce that for t; < t,

x(h)—x(k) = [2 y(s)ds >0

and the solution x AC(I) of the functional integral equation (2.2) is nondecreasing.

Now, from Theorem 3.3, the following corollary can be proved.

Corollary 3.2. Let the assumptions of Theorem 3.3 be satisfied. Then the problem (1.1)-(1.2) has at least
one nondecreasing solution x € Q,, € AC(I).

3.3. Uniqueness of the solution. Consider the assumptions

(iv)* h: IXRXR — Rismeasurableint € I,V x € R, and satisfies the Lipschitz condition
Ih(t,x,y) —h(t,x", y)| < bs(Ix — x|+ 1y —y'l), f(£,0,0) = as(t) € L1(I)
from which we can deduce that
f (8, x(8), y(B)] < las (E)] + ba (lx(£)] + [y (£)D)-

Theorem 3.4. Let the assumptions (iv)* and (v) be satisfied, then the solution x € AC(I) of the functional
integral equation (2.2) is unique.

Proof. From the assumptions (iv)* and (v) we deduce that the assumptions of Theorem 3.3 are
satisfied. Then the functional integral equation (2.2) has at least one solution x € AC(I).

Let x1,x; be two solution of (2.2), then
T-1 t
[x2(t) = x1(8)| = |xo —|—f h(s,x2(s), I y(s))ds —|—f0 y(s)ds
T-1 t

—xo—f h(s,xl(s),ll‘Vy(s))ds—fO y(s)ds|

T-1 T—-1
= |f h(s,xz(s),ll_yy(s))ds—f h(s,x1(s), "7 y(s))ds|

T '

< f Ih(s, x2(5), 17 y(s)) - (s, 11(5), Iy (s))lds

B T
T
<ty [ bl -n(s)s
0
<bT|lx2—x1llc,

then
llxa —x1llc <bTllxa—xllc, (1=bT) llx2=x1llc <0
and
[lx2 —x1llc < 0.

Which implies that x;1(f) = x2(#) and the solution of (2.2) is unique.
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Remark 3.1. Let y* be the unique solution of (2.2)

¢(t)
(6 = f(tA f §(5, 1y (5)ds),

then we get
1-a

r2-a)

() =y (O < AP ly - v'lh (3.2)

4. CONTINUOUS DEPENDENCE

Here, we study the continuous dependence of the solutions y € (Ly), x € AC(I).

Theorem 4.1. Let the assumptions of Theorem 3.2 be satisfied. Then the unique solution y € L1(I) of (2.3)

depends continuously on the parameter A and the delay function ¢.

Proof. (1) Let 6 > 0 be given such that [\ — A*| < 6, y be the solution of (2.3) and y* be the

unique solution of

o (t)
* = * s, I'%*(s))ds).
(1) = F(t,A f g(s, 1 (s))ds)
Then

B(t) B (t)
W=y Ol [ gy - 0,4 [ g )
(t) D(t)
1-a o+ 1-a,
Sbll)\jj (s, I'™%y(s))ds /\‘[0 (s, Iy (s))ds|
P(t) P(t)
< by (/\—A*)fo g(s,Il_“y(s))ds—I—/\*fo g(s,Il_“y(s))ds
B (t)
- A s, "%y (s))ds
v [ sty (o)

() P(t)
<bi f 1g(s, Iy (s))lds + A f 18(s, 1y (s)) — g5, 1" (5)) Ids
0

0

(t) b(t)
<16 ﬁ g(s, 1'%y (s))ds + bibaA* f 9y(s)) — y*(s)lds
0 0

1-a

T
t
< b6 s, 1'%y (s))ds + biboA* ||y — || ———
1 j;g( y(s)) 124" |ly y“l‘(z—a)

and
T
lly —y'llh < bd f Q(s, Il_”‘y(s))ds + PPT> ) lly — vl
0
which implies that

* 1
Hy_y”lﬁw = €

where 61 = b foT g(s, I'=%y(s))ds.
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(2) Let 6 > 0 be given such that [p(t) — ¢*(f)] < 6, y be the solution of (2.3) and y* be

the unique solution of

¢ (t)
fﬁ)zfaA L §(5, 1y ()ds).

Then

5 (1)
() - tAj" 85,1y (5))ds) - quj“ g5, 117" (5))ds)|
o' (1)
Shlﬁfoﬁ g(s, 1" y(s ))ds—AfO (s, Iy (s))ds|
(0 5 (6)
< bllﬁ(ﬁ g(slll‘“y(S))ds—fo (s, I'"y(s))ds)
(1) 5 (1)
1-a _ 1-a, *
+M1; 85,1 WQﬂstﬁ 85,17y (5))ds)|
5 (1)
<bhide - blbzAf 9y(s)) — y*(s))lds
0

¢ (t)
<bder + blbz/\f I"ly(s)) - v (s))lds
0

tl—oé

<bA PA |y -y ll=———
<blAer + lly y"F(Z—a)

and
ly— vl <bAer ++P2T> A" ly - v'lly

which implies that
Iy~ ylh < T =
y-yih= 1—p2 T2-a p*

where

€ = ﬁ lg(s, ' %y(s))ds.

Theorem 4.2. Let the assumptions of Theorem 3.4 be satisfied, the solution x € AC(I) of (2.2) depends

continuously on the solution y and the internal condition xo.

Proof. (1) Let 6 > 0 be given such that [y — y*|l; < 0, x be the solution of (2.2) and x* be the

solution of

X(t) = x0+fT_T h(s,x*(s),ll‘Vy*(s))ds+jo‘t y*(s)ds

then

T-1 t
[x(t) —x*(t)| = Ixo+f h(s,x(s), "7 y(s))ds + j(; y(s)ds

T-1 t
—xo—f h(s,x*(s), "7y (s))d s — jo‘ y*(s)ds|
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T—1 T—1
|f sx<>11Vy<>>ds—f h(s,x*(s), 7y (5))ds

fy ds—fy )ds|

Sf (s, x(s), I 7y(s)) — h(s,x"(s), 1"y’ (s))Ids

f ly(s) s)lds
<bf lx(s |ds+bf 7y(s) |ds+f|y s)|ds

_bf |x(s)—x*(s)|ds—|—b2/\f M7y - y||1 dt+f|y s)lds
0

2—a—y
+o=¢€

and

T
~xlc <bTlx—xlc + A b* 6
llx = x7lc < Tllx = x7[lc + T2=7)

which implies that

[lx —x*|lc < e.

(2) Let 6 > 0 be given such that |xo — x| < 6, x be the solution of (2.2) and x* be the solution of

T-1 t
x(t) = xg—l—fT h(s,x*(s),Il_Vy(s))ds—|—fO y(s)ds.

Then
()~ () =l + | s x(s), 1y (s) s | (o)
— Xy~ f T_Th(sff(S),Il‘Vy(S))ds - fo ty(s)dsl
-+ [ (s (), Iy () | (s (9), 1 y(5) )l
sto-xi + [ (s, 9, B (5)) = Bl x1(5), Iy (5) i
sa+beT|x(s)—x*(s)|ds
and

Ix=x"llc <6 + bTllx—x"lle
which implies that
— < — =
e~ xle < ==

Corollary 4.1. Let the assumptions of Theorem 4.1 be satisfied. Then the solution x € AC(I) of (2.2)
depends continuously on the parameter A and the delay function ¢.
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5. Hyers-ULAM STABILITY

Many authors have studied and further developed the definition of Hyers-Ulam stability across
various types of problems, see [3, 4, 5, 6]. In light of these definitions and based on the equivalence
between the problems (1.1) and (1.2) or (1.1) and (2.2) and the integral equation (2.2), we present
the next definition of the Hyers-Ulam stability of the problems (1.1) and (1.2) or (1.1) and (2.2) as

follows:

5.1. Definition. Let the solution x € AC(I) of the problem (1.1)- (1.2) be exists, then the problem
(1.1)-(1.2) is Hyers-Ulam stable if V € > 0, 6(¢) such that for any 6— approximate solution x; € AC(I)

satisfies,

dxs

$(t)
=~ f(t,A fo ¢(0,D%(6))d0)| < 5, (5.1)

which implies that [|x — xs|lc <e.

Remark 5.1. Let d;; = y5(t), in (5.1) we obtain

t
() =1t 1 [ gO1 7 (0)d0) <o. 52)
And from (5.1), we get

dxs P(t)
IE - (t,/\j; 2(8,D%(0))do)| < o,

dxs

(t)
-0 < T (¢, Aﬁ <(6,D%(0))do) < o

T t (*)
5t <xy(t) — (x0 + f (0, 1(8), s (6))d6) + fo £t fo " (6,05 (6))d6) <51

T—1 t ()
=0T <xs(t) = (x0 + f h(0,x5(0), "7 ys(0))d0) + f f(t,/\f g(0,1""ys(0))do) dt) <6 T
T 0 0
and
T-1

lxs () — x0 — f h(6,x5(0), "7 ys(0))d0 - f fl(t, )\fa 2(0,17%y4(0))d0) dt| < 5 T.  (5.3)
Theorem 5.1. Let the assumptions of Theorem (3.4) be satisfied, then (2.2) is Hyers-Ulam stable.

Proof. Firstly we have

t
()= 3s(01 = 17t A [ 50,1 (©))d0) = s (1)

t

— If(t, A fo $(6.0°3(0))d0) - £(t, A [ 5(6,11.(6))d6)

0

et + £t A fo ¢(6,1y,(0))d0)
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<If(t, A f ¢(6,1y(6))d6) - f(t, A f ¢(6,1y,(0))d6)
() - £0, 1 [ g0, (0)do)
0
<b A f 19(6,15(6)) - g(6, 1y (0))ld0 +
0

t
'a Af 9y (0) - ys(0)|d0 + 6
0
<P Ay —yslh T+ 06

and
ly=yslh <O Ally—yslh T +6 T
which implies that

lly — ysllh < = €.

6T
1-p2 A T2
Secondly, we have
T-1 t
|x(t)—xs(t)|:|x0—|—f h(@,x(@),[l_yy(e))de—l—j(; y(0)dO — x4(t)|
TT—I t
Ix(t)—xs(t)|:|x0+f h(@,x(@),ll‘yy(e))d6+f0 y(0)do — x4(t)
T-1 t
x 1-y
+fT h(6,x5(0),1 7ys(9))d9+foys(9)d6
T—1 t
—f h(@,xs(Q),Il_Vys(Q))dQ—fys(Q)dQI
T 0
T-1 T-1
:|x0+f h(@,x(@),ll_Vy(G))dG—f h(6,xs(0), 1" ys(6))do
+Ly(6)d6—ﬁy5(6)d6—xs(t)
T—1 t
X 1-
+fT h(6,x5(0),1 Vys(e))d6+£ys(9)d9|
T T
s|f h(@,x(@),ll_yy(e))de—f h(0,xs(0), 17 ys(6))do
0 0
4 fo 1(6)d6 - fo y:(0)d6
T t
X Xs s 1= S s - Xs
+30-+ [ Ox(0), 17 5s(0)d0+ [ (©)d0 (1)

T t
sf Ih(G,x(G),Il‘Vy(Q))—h(@,xs(G),Il_Vys(G))ldG+fIy(Q)—ys(Q)ldG
0 0
T

o+ fo (h(0,%:(8), 17 y:(6)))d6 + fo ye(6)d6 - x,(¢)]
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T T
S\L b3|x(6)—xs(9)|d6+f0 b311_7|y( ) ys IdQ—i—fI]/ IdQ
T
o+ f (h(6, 2,(0), 7 y:(6)))d0 + f ve(0)d6 - x,(1)
<bf lx(6 IdG—I—bf Il'Vly() ys(6 IdQ—I—fly 0)|do + 6

<bf x(6 0)d0 + b* A |ly — ys||1f(2“7+6ds—i—f|y ys(0)ldO + &
0
and
x(t) - xs(t |<bf X(8) — x,(8)O + 12 Ally— yilhy (T® +6T) +6
= xdllc <bTIx=xllc + 0> Aey (TP +6T) +e1+ 6,
then

PAe (TP+06T)+e1+ 6
1-b6T -

[lx = xsllc <

6. CONCLUSION

In this paper, we examined a class of nonlocal functional integro-differential equations involving
mixed-type derivatives, incorporating both fractional and integer-order operators. Using the
Schauder fixed-point theorem, we established suffcient conditions for the existence of solutions.
We have demonstrated the uniqueness of the solution under additional constraints, ensuring that
the systems behavior is well-posed. Additionally, we have analyzed the continuous dependence
of the solution on key parameters, including the initial condition, the parameter, and the delay
function, proving the robustness of the model even in the presence of perturbations in system data.
Importantly, we have also investigated the Hyers-Ulam stability of the problem, thus conforming
that approximate solutions remain close to exact solution within controlled bounds a feature that
is especially important for numerical simulations and applications where data may be imprecise.
Overall, the results presented in this work contribute to the theoretical understanding of functional
integro-differential systems with mixed-type derivatives and provide a rigorous framework for

studying more general classes of nonlocal models arising in physical and engineering contexts.
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