Analytic General Conformable Semigroup

Main Article Content

Nur Natasha Lim Boon Chye @ Mohd Hairie Lim, Bambang Hendriya Guswanto, Ahmad Fadillah Embong, Mohd Ariff Admon

Abstract

Conformable fractional derivative is introduced by [1] to simplify the definition of fractional derivatives since most of them used an integral form which is difficult to solve real problem. However, [1] defined the conformable fractional derivative by considering a particular conformable fractional function t1−α. In this study, general conformable fractional Cauchy problem is considered and solved by using general conformable Laplace transform to obtain the solution operator of general conformable fractional Cauchy problem. Properties of classical semigroup are employed to retrieve the properties of general conformable semigroup from the solution operator of general conformable fractional Cauchy problem. Consequently, general conformable semigroup properties can be used to detemine the regularity of general conformable fractional Cauchy problem including its existence and uniqueness of the solution.

Article Details

References

  1. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
  2. A. Kilbas, H.M. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, (2006).
  3. T.C. Sideris, Ordinary Differential Equations and Dynamical Systems, Atlantis Press, 2013. https://doi.org/10.2991/978-94-6239-021-8.
  4. M. Meiler, R. Cordero–Soto, S.K. Suslov, Solution of the Cauchy Problem for a Time-Dependent Schrödinger Equation, J. Math. Phys. 49 (2008), 072102. https://doi.org/10.1063/1.2938698.
  5. T. Reeve, B. Tomas Johansson, The Method of Fundamental Solutions for a Time-Dependent Two-Dimensional Cauchy Heat Conduction Problem, Eng. Anal. Bound. Elem. 37 (2013), 569–578. https://doi.org/10.1016/j.enganabound.2012.12.008.
  6. L. Byszewski, Existence and Uniqueness of a Classical Solution to a Functional-differential Abstract Nonlocal Cauchy Problem, Int. J. Stoch. Anal. 12 (1998), 91–97. https://doi.org/10.1155/s1048953399000088.
  7. A. Raheem, D. Bahuguna, Existence and Uniqueness of a Solution for a Fractional Differential Equation by Rothe’s Method, J. Nonlinear Evol. Equ. Appl. 4 (2013), 43–54.
  8. J. Peng, K. Li, A Novel Characteristic of Solution Operator for the Fractional Abstract Cauchy Problem, J. Math. Anal. Appl. 385 (2012), 786–796. https://doi.org/10.1016/j.jmaa.2011.07.009.
  9. R. Wang, D. Chen, T. Xiao, Abstract Fractional Cauchy Problems with Almost Sectorial Operators, J. Differ. Equ. 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048.
  10. Y. Li, H. Sun, Z. Feng, Fractional Abstract Cauchy Problem with Order α ∈ (1, 2), Dyn. Partial. Differ. Equ. 13 (2016), 155–177. https://doi.org/10.4310/dpde.2016.v13.n2.a4.
  11. H. Fan, J. Mu, Initial Value Problem for Fractional Evolution Equations, Adv. Differ. Equ. 2012 (2012), 49. https://doi.org/10.1186/1687-1847-2012-49.
  12. K. Li, J. Peng, J. Gao, Nonlocal Fractional Semilinear Differential Equations in Separable Banach Spaces, Electron. J. Differ. Equ. 2013 (2013), 7.
  13. P. Chen, Y. Li, Existence of Mild Solutions for Fractional Evolution Equations with Mixed Monotone Nonlocal Conditions, Z. Angew. Math. Phys. 65 (2013), 711–728. https://doi.org/10.1007/s00033-013-0351-z.
  14. B.H. Guswanto, T. Suzuki, Existence and Uniqueness of Mild Solutions for Fractional Semilinear Differential Equations, Electron. J. Differ. Equ. 2015 (2015), 168.
  15. B.H. Guswanto, Fractional Nonlinear Evolution Equations With Sectorial Linear Operators, J. Fract. Calc. Appl. 10 (2019), 213–227.
  16. B.H. Guswanto, Nonlocal Reaction-Diffusion Model With Subdiffusive Kinetics, J. Fract. Calc. Appl. 13 (2022), 198–211.
  17. C. Li, D. Qian, Y. Chen, On Riemann-liouville and Caputo Derivatives, Discret. Dyn. Nat. Soc. 2011 (2011), 562494. https://doi.org/10.1155/2011/562494.
  18. D. Tverdyi, R. Parovik, Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect, Fractal Fract. 6 (2022), 163. https://doi.org/10.3390/fractalfract6030163.
  19. O.T. B˙IRGAN˙I, S. CHANDOK, N. DEDOV˙IC, S. RADENOV˙IC, A Note on Some Recent Results of the Conformable Fractional Derivative, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 11–17. https://doi.org/10.31197/atnaa.482525.
  20. D. Zhao, M. Luo, General Conformable Fractional Derivative and Its Physical Interpretation, Calcolo 54 (2017), 903–917. https://doi.org/10.1007/s10092-017-0213-8.
  21. L. Rabhi, M. Al Horani, R. Khalil, Inhomogeneous Conformable Abstract Cauchy Problem, Open Math. 19 (2021), 690–705. https://doi.org/10.1515/math-2021-0064.
  22. K. Hilal, A. Kajouni, N. Chefnaj, Existence of Solution for a Conformable Fractional Cauchy Problem with Nonlocal Condition, Int. J. Differ. Equ. 2022 (2022), 6468278. https://doi.org/10.1155/2022/6468278.
  23. S. Al-Sharif, R. Al-Shorman, New Results on the Generator of Conformable Semigroups, Progr. Fract. Differ. Appl. 8 (2022), 77–89. https://doi.org/10.18576/pfda/080105.
  24. B.H. Guswanto, S. Maryani, N. Istikaanah, Analytic Conformable Semigroups and Regularity of Solutions to Conformable Fractional Cauchy Problem, Int. J. Anal. Appl. 23 (2025), 117. https://doi.org/10.28924/2291-8639-23-2025-117.
  25. A.T. Deresse, Analytical Solution of One-Dimensional Nonlinear Conformable Fractional Telegraph Equation by Reduced Differential Transform Method, Adv. Math. Phys. 2022 (2022), 7192231. https://doi.org/10.1155/2022/7192231.
  26. Y. Alhojilan, H.M. Ahmed, New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps, Mathematics 11 (2023), 1093. https://doi.org/10.3390/math11051093.
  27. B.H. Guswanto, A. Marfungah, D.O. Yuniarto, M.I. Jihad, S. Maryani, N. Istikaanah, et al. From Continuous Time Random Walks to Multidimensional Conformable Diffusion Equation, IAENG Int. J. Appl. Math. 54 (2024), 1445–1458.
  28. U.N. Katugampola, A New Fractional Derivative with Classical Properties, arXiv:1410.6535 (2014). http://arxiv.org/abs/1410.6535v2.
  29. P.M. Guzman, G. Langton, L.M.L.M. Bittencurt, J. Medina, J.E.N. Valdes, A New Definition of a Fractional Derivative of Local Type, J. Math. Anal. 9 (2018), 88–98.
  30. S. Al-Sharif, A. Malkawi, Modification of Conformable Fractional Derivative With Classical Properties, Ital. J. Pure Appl. Math. 44 (2020), 30–39.
  31. A. Kajouni, A. Chafiki, K. Hilal, M. Oukessou, A New Conformable Fractional Derivative and Applications, Int. J. Differ. Equ. 2021 (2021), 6245435. https://doi.org/10.1155/2021/6245435.
  32. P. Guzman, L. Lugo, J. Nápoles Valdés, M. Vivas-Cortez, On a New Generalized Integral Operator and Certain Operating Properties, Axioms 9 (2020), 69. https://doi.org/10.3390/axioms9020069.
  33. O. Kahouli, A. Jmal, O. Naifar, A.M. Nagy, A. Ben Makhlouf, New Result for the Analysis of Katugampola Fractional-Order Systems—application to Identification Problems, Mathematics 10 (2022), 1814. https://doi.org/10.3390/math10111814.
  34. D.R. Anderson, D.J. Ulness, Properties of the Katugampola Fractional Derivative with Potential Application in Quantum Mechanics, J. Math. Phys. 56 (2015), 063502. https://doi.org/10.1063/1.4922018.
  35. F. Martínez, P.O. Mohammed, J.E.N. Valdés, Non-conformable Fractional Laplace Transform, Kragujev. J. Math. 46 (2022), 341–354. https://doi.org/10.46793/kgjmat2203.341m.
  36. A. Fleitas, J.A. Méndez-Bermúdez, J. Nápoles Valdés, J.S. Almira, On Fractional Liénard-Type Systems, Rev. Mex. Física 65 (2019), 618–625.
  37. A.M. Moter, Fractional Differential Equations and Fractional Semigroups of Operators, Int. J. Innov. Sci. Res. Rev. 6 (2024), 6250–6253.
  38. M. Al-Khaleel, S. Al-Sharif, A. AlJarrah, Atomic Solution for Certain Gardner Equation, Symmetry 15 (2023), 440. https://doi.org/10.3390/sym15020440.
  39. N. Benkhettou, A. Salim, J.E. Lazreg, M. Benchohra, A Study on Some New Conformable Fractional Differential Equations With Retardation and Anticipation, Mem. Differ. Equ. Math. Phys. 92 (2024), 41–58.
  40. A. Jhangeer, W.A. Faridi, M. Alshehri, Soliton Wave Profiles and Dynamical Analysis of Fractional Ivancevic Option Pricing Model, Sci. Rep. 14 (2024), 23804. https://doi.org/10.1038/s41598-024-74770-1.
  41. A. Aitbrahim, J.E. Ghordaf, A. El Hajaji, K. Hilal, J.E. Valdes, A Comparative Analysis of Conformable, NonConformable, Riemann-Liouville, and Caputo Fractional Derivatives, Eur. J. Pure Appl. Math. 17 (2024), 1842–1854. https://doi.org/10.29020/nybg.ejpam.v17i3.5237.
  42. D. Anderson, E. Camrud, D. Ulness, On the Nature of the Conformable Derivative and Its Applications to Physics, J. Fract. Calc. Appl. 10 (2019), 92–135.
  43. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 2012.
  44. A. Ansari, The Generalized Laplace Transform and Fractional Differential Equations of Distributed Orders, Differ. Equ. Control Process. 3 (2012), 128–137.
  45. A.V.R. Amaral, J.A. González, P. Moraga, Spatio-temporal Modeling of Infectious Diseases by Integrating Compartment and Point Process Models, Stoch. Environ. Res. Risk Assess. 37 (2022), 1519–1533. https://doi.org/10.1007/s00477-022-02354-4.
  46. A. Padder, L. Almutairi, S. Qureshi, A. Soomro, A. Afroz, E. Hincal, A. Tassaddiq, Dynamical Analysis of Generalized Tumor Model with Caputo Fractional-Order Derivative, Fractal Fract. 7 (2023), 258. https://doi.org/10.3390/fractalfract7030258.