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Abstract. Conformable fractional derivative is introduced by [1] to simplify the definition of fractional derivatives since

most of them used an integral form which is difficult to solve real problem. However, [1] defined the conformable

fractional derivative by considering a particular conformable fractional function t1−α. In this study, general conformable

fractional Cauchy problem is considered and solved by using general conformable Laplace transform to obtain the

solution operator of general conformable fractional Cauchy problem. Properties of classical semigroup are employed to

retrieve the properties of general conformable semigroup from the solution operator of general conformable fractional

Cauchy problem. Consequently, general conformable semigroup properties can be used to detemine the regularity of

general conformable fractional Cauchy problem including its existence and uniqueness of the solution.

1. Introduction

The Cauchy problem is a foundational aspect of differential equation theory and serves a critical

role in the mathematical modeling across various scientific and engineering fields [2]. Traditionally,

the Cauchy problem entails determining a function that fulfills a given differential equation,

alongside a specified set of initial conditions, usually defined at a single point, commonly time,

t = 0. Mathematically, this can be formulated as follows:

du
dt

= Au(t) + f (t), u(0) = u0, (1.1)
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where A is a sectorial operator, u(t) is the arbitrary function, f (t) defines the dynamics of the

system, and u0 is the initial value of u at t = 0. The solution to this problem describes the evolution

of u(t) for t ≥ 0 based on the given initial state.

The Cauchy problem is worth to be investigated which is important to the behavior of the

dynamical system prediction, as it includes both the differential laws that govern the system and

the initial conditions that are needed to solve the problem [3]. This problem is particularly valuable

in the contexts where time-dependent processes are modeled, such as wave propagation and heat

diffusion [4, 5]. The solution to Cauchy problems provides insights into how initial states evolve

under the given dynamic conditions, making them essential in the fields of a crucial predictive

modeling.

A significant challenge in solving Cauchy problems lies in guaranteeing the existence and

uniqueness of the solutions. In the absence of existence, a solution may not be attainable for

the specified conditions, rendering the model unreliable as it could fail to generate results or

predictions in certain scenarios. Similarly, without uniqueness, multiple solutions might emerge,

making it impossible to identify a singular and definitive outcome. Ensuring both existence and

uniqueness is essential for establishing the reliability and interpretability of the mathematical

models. Hence, the findings from this study offer a framework to establish both the existence and

uniqueness of solution to the general conformable fractional Cauchy problem (GCFCP), that leads

to strengthen the theoretical foundation of Cauchy problems.

Numerous studies are conducted on the Cauchy problem, with a focus on the existence and

uniqueness of the solutions for fractional Cauchy problems involving Riemann-Liouville and

Caputo fractional derivatives (see [6–16]). The following provides the definition of Riemann-

Liouville and Caputo fractional derivative respectively.

Definition 1.1. [17] The Riemann-Liouville derivative (RL) of fractional order α of function f (t) is defined
as

RLDα
0,t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

0
(t− x)m−α−1 f (x)dx,

where Γ(m− α) is gamma function, m− 1 ≤ α < m with α, m ∈ Z+.
Definition 1.2. [17] The Caputo derivative (C) of fractional order α of function f (t) is defined as

CDα
0,t f (t) =

1
Γ(m− α)

∫ t

0
(t− x)m−α−1 f (m)(x)dx,

for m− 1 ≤ α < m and α, m ∈ Z+.

While the Cauchy problem is well-established and extensively analyzed, its fractional counter-

parts introduce unique challenges and opportunities. Fractional calculus broadens the scope of

differentiation and integration by incorporating non-integer (or fractional) orders, thereby embed-

ding memory and hereditary effects into the models. This approach is particularly effective for

representing systems in which the current state is influenced by the entire history of past states,

rather than just the most recent one [18].
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However, traditional fractional derivatives, such as the Riemann-Liouville and Caputo for-

mulations, face practical limitations. Their reliance on integral representations over extended

intervals introduces non-local properties, which often makes them difficult to interpret and reflect

the real-world scenarios.

To address these challenges, Khalil et al. [1] proposed a novel definition of fractional derivatives,

termed the conformable fractional derivative (CFD). The following provides the definition of CFD.

Definition 1.3. [1] Given a function f : [0,∞)→ R. Then, the CFD of f of order α is defined by

Tα( f )(t) = lim
h→0

f (t + ht1−α) − f (t)
h

,

for all t > 0,α ∈ (0, 1). Let f (α)(t) stands for Tα( f )(t). If f is differentiable in some (0, a), a > 0, and
lim

t→0+
f (α)(t) exists, then

f (α)(0) = lim
t→0+

f (α)(t).

This definition overcomes several limitations of classical fractional derivatives, such as those

based on the Riemann–Liouville and Caputo formulations, which frequently fail to uphold key

properties of classical calculus [19]. The CFD is more closely aligned with classical calculus, making

it easier to handle certain computations in fractional differential equations [20]. Khalil et al. [1]

demonstrated that this new framework offers a practical and efficient alternative for modeling with

fractional derivatives, particularly in solving specific fractional differential equations. Moreover,

they suggested that this derivative provides a more intuitive and computationally viable option

for applications requiring fractional calculus but without the memory effects.

The theoretical framework of CFD using the definition in [1] is extensively explored, particularly

in the context of the Cauchy problem. Numerous studies are delved into the mathematical

properties and applications of CFDs within this framework [21–24]. These works established

a solid foundation, demonstrating the consistency of Khalil’s definition with classical calculus

and its applicability in modeling time-evolution problems. Moreover, the results obtained using

Khalil’s definition are widely applied to various real-world models, highlighting their versatility

and effectiveness in addressing complex phenomena [25–27].

Building on the foundational work in [1], researchers developed various extensions and modi-

fications to CFDs in order to enhance their utility and alignment with classical calculus principles.

For example, Katugampola [28] introduced fractional integrals that preserve essential classical

properties such as linearity, product rule, quotient rule, chain rule, and compatibility with Rolle’s

and mean value theorems. Subsequently, the N-derivative is proposed as a local fractional de-

rivative to address inconsistencies in existing fractional definitions, particularly in the application

of the product, quotient, and chain rules [29]. Further advancements are made by Sharif and

Malkawi [30], who introduced a modified CFD to resolve the lack of a fully valid chain rule in

fractional calculus. Recently, Kajouni et al. [31] proposed another extension of the CFD using a

limit-based approach consistent with classical calculus principles and established a generalized

mean value theorem.
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These modified and extended definitions of CFDs are widely studied and applied across various

domains. For instance, Katugampola’s definition [28] incorporates fractional integrals is studied

by [32,33] and is extensively used in solving multi-dimensional fractional equations and analyzing

stability in the fields such as fluid dynamics and viscoelastic systems [34]. The definition of

CFD and its nonlocal properties from [29] are investigated by [35], and is proven effectively in

applications involving fractional Schrödinger equations and quantum mechanical systems [36].

Similarly, [30] integrated a tensor-product framework in the definition of CFD, enabling the study of

fractional semigroups and nonlinear systems [37], with notable applications in Gardner equations

and soliton theory [38]. Finally, limit-based approach to CFD in [31] is employed to explore

generalized mean value theorems [39] and soliton stability in wave propagation models, further

extending the versatility of fractional calculus in applied mathematics [40].

These advancements highlight the adaptability and growing importance of CFDs in modern

mathematics and applied sciences. The properties of CFDs, as defined by Khalil et al. [1], Guzman

et al. [29], and Kajouni et al. [31], are extensively analyzed to enhance their versatility and applica-

bility [41]. By retaining fundamental classical calculus properties while addressing the limitations

inherent to traditional fractional derivatives, these developments offer intuitive and effective tools

for solving fractional differential equations and modeling complex phenomena. Moreover, the

theoretical foundations and practical applications of CFDs, particularly those based on [1] and [28]

definitions, are explored in [19], with further applications demonstrated in [42].

This study investigates the solution operator for Cauchy problem as in equation (1.1) by replac-

ing the usual derivative with general conformable fractional derivative (GCFD). The following

provides the general conformable fractional Cauchy problem (GCFCP) considered in this study,

Dα
ψu(t) = Au(t) + f (t), 0 < t ≤ T, (1.2)

u(0) = u0,

withα ∈ (0, 1], f : (0, T]→ X, and u0 ∈ X, where X is Banach space andψ is a fractional conformable

function. We call the solution operator of the homogeneous case to the problem (1.2) as general

conformable semigroup. The definition of GCFD is given as follows,

Dα
ψu(t) = lim

h→0

u(t + hψ(t,α)) − u(t)
h

,

where ψ(t,α) is a fractional conformable function and α ∈ (0, 1].

Since CFDs represent a specific case of GCFD, the results in this paper accomodate all the existing

results of Cauchy problem with various CFDs under some conditions. Moreover, the implemen-

tation of real application models is significantly more effective when using GCFD compared to

CFDs. GCFD also offer a more flexible and robust mathematical framework, accommodating a

broader range of dynamic behaviors and complex systems.

This paper consists of four sections. The first section provides the introduction on Cauchy

problem with GCFD. Next section is the preliminaries where the foundational concepts, including
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sectorial operators and classical semigroup theory, as a basis for developing solutions to fractional

Cauchy problems are discussed. In the main results section, there are three subsections, which

includes the analytic general conformable semigroup, the fractional power of sectorial operators,

and solutions to GCFCP by applying the general conformable Laplace transform (GCLT). Finally,

the conclusion summarizes the findings, emphasizing the advantages of GCFD for simplifying

fractional differential equations while preserving consistency with classical calculus, and suggests

its applicability to real-world mathematical modeling.

2. Preliminaries

This section contains two subsections which are semigroup and GCFD respectively. The

first subsection explores the classical theory of semigroups and its applications in solving non-

homogeneous Cauchy problems involving linear operators. Definitions, properties of sectorial

operators, and their relation to analytic semigroups are presented, highlighting their utility in

tackling linear evolution equations. This subsection lays a strong mathematical foundation for

exploring semigroup dynamics and their applications.

Next subsection provides the properties of GCFD, discusses the limitations of classical fractional

derivatives and motivates the use of GCFD for broader applicability. Some key properties of usual

derivative such as linearity, product and chain rules, and compatibility with classical calculus are

explored. Additionally, the subsection introduces the GCLT, which will be applied to obtain the

solution of GCFCP.

2.1. Analytic Semigroup. The following provides the typical non-homogeneous Cauchy problem

of usual derivative.

Let A : D(A) ⊂ X→ X be a sectorial linear operator,

du
dt

= Au(t) + f (t), t > 0, (2.1)

u(0) = u0,

where u0 ∈ X, and function, f : (0,∞)→ X, with X is Banach space.

The definition of sectorial operator is provided as follows.

Definition 2.1. [43] An operator A is called sectorial if A satisfies the properties that there are constant
θ ∈ (π2 ,π) and constant M > 0 such that

ρ(A) ⊃ Σθ := {λ ∈ C : λ , 0, | argλ| < θ}

‖R(λ; A)‖ ≤
M
|λ|

, λ ∈ Σθ

where R(λ; A) = (λI−A)−1 and ρ(A) = {λ ⊆ C : R(λ; A) is bounded}which are called resolvent operator
and resolvent set of A respectively. Note that every sectorial operator is closed, because its resolvent set is
not empty.
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A well-developed theory and a precise definition of semigroup are crucial for understanding its

significance. Generally, semigroups are usually applied to solve a wide range of issues related to

evolution equations. This section provides the properties of semigroup of a usual derivative and

the definition of linear sectorial operator with its properties.

Semigroup theory offers a structured method to derive the solution. When the operator A
generates an analytic semigroup S(t), where

S(t) =
1

2πi

∫
Γr,w

eλtR(λ; A)dλ, (2.2)

with

Γr,ω = {λ ∈ C : | arg (λ)| = ω, |λ| ≥ r} ∪ {λ ∈ C : | arg(λ)| ≤ ω, |λ| = r},

for r > 0 and π
2 < ω < θ is oriented counterclockwise. The solution u(t) to the homogeneous part

of problem (2.1) can be expressed as:

u(t) = S(t)u0.

Semigroup theory is a fundamental area of functional analysis that provides powerful tools

for studying the solutions of time-evolution problems, such as the Cauchy problem. Essentially,

semigroup theory focuses on families of operators that evolve over time, allowing for the systematic

treatment of differential equations within infinite-dimensional spaces, like Banach and Hilbert

spaces. This approach is particularly essential when dealing with linear evolution equations,

where semigroups describe the progression of states in a dynamic system under the influence of

an operator. The following theorem shows the properties of semigroup of a usual derivative.

Theorem 2.1. [43] Let A be a linear sectorial operator. If S(t) is an analytic semigroup generated by A
in equation (2.2), then the following statement holds.

(i) S(t) ∈ B(X) and there exists constant C1 > 0 such that for t > 0,

||S(t)|| ≤ C1,

where B(X)={T : X→ X | T is bounded operator}.
(ii) S(t) ∈ B(X; D(A)) and S(t)x ∈ D(A) for t > 0 and if x ∈ D(A) then,

AS(t)x = S(t)Ax.

Moreover, there exists constant C2 > 0 such that for t > 0,

‖AS(t)x‖ ≤ C2t−1.

(iii) The function t 7→ S(t) belongs to C∞((0,∞); B(X)) and it holds that

S(n)(t) =
1

2πi

∫
Γr,ω

eλtλnR(λ; A)dλ,

and there exists Mn > 0, such that for t > 0,

‖S(n)(t)‖ ≤Mnt−n,
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for n = 1, 2, 3, .... Moreover, it has analytic continuation S(z) to the sector Σθ− π2 and for z ∈ Σθ− π2 ,
η ∈ (π2 ,θ), it holds that

S(z) =
1

2πi

∫
Γr,η

eλzR(λ; A)dλ.

(iv) For s, t > 0, and x ∈ X,

S(t)S(s)x = S(t + s)x,

and,
d
dt

S(t)x = AS(t)x.

Theorem 2.2. [43] Let A be a linear sectorial operator. If S(t) is an analytic semigroup generated by A
in equation (2.2), then the following statement holds.

(i) If x ∈ D(A) then

lim
t→0+

S(t)x = x.

(ii) For every x ∈ X and t ≥ 0, ∫ t

0
S(τ)xdτ ∈ D(A),

A
∫ t

0
S(τ)xdτ = S(t)x− x.

Moreover, if τ→ AS(τ)x is integrable on (0, ε), for some ε > 0 then, for t ≥ 0,

S(t)x− x =

∫ t

0
AS(τ)xdτ.

(iii) If x ∈ D(A) and Ax ∈ D(A), then

lim
t→0+

S(t)x− x
t

= Ax.

(iv) If x ∈ D(A) and Ax ∈ D(A), then

lim
t→0+

AS(t)x = Ax.

Theorem 2.3. [43] Let A : D(A) ⊆ X→ X be a sectorial linear operator. If S(t) is an analytic semigroup
generated by A as expressed in equation (2.2), then for λ ∈ C with Re(λ) > 0,

R(λ; A) =

∫
∞

0
eλtS(t) dt.

Next, the following theorem shows the properties of fractional power of sectorial operator.

Consider the fractional power of an operator A for x ∈ X, is defined by

A−βx =
1

2πi

∫
Γr,ω

λ−βR(λ; A)x dλ, β > 0 (2.3)

and for x ∈ D(Aβ), and Aβ−1x ∈ D(A),

Aβx = A(Aβ−1) =
1

2πi

∫
Γr,ω

λβ−1AR(λ; A)x dλ, 0 < β < 1. (2.4)
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If A is sectorial linear operator generating the analytic semigroup S(t), one has the following

theorem.

Theorem 2.4. If A is a sectorial linear operator generating the analytic semigroup, S(t), the following
statements hold.

(i) For t > 0 and β ≥ 0, S(t) : X→ D(Aβ);
(ii) For x ∈ D(Aβ), S(t)Aβx = AβS(t)x;

(iii) For t > 0, AβS(t) is bounded and
∥∥∥AβS(t)

∥∥∥ ≤Mβt−β;
(iv) For 0 < β ≤ 1 and x ∈ D(Aβ),

∥∥∥S(t)x− x
∥∥∥ ≤ Cβtβ

∥∥∥Aβx
∥∥∥.

2.2. General Conformable Fractional Derivative. The CFD introduced by [1], addresses many

limitations of classical fractional derivatives, such as their reliance on non-local integral represen-

tations and their inconsistency with classical calculus properties like the product and chain rules.

However, the original CFD is limited in its scope, as it defines the fractional behavior through a

fixed function ψ(t) = t1−α, which restricts its adaptability to various real-world systems.

To overcome this limitation, [20] proposed the GCFD which introduces a more flexible frame-

work by generalizing ψ(t). The motivation for GCFD lies in its ability to retain the simplicity and

intuitive nature of CFD while extending its applicability to various fields, such as physics, biology,

and finance, where non-integer derivatives offer powerful modeling capabilities. The following

provides the definition of fractional conformable function, ψ, for the unique meaning of each order

α ∈ (0, 1), ψ(t,α) should differ from different α,

ψ(t, 1) = 1, (2.5)

ψ(·, p) , ψ(·, q), where p , q and p, q ∈ (0, 1). (2.6)

Definition 2.2. [20] (Fractional Conformable Function) Fractional continuous real functions satisfying the
equations in equation (2.5), (2.6) and constant value function ψ(t,α) = 1 are called fractional conformable
functions.

The definition of GCFD is given as follows:

Definition 2.3. [20] Let ψ(t,α) be a fractional conformable function and α ∈ (0, 1]. The GCFD is defined
as:

Dα
ψu(t) = lim

h→0

u(t + hψ(t,α)) − u(t)
h

,

where t > 0. If the limit exists, then u is said to be ψ-differentiable for t > 0.

Theorem 2.5. If u : (0,∞)→ R is a differentiable function at t > 0 then, for α ∈ (0, 1],

Dα
ψu(t) = ψ(t,α)

d
dt

u(t). (2.7)

The GCFD retains several classical calculus properties, making it intuitive and easy to apply in

practical scenarios [20]:
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(1) Linearity:

For any two functions f and g and constants a, b ∈ R,

Dα
ψ(a f + bg)(t) = aDα

ψ( f )(t) + bDα
ψ(g)(t).

(2) Product Rule:

For two functions f and g,

Dα
ψ( f g)(t) = f (t)Dα

ψ(g)(t) + g(t)Dα
ψ( f )(t).

(3) Quotient Rule:

For two functions f and g where g(t) , 0,

Dα
ψ

(
f
g

)
(t) =

g(t)Dα
ψ( f )(t) − f (t)Dα

ψ(g)(t)

(g(t))2 .

(4) Chain Rule:

If f is differentiable and g is ψ-differentiable, then

Dα
ψ( f ◦ g(t)) = f ′(g(t))Dα

ψ(g(t)).

(5) Conformability to Classical Calculus:

When ψ(t,α) = 1, the general conformable fractional derivative reduces to the usual

derivative. This compatibility with usual derivatives adds to its versatility, allowing it to

bridge fractional and integer-order calculus seamlessly.

Next, the Laplace transform is a fundamental technique in mathematics and engineering, fre-

quently employed to solve differential equations by transforming differential operators into alge-

braic expressions, thereby simplifying the solution process. Building on this approach, the GCLT

extends its applicability to fractional calculus, specifically for conformable fractional derivatives.

GCLT serves as an effective tool for managing differential equations with fractional orders, en-

abling more accurate modeling of systems exhibiting memory effects. The theorem below presents

the complex inversion formula for the exponential Laplace transform.

We choose a fractional conformable function ψ(t,α) such that for t ≥ 0,

ε(t) =
∫ t

0

1
ψ(τ,α)

dτ (2.8)

exists and ε(0) = 0.

Definition 2.4. [44] General Conformable Laplace Transform (GCLT)
Given u : [0,∞) → R is piecewise continuous and of the exponential order such that |u(t)| ≤ Mecε(t) for
some constant c, M. The general conformable Laplace transform is given as follows,

Lψ{u(t); s} = Uψ(s) =
∫
∞

0
ε′(t)e−sε(t)u(t) dt.
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Definition 2.5. [44] Inverse of General Conformable Laplace Transform
Let Uψ(s) be analytic function of s, where Re(s) = c. If Uψ(s) → 0 as s → ∞ through the left plane
Re(s) ≤ c, then inverse of general conformable Laplace transform are defined as follows,

L
−1
ψ {Uψ(s); t} = u(t) =

1
2πi

∫ c+i∞

c−i∞
Uψ(s)esε(t) ds.

Lemma 2.1. If u : [0,∞)→ R is a Laplace transformable function at t > 0, then the following holds,

Lψ{u(t); s} = L{u(ε−1(t)); s}. (2.9)

Proof. By definition of general conformable Laplace transform, one has

Lψ{u(t); s} =
∫
∞

0
ε′(t)e−sε(t)u(t) dt.

It follows that,

Lψ{u(t); s} =
∫
∞

0
e−stu(ε−1(t)) dt = L{u(ε−1(t)); s}.

�

Theorem 2.6. If f : [0,∞)→ R is a ψ-differentiable function at t > 0 and α ∈ (0, 1], then

Lψ{Dα
ψ f (t); s} = sFψ(s) − f (0).

Proof. From equation (2.9), one gets

Lψ{Dα
ψ f (t); s} = L{Dα

ψ f (ε−1(t)); s}

= sL{ f (ε−1(t)); s} − f (0)

= sLψ{ f (t); s} − f (0)

= sFψ(s) − f (0).

�

Next, the theorem of ψ-convolution for functions f and g is provided. The ψ-convolution is

defined as follows,

( f ∗ψ g)(t) =
∫ t

0
ε′(τ) f (ε−1(ε(t) − ε(τ)))g(τ)dτ. (2.10)

Note that the convolution of functions f and g is defined as

( f ∗ g)(t) =
∫ t

0
f (t− τ)g(τ)dτ. (2.11)

Theorem 2.7. If F(s) and G(s) are the Laplace tranform of the functions f (x), g(x) respectively, then

F(s)G(s) = L{( f ∗ g)(t); s}.

Theorem 2.8. If f and g are piecewise continuous functions on [0,∞), then

Lψ{( f ∗ψ g)(t); s} = L{( f ∗ g)(ε−1(t)); s}. (2.12)
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Proof. The GCLT of convolution function of f and g is

Lψ{( f ∗ψ g)(t); s} =
∫
∞

0
ε′(t)e−sε(t)

∫ t

0
ε′(τ) f (ε−1(ε(t) − ε(τ)))g(τ)dτ dt.

By letting p = ε(t), then dp
dt = ε′(t), the equation becomes

Lψ{( f ∗ψ g)(t); s} =
∫
∞

0
e−sp

∫ ε−1(p)

0
ε′(τ) f (ε−1(p− ε(τ)))g(τ)dτ dp.

Now let q = ε(τ), then dq
dτ = ε′(τ), then the equation becomes

Lψ{( f ∗ψ g)(t); s} =
∫
∞

0
e−sp

∫ p

0
f (ε−1(p− q))g(ε−1(q))dq dp.

By employing equation (2.11), and replacing p by t, one gets

Lψ{( f ∗ψ g)(t); s} = L{( f ∗ g)(ε−1(t)); s}.

�

Theorem 2.9. If f and g are piecewise continuous functions on [0,∞), then the general conformable
fractional Laplace transform of the ψ-convolution f ∗ψ g of function f and g is given by

Lψ{( f ∗ψ g)(t); s} = Fψ(s) ·Gψ(s).

Proof. By employing equation (2.12),

Lψ{( f ∗ψ g)(t); s} = L{( f ∗ g)(ε−1(t)); s}

= L{ f (ε−1(t)); s} · L{g(ε−1(t)); s}

= Lψ{ f (t); s} · Lψ{g(t); s}

= Fψ(s) ·Gψ(s).

�

3. Main Results

Recall the GCFCP in equation (1.2), let A : D(A) ⊂ X→ X be a sectorial operator and let T > 0,

Dα
ψu(t) = Au(t) + f (t), 0 < t ≤ T,

u(0) = u0,

where X is Banach space, 0 < α < 1, f : (0, T]→ X, and u0 ∈ X.



12 Int. J. Anal. Appl. (2025), 23:189

3.1. Analytic General Conformable Semigroup. This section provides the solution operator of

the Cauchy problem (1.2). By applying GCLT to the Cauchy problem (1.2), one has

Lψ{Dα
ψu(t); s} = Lψ{Au(t); s}+Lψ{ f (t); s},

sLψ{u(t); s} − u(0) = ALψ{u(t); s}+Lψ{ f (t); s},

(sI −A)Lψ{u(t); s} = u(0) +Lψ{ f (t); s},

Lψ{u(t); s} = (sI −A)−1u0 + (sI −A)−1
Lψ{ f (t); s},

Uψ(s) = R(s; A)u0 + R(s; A)Lψ{ f (t); s}.

Then, by applying inverse of general conformable Laplace transform, one obtains

L
−1
ψ {Uψ(s); t} = L

−1
ψ {R(s; A)u0; t}+L−1

ψ {R(s; A)Lψ{ f (t); s}; t},

u(t) =
1

2πi

∫ c+i∞

c−i∞
esε(t)R(s; A)u0 ds. +

1
2πi

∫ c+i∞

c−i∞
esε(t)Fψ(s)R(s; A) ds.

By considering homogeneous part of equation (1.2), the operator Sψ(t) is defined as follows,

Sψ(t) =
1

2πi

∫
Γr,ω

eλε(t)R(λ; A)u0 dλ, (3.1)

where t > 0.

Next, the following theorems provide the properties of the operator Sψ(t).

Theorem 3.1. Let A be a sectorial linear operator, B(X) is the set of bounded linear operator on Banach
space X, D(A) is domain of sectorial operator A and is a linear subspace of X, Sψ(t) is an operator defined
in equation (3.1), then the following statements hold.

(i) Sψ(t) ∈ B(X), and there exists constant, C1 such that for t > 0,∥∥∥Sψ(t)
∥∥∥ ≤ C1.

(ii) Sψ(t) ∈ B(X : D(A)), for t > 0 and if x ∈ D(A) then, ASψ(t)x = Sψ(t)Ax. Moreover, there exists
constant, C2 > 0 such that for t > 0,∥∥∥ASψ(t)x

∥∥∥ ≤ C2[ε(t)]−1.

(iii) The function t 7→ Sψ(t) is differentiable at (0,∞) and

S′ψ(t) =
1

ψ(t,α)
ASψ(t),

and there exists Mn > 0 such that for∥∥∥∥S′ψ(t)
∥∥∥∥ ≤Mn[ψ(t,α)ε(t)]−1, t > 0.

Moreover, operator Sψ(t) has analytic continuation on the sector Σθ− π2 and for z ∈ Σθ− π2 , η ∈ (π2 ,θ),

Sψ(z) =
1

2πi

∫
Γr,η

eλε(z)R(λ; A)dλ.
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(iv) For s, t > 0, one has

Sψ(ε−1(t + s)) = Sψ(ε−1(t))Sψ(ε−1(s)).

(v) For t > 0, one has

Dα
ψSψ(t) = ASψ(t).

Proof. From Theorem 2.1(i), one obtains for S(t) ∈ B(X) and there exists C1 > 0,∥∥∥S(t)
∥∥∥ ≤ C1, t > 0.

Therefore, for Sψ(t) ∈ B(X), there exists C1 > 0, such that,∥∥∥Sψ(t)
∥∥∥ = ∥∥∥S(ε(t))

∥∥∥ ≤ C1, t > 0.

This proves (i). Next, to prove (ii) from Theorem 2.1 (ii), for any S(t) ∈ B(X; D(A)), there exists

C2 > 0, such that ∥∥∥AS(t)x
∥∥∥ ≤ C2t−1, t > 0.

This implies the following,∥∥∥ASψ(t)x
∥∥∥ = ∥∥∥AS(ε(t))x

∥∥∥ ≤ C2[ε(t)]−1, t > 0,

for Sψ(t) ∈ B(X; D(A)).

To prove (iii) observe that the function t 7→ S(t) is differentiable on (0,∞), and S′(t) = AS(t).
Consequently, for t > 0,

S′ψ(t) =
d
dt

S(ε(t))

=
1

ψ(t,α)
S′(ε(t))

=
1

ψ(t,α)
AS(ε(t))

=
1

ψ(t,α)
ASψ(t).

Next, from Theorem 2.1 (iii), for n = 1, one has the following,∥∥∥S′(t)
∥∥∥ ≤Mnt−1.

Therefore, for t > 0, ∥∥∥∥S′ψ(t)
∥∥∥∥ = ∥∥∥∥∥∥ 1

ψ(t,α)
ASψ(t)

∥∥∥∥∥∥
=

1
ψ(t,α)

∥∥∥ASψ(t)
∥∥∥

≤
1

ψ(t,α)
Mn[ε(t)]−1

= Mn[ψ(t,α)ε(t)]−1.
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Next, to show that it has analytic continuation Sψ(z) to the sector Σθ− π2 , suppose z ∈ Sη− π2 , and

λ = |λ|e±ηi, |λ| ≥ r, then

ε(z)λ = ε(z)|λ|e±ηi = |ε(z)|ei arg(ε(z))
|λ|e±ηi = |ε(z)||λ|ei(arg(ε(z)))±η,

where π
2 < arg(ε(z)) + η < 3π

2 and − 3π
2 < arg(ε(z)) + η < −π2 . Then, Re(λz < 0),∥∥∥Sψ(z)

∥∥∥ = ∥∥∥∥∥∥ 1
2πi

∫
Γr,ω

eλε(z)R(λ; A)dλ

∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ 1
2πi

∫
Γ
|ε(z)|−1,η

eλε(z)R(λ; A)dλ

∥∥∥∥∥∥∥
≤

1
2π

∫
Γ
|ε(z)|−1,η

|eλε(z)|
∥∥∥R(λ; A)

∥∥∥ |dλ|
≤

2M
2π

∫
∞

|ε(z)|−1

e|λ||ε(z)| cos(arg(ε(z))+arg(λ))

|λ|
d|λ|

+
M
2π

∫ η

−η
e|ε(z)||ε(z)|

−1 cos(arg(ε(z))+arg(λ))d{arg(λ)}.

Let u = |ε(z)||λ| =⇒ du = |ε(z)|d|λ|, where |λ| = |ε(z)|−1 which implies u = 1. Therefore,∥∥∥Sψ(z)
∥∥∥ ≤ M

π

∫
∞

1
ecos(arg(ε(z))+η)du +

M
2π

∫ η

−η
ecos(arg(ε(z))+η)dη.

This implies the boundedness of
∥∥∥Sψ(z)

∥∥∥. Note that the value of ε(z) is not unique. Thus, if we

choose the principle value of ε(z), then for z ∈ Σθ− π2 , η ∈ (π2 ,θ),

z 7→ Sψ(z) =
1

2πi

∫
Γr,η

eλε(z)R(λ; A),

can be considered as an analytic continuation of Sψ(t) to the sector Σθ− π2 . Since union of the sector

Ση− π2 is Σθ− π2 , the function is also analytic on Σθ− π2 .

Then, to prove (iv), from Theorem 2.1(iv), for x ∈ X and t, s > 0,

S(t)S(s) = S(t + s).

Consequently, since Sψ(t) = S(ε(t)), and let t′ = ε−1(t + s),

Sψ(ε−1(t + s)) = Sψ(t′)

= S(ε(t′))

= S(ε(ε−1(t + s)))

= S(t + s)

= S(t)S(s)

= S(ε(ε−1(t)))S(ε(ε−1(s)))

= Sψ(ε−1(t))Sψ(ε−1(s)).
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Lastly, to prove (v), one gets for t > 0 in (iii),

S′ψ(t) =
1

ψ(t,α)
ASψ(t),

where,

Dα
ψSψ(t) = ψ(t,α)S′ψ(t) = ASψ(t).

�

Based on Theorem 3.1 (iii), we retrieve that Sψ(t) is analytic. Additionally, Theorem 3.1 (v)

implies that Sψ(t) is the solution operator of the homogeneous part of problem (1.2). Therefore,

Sψ(t) is called an analytic general conformable semigroup to the problem (1.2).

Theorem 3.2. Let A be a sectorial operator and Sψ(t) is an analytic general conformable semigroup defined
in equation (3.1), D(A) is a domain of sectorial operator A, then the following statements hold.

(i) If x ∈ D(A), then lim
t→0+

Sψ(t)x = x,

(ii) For all x ∈ X and t ≥ 0, ∫ t

0
ε′(τ)Sψ(τ)xdτ ∈ D(A),

A
∫ t

0
ε′(τ)Sψ(τ)xdτ = Sψ(t)x− x.

Moreover, if τ 7→ ε(τ)ASψ(τ)x is integrable on (0, ε) for ε > 0, then for t ≥ 0,

Sψ(t)x− x =

∫ t

0
ε′(τ)ASψ(τ)xdτ.

(iii) If x ∈ D(A) and Ax ∈ D(A), then

lim
t→0+

Sψ(t)x− x
t

= Ax.

(iv) If x ∈ D(A) and Ax ∈ D(A), then

lim
t→0+

ASψ(t)x = Ax.

Proof. To prove (i), from Theorem (2.2) (i), one has, x ∈ D(A), then lim
t→0+

S(t)x = x. Consequently,

lim
t→0+

Sψ(t)x = lim
t→0+

S(ε(t))x = lim
ε(t)→0+

S(ε(t))x = x.

Next, to prove (ii), from Theorem 2.2 (ii), one has the following, for all x ∈ D(A) and t > 0,∫ t

0
S(τ)xdτ ∈ D(A), (3.2)

∫ t

0
AS(τ)xdτ = S(t)x− x. (3.3)
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Consequently, let ∫ t

0
ε′(τ)Sψ(τ)xdτ =

∫ t

0
ε′(τ)S(ε(τ))xdτ =

∫ ε(t)

0
S(r)xdr.

From (3.2), ∫ t

0
ε′(τ)Sψ(τ)xdτ =

∫ ε(t)

0
S(r)xdr ∈ D(A).

Then, from (3.3), one has,

A
∫ t

0
ε′(τ)Sψ(τ)xdτ = A

∫ ε(t)

0
S(r)xdr = S(ε(t))x− x = Sψ(t)x− x.

Then, to prove (iii), from Theorem 2.2(iii), one has for x ∈ D(A) and Ax ∈ D(A),

lim
t→0+

S(t)x− x
t

= Ax.

This implies,

lim
t→0+

Sψ(t)x− x
t

= lim
t→0+

S(ε(t))x− x
ε(t)

= lim
ε(t)→0+

S(ε(t))x− x
ε(t)

= Ax.

Lastly, to prove (iv), from Theorem 3.1(ii), one has for x ∈ D(A),

ASψ(t)x = Sψ(t)Ax,

and from Theorem 3.2 (i), if Ax ∈ D(A), then

lim
t→0+

ASψ(t)x = lim
t→0+

Sψ(t)Ax = Ax.

�

Theorem 3.3. Let A : D(A) ⊆ X→ X be a sectorial linear operator. For λ ∈ C with Re(λ) > 0,

R(λ; A) =

∫
∞

0
e−λε(t)ε′(t)Sψ(t)dt. (3.4)

Proof. Note that Sψ(t) = S(ε(t)), one has∫
∞

0
e−λε(t)ε′(t)Sψ(t)dt =

∫
∞

0
e−λε(t)ε′(t)S(ε(t))dt.

Then, by letting τ = ε(t) and from Theorem 2.3, one gets∫
∞

0
e−λε(t)ε′(t)S(ε(t))dt =

∫
∞

0
e−λτS(τ)dτ = R(λ; A). (3.5)

�
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3.2. Fractional Power of Sectorial Operator. The following theorem provides the properties of

semigroup associated with general conformable fractional derivative when a sectorial operator, A
has fractional power β.

Theorem 3.4. Let A be a sectorial linear operator generating the analytic general conformable semigroup,
Sψ(t), then the following statements hold.

(i) For t > 0 and β ≥ 0, Sψ(t) : X→ D(Aβ);
(ii) For x ∈ D(Aβ), Sψ(t)Aβx = AβSψ(t)x;

(iii) For t > 0, AβSψ(t) is bounded and∥∥∥AβSψ(t)
∥∥∥ ≤Mβ(ε(t))−β;

(iv) For 0 < β ≤ 1 and x ∈ D(Aβ),∥∥∥Sψ(t)x− x
∥∥∥ ≤ Cβ(ε(t))β

∥∥∥Aβx
∥∥∥ .

Proof. Firstly, to prove (i), from Theorem 2.4 (i) and (ii), since

Sψ(t) = S(ε(t)),

then (i) and (ii) are easy to show. Next, to prove (iii), from Theorem 2.4 (iii), one has∥∥∥AβSψ(t)
∥∥∥ = ∥∥∥AβS(ε(t))

∥∥∥ ≤Mβ(ε(t))−β.

Lastly, to prove (iv), from Theorem 2.4 (iv), one has∥∥∥Sψ(t)x− x
∥∥∥ = ∥∥∥S(ε(t))x− x

∥∥∥ ≤ Cβ(ε(t))β
∥∥∥Aβx

∥∥∥ .

�

3.3. Inhomogeneous General Conformable Fractional Cauchy Problem. This section provides

the solution of GCFCP.

Let us define Banach space, Lα,p
ψ ((0, T]; X) by

Lα,p
ψ ((0, T]; X) = { f : (0, T] 7→ X :

∫ T

0

∥∥∥ f (t)
∥∥∥p
ε′(t)dt < +∞},

where 0 < α < 1, p ≥ 1, with its norm∥∥∥ f
∥∥∥
ψ
=

∫ T

0

∥∥∥ f (t)
∥∥∥p
ε′(t)dt.

The following theorem shows that u(t) is the solution if f ∈ Lα,p
ψ ((0, T]; X).

Theorem 3.5. Let u0 ∈ X and f ∈ Lα,1
ψ ((0, T]; X). If u : [0, T]→ X is a solution to the problem in equation

1.2, then

u(t) = Sψ(t)u0 +

∫ t

0
ε′(p)Sψ(ε−1(ε(t) − ε(p))) f (p)dp. (3.6)

Proof. Since Sψ(t) is the analytic conformable semigroup generated by sectorial operator A and

u(t) is the solution to the problem in equation (1.2), then �
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v(τ) = Sψ
(
ε−1(ε(t) − ε(τ))

)
u(τ). (3.7)

Since Sψ(t) = S (ε(t)), then equation (3.7) becomes,

v(τ) = S (ε(t) − ε(τ)) u(τ). (3.8)

From Theorem 2.5 and by differentiating equation (3.8), one has

v′(τ) = −ε′(τ)S′ (ε(t) − ε(τ)) u(τ) + S (ε(t) − ε(τ)) u′(τ)

= −ε′(τ)S′ (ε(t) − ε(τ)) u(τ) + S (ε(t) − ε(τ)) [ε′(τ)Au(τ) + ε′(τ) f (τ)]

= ε′(τ)S (ε(t) − ε(τ)) f (τ).

If f ∈ Lα,1
ψ ((0, T]; X), then ε′(τ)S (ε(t) − ε(τ)) f (τ) is integrable. By integrating both sides from 0

to t, ∫ t

0
v′(τ)dτ =

∫ t

0
ε′(τ)S (ε(t) − ε(τ)) f (τ)dτ

v(t) − v(0) =
∫ t

0
ε′(τ)S (ε(t) − ε(τ)) f (τ)dτ

u(t) = S(ε(t))u0 +

∫ t

0
ε′(τ)S (ε(t) − ε(τ)) f (τ)dτ.

Therefore, it becomes

u(t) = Sψ(t)u0 +

∫ t

0
ε′(τ)Sψ

(
ε−1(ε(t) − ε(τ))

)
f (τ)dτ. (3.9)

4. Conclusion

A non-homogeneous general conformable fractional Cauchy problem is investigated in this

study. The problem is solved by using general conformable Laplace transform to obtain the

solution operator of general conformable fractional Cauchy problem. This solution operator is then

governed the analytic general conformable semigroup by employing the properties of sectorial

operator. As a result, the proved local properties of the analytic general conformable semigroup are

crucial to establish the existence and uniqueness of the solution of general conformable fractional

Cauchy problem. Thus, these findings can be applied in solving mathematical models describing

some real application phenomena such as spatio-temporal model of epidemic disease [45] and

time-dependent model of cancer cell invasion [46].
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