Stability of Quartic Functional Equation in Non-Archimedean IFN-Spaces

Main Article Content

Kandhasamy Tamilvanan, Siriluk Donganont, Balaanandhan Radhakrishnan, John Michael Rassias

Abstract

In this work, we focus on the non-Archimedean intuitionistic fuzzy normed framework, specifically on the generalized Ulam stability of quartic functional equations. By combining direct approaches with advanced fixed-point techniques, we prove that quartic-type mappings exist, are unique, and stable, providing strong extensions of Hyers-Ulam-Rassias stability. We present a new method for studying stability phenomena in abstract nonlinear systems and fulfill a gap between fuzzy analysis and non-Archimedean normed structures. Future applications in computational mathematics, fuzzy modeling, and uncertain systems analysis will benefit from these insights, which strengthen the theoretical framework.

Article Details

References

  1. T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Jpn. 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
  2. J. Bae, W. Park, On the Generalized Hyers–ulam–rassias Stability in Banach Modules Over a C ∗ -Algebra, J. Math. Anal. Appl. 294 (2004), 196–205. https://doi.org/10.1016/j.jmaa.2004.02.009.
  3. J.B. Diaz, B. Margolis, A Fixed Point Theorem of the Alternative, for Contractions on a Generalized Complete Metric Space, Bull. Am. Math. Soc. 74 (1968), 305–309. https://doi.org/10.1090/s0002-9904-1968-11933-0.
  4. S. Donganont, C. Park, Combined System of Additive Functional Equations in Banach Algebras, Open Math. 22 (2024), 20230177. https://doi.org/10.1515/math-2023-0177.
  5. B. Radhakrishnan, U. Jayaraman, S.O. Hilali, M. Kameswari, M. Alhagyan, K. Tamilvanan, A. Gargouri, Coincidence Point Results for Self-mapping with Extended Rational Contraction in Partially Ordered Ultrametric Spaces Using p-Adic Distance, J. Math. 2024 (2024), 8846076. https://doi.org/10.1155/2024/8846076.
  6. Y. Almalki, B. Radhakrishnan, U. Jayaraman, K. Tamilvanan, Some Common Fixed Point Results in Modular Ultrametric Space Using Various Contractions and Their Application to Well-Posedness, Mathematics 11 (2023), 4077. https://doi.org/10.3390/math11194077.
  7. B. Radhakrishnan, U. Jayaraman, Fixed Point Results in Partially Ordered Ultrametric Space via P-Adic Distance, IAENG Int. J. Appl. Mat. 53 (2023), 1–7.
  8. E. Guariglia, K. Tamilvanan, On the Stability of Radical Septic Functional Equations, Mathematics 8 (2020), 2229. https://doi.org/10.3390/math8122229.
  9. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  10. K. Jun, H. Kim, On the Stability of Euler–lagrange Type Cubic Mappings in Quasi-Banach Spaces, J. Math. Anal. Appl. 332 (2007), 1335–1350. https://doi.org/10.1016/j.jmaa.2006.11.024.
  11. S.M. Jung, A Fixed Point Approach to the Stability of the Equation f(x+y) = f(x)f(y) / f(x)+f(y), Aust. J. Math. Anal. Appl. 6 (2009), 8.
  12. N.C. Kayal, T.K. Samanta, P. Saha, B.S. Choudhury, A Hyers-Ulam-Rassias Stability Result for Functional Equations in Intuitionistic Fuzzy Banach Spaces, Iran. J. Fuzzy Syst. 13 (2016), 87–96.
  13. H. Kim, M. Kim, Generalized Stability of Euler-lagrange Quadratic Functional Equation, Abstr. Appl. Anal. 2012 (2012), 219435. https://doi.org/10.1155/2012/219435.
  14. S.O. Kim, K. Tamilvanan, Fuzzy Stability Results of Generalized Quartic Functional Equations, Mathematics 9 (2021), 120. https://doi.org/10.3390/math9020120.
  15. H. Koh, D. Kang, Solution and Stability of Euler-Lagrange-Rassias Quartic Functional Equations in Various Quasinormed Spaces, Abstr. Appl. Anal. 2013 (2013), 908168. https://doi.org/10.1155/2013/908168.
  16. D. Mihe¸t, The Fixed Point Method for Fuzzy Stability of the Jensen Functional Equation, Fuzzy Sets Syst. 160 (2009), 1663–1667. https://doi.org/10.1016/j.fss.2008.06.014.
  17. D. Mihe¸t, The Stability of the Additive Cauchy Functional Equation in Non-Archimedean Fuzzy Normed Spaces, Fuzzy Sets Syst. 161 (2010), 2206–2212. https://doi.org/10.1016/j.fss.2010.02.010.
  18. A. Mirmostafaee, M. Mirzavaziri, M. Moslehian, Fuzzy Stability of the Jensen Functional Equation, Fuzzy Sets Syst. 159 (2008), 730–738. https://doi.org/10.1016/j.fss.2007.07.011.
  19. A.K. Mirmostafaee, M.S. Moslehian, Fuzzy Versions of Hyers–ulam–rassias Theorem, Fuzzy Sets Syst. 159 (2008), 720–729. https://doi.org/10.1016/j.fss.2007.09.016.
  20. A.K. Mirmostafaee, M.S. Moslehian, Stability of Additive Mappings in Non-Archimedean Fuzzy Normed Spaces, Fuzzy Sets Syst. 160 (2009), 1643–1652. https://doi.org/10.1016/j.fss.2008.10.011.
  21. S.A. Mohiuddine, A. Alotaibi, M. Obaid, Stability of Various Functional Equations in Non-Archimedean Intuitionistic Fuzzy Normed Spaces, Discret. Dyn. Nat. Soc. 2012 (2012), 234727. https://doi.org/10.1155/2012/234727.
  22. C. Park, K. Tamilvanan, B. Noori, M. B. Moghimi, A. Najati, Fuzzy Normed Spaces and Stability of a Generalized Quadratic Functional Equation, AIMS Math. 5 (2020), 7161–7174. https://doi.org/10.3934/math.2020458.
  23. J.M. Rassias, On the Stability of the Euler-Lagrange Functional Equation, Chinese J. Math. 20 (1992), 185–190.
  24. J.M. Rassias, Solution of the Ulam Stability Problem for Quartic Mappings, Glas. Mat. Ser. III 34 (1999), 243–252.
  25. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. https://doi.org/10.2307/2042795.
  26. T.M. Rassias, K. Shibata, Variational Problem of Some Quadratic Functionals in Complex Analysis, J. Math. Anal. Appl. 228 (1998), 234–253. https://doi.org/10.1006/jmaa.1998.6129.
  27. K. Tamilvanan, J.R. Lee, C. Park, Ulam Stability of a Functional Equation Deriving From Quadratic and Additive Mappings in Random Normed Spaces, AIMS Math. 6 (2021), 908–924. https://doi.org/10.3934/math.2021054.
  28. S.M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.
  29. T.Z. Xu, J.M. Rassias, W.X. Xu, Stability of a General Mixed Additive-Cubic Functional Equation in NonArchimedean Fuzzy Normed Spaces, J. Math. Phys. 51 (2010), 093508. https://doi.org/10.1063/1.3482073.
  30. T.Z. Xu, J.M. Rassias, Stability of General Multi-Euler-Lagrange Quadratic Functional Equations in NonArchimedean Fuzzy Normed Spaces, Adv. Differ. Equ. 2012 (2012), 119. https://doi.org/10.1186/1687-1847-2012-119.
  31. A. Zivari-Kazempour, M.E. Gordji, Generalized Hyers–Ulam Stabilities of an Euler–Lagrange–Rassias Quadratic Functional Equation, Asian-European J. Math. 05 (2012), 1250014. https://doi.org/10.1142/s1793557112500143.
  32. S.M. Ulam, Problems in Modern Mathematics, Wiley, 1964.
  33. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  34. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. https://doi.org/10.2307/2042795.
  35. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  36. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  37. R. Saadati, J.H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos Solitons Fractals 27 (2006), 331–344. https://doi.org/10.1016/j.chaos.2005.03.019.