Stability of Quartic Functional Equation in Non-Archimedean IFN-Spaces
Main Article Content
Abstract
In this work, we focus on the non-Archimedean intuitionistic fuzzy normed framework, specifically on the generalized Ulam stability of quartic functional equations. By combining direct approaches with advanced fixed-point techniques, we prove that quartic-type mappings exist, are unique, and stable, providing strong extensions of Hyers-Ulam-Rassias stability. We present a new method for studying stability phenomena in abstract nonlinear systems and fulfill a gap between fuzzy analysis and non-Archimedean normed structures. Future applications in computational mathematics, fuzzy modeling, and uncertain systems analysis will benefit from these insights, which strengthen the theoretical framework.
Article Details
References
- T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Jpn. 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
- J. Bae, W. Park, On the Generalized Hyers–ulam–rassias Stability in Banach Modules Over a C ∗ -Algebra, J. Math. Anal. Appl. 294 (2004), 196–205. https://doi.org/10.1016/j.jmaa.2004.02.009.
- J.B. Diaz, B. Margolis, A Fixed Point Theorem of the Alternative, for Contractions on a Generalized Complete Metric Space, Bull. Am. Math. Soc. 74 (1968), 305–309. https://doi.org/10.1090/s0002-9904-1968-11933-0.
- S. Donganont, C. Park, Combined System of Additive Functional Equations in Banach Algebras, Open Math. 22 (2024), 20230177. https://doi.org/10.1515/math-2023-0177.
- B. Radhakrishnan, U. Jayaraman, S.O. Hilali, M. Kameswari, M. Alhagyan, K. Tamilvanan, A. Gargouri, Coincidence Point Results for Self-mapping with Extended Rational Contraction in Partially Ordered Ultrametric Spaces Using p-Adic Distance, J. Math. 2024 (2024), 8846076. https://doi.org/10.1155/2024/8846076.
- Y. Almalki, B. Radhakrishnan, U. Jayaraman, K. Tamilvanan, Some Common Fixed Point Results in Modular Ultrametric Space Using Various Contractions and Their Application to Well-Posedness, Mathematics 11 (2023), 4077. https://doi.org/10.3390/math11194077.
- B. Radhakrishnan, U. Jayaraman, Fixed Point Results in Partially Ordered Ultrametric Space via P-Adic Distance, IAENG Int. J. Appl. Mat. 53 (2023), 1–7.
- E. Guariglia, K. Tamilvanan, On the Stability of Radical Septic Functional Equations, Mathematics 8 (2020), 2229. https://doi.org/10.3390/math8122229.
- D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
- K. Jun, H. Kim, On the Stability of Euler–lagrange Type Cubic Mappings in Quasi-Banach Spaces, J. Math. Anal. Appl. 332 (2007), 1335–1350. https://doi.org/10.1016/j.jmaa.2006.11.024.
- S.M. Jung, A Fixed Point Approach to the Stability of the Equation f(x+y) = f(x)f(y) / f(x)+f(y), Aust. J. Math. Anal. Appl. 6 (2009), 8.
- N.C. Kayal, T.K. Samanta, P. Saha, B.S. Choudhury, A Hyers-Ulam-Rassias Stability Result for Functional Equations in Intuitionistic Fuzzy Banach Spaces, Iran. J. Fuzzy Syst. 13 (2016), 87–96.
- H. Kim, M. Kim, Generalized Stability of Euler-lagrange Quadratic Functional Equation, Abstr. Appl. Anal. 2012 (2012), 219435. https://doi.org/10.1155/2012/219435.
- S.O. Kim, K. Tamilvanan, Fuzzy Stability Results of Generalized Quartic Functional Equations, Mathematics 9 (2021), 120. https://doi.org/10.3390/math9020120.
- H. Koh, D. Kang, Solution and Stability of Euler-Lagrange-Rassias Quartic Functional Equations in Various Quasinormed Spaces, Abstr. Appl. Anal. 2013 (2013), 908168. https://doi.org/10.1155/2013/908168.
- D. Mihe¸t, The Fixed Point Method for Fuzzy Stability of the Jensen Functional Equation, Fuzzy Sets Syst. 160 (2009), 1663–1667. https://doi.org/10.1016/j.fss.2008.06.014.
- D. Mihe¸t, The Stability of the Additive Cauchy Functional Equation in Non-Archimedean Fuzzy Normed Spaces, Fuzzy Sets Syst. 161 (2010), 2206–2212. https://doi.org/10.1016/j.fss.2010.02.010.
- A. Mirmostafaee, M. Mirzavaziri, M. Moslehian, Fuzzy Stability of the Jensen Functional Equation, Fuzzy Sets Syst. 159 (2008), 730–738. https://doi.org/10.1016/j.fss.2007.07.011.
- A.K. Mirmostafaee, M.S. Moslehian, Fuzzy Versions of Hyers–ulam–rassias Theorem, Fuzzy Sets Syst. 159 (2008), 720–729. https://doi.org/10.1016/j.fss.2007.09.016.
- A.K. Mirmostafaee, M.S. Moslehian, Stability of Additive Mappings in Non-Archimedean Fuzzy Normed Spaces, Fuzzy Sets Syst. 160 (2009), 1643–1652. https://doi.org/10.1016/j.fss.2008.10.011.
- S.A. Mohiuddine, A. Alotaibi, M. Obaid, Stability of Various Functional Equations in Non-Archimedean Intuitionistic Fuzzy Normed Spaces, Discret. Dyn. Nat. Soc. 2012 (2012), 234727. https://doi.org/10.1155/2012/234727.
- C. Park, K. Tamilvanan, B. Noori, M. B. Moghimi, A. Najati, Fuzzy Normed Spaces and Stability of a Generalized Quadratic Functional Equation, AIMS Math. 5 (2020), 7161–7174. https://doi.org/10.3934/math.2020458.
- J.M. Rassias, On the Stability of the Euler-Lagrange Functional Equation, Chinese J. Math. 20 (1992), 185–190.
- J.M. Rassias, Solution of the Ulam Stability Problem for Quartic Mappings, Glas. Mat. Ser. III 34 (1999), 243–252.
- T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. https://doi.org/10.2307/2042795.
- T.M. Rassias, K. Shibata, Variational Problem of Some Quadratic Functionals in Complex Analysis, J. Math. Anal. Appl. 228 (1998), 234–253. https://doi.org/10.1006/jmaa.1998.6129.
- K. Tamilvanan, J.R. Lee, C. Park, Ulam Stability of a Functional Equation Deriving From Quadratic and Additive Mappings in Random Normed Spaces, AIMS Math. 6 (2021), 908–924. https://doi.org/10.3934/math.2021054.
- S.M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.
- T.Z. Xu, J.M. Rassias, W.X. Xu, Stability of a General Mixed Additive-Cubic Functional Equation in NonArchimedean Fuzzy Normed Spaces, J. Math. Phys. 51 (2010), 093508. https://doi.org/10.1063/1.3482073.
- T.Z. Xu, J.M. Rassias, Stability of General Multi-Euler-Lagrange Quadratic Functional Equations in NonArchimedean Fuzzy Normed Spaces, Adv. Differ. Equ. 2012 (2012), 119. https://doi.org/10.1186/1687-1847-2012-119.
- A. Zivari-Kazempour, M.E. Gordji, Generalized Hyers–Ulam Stabilities of an Euler–Lagrange–Rassias Quadratic Functional Equation, Asian-European J. Math. 05 (2012), 1250014. https://doi.org/10.1142/s1793557112500143.
- S.M. Ulam, Problems in Modern Mathematics, Wiley, 1964.
- D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
- T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. https://doi.org/10.2307/2042795.
- L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
- R. Saadati, J.H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos Solitons Fractals 27 (2006), 331–344. https://doi.org/10.1016/j.chaos.2005.03.019.