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Abstract. In this work, we focus on the non-Archimedean intuitionistic fuzzy normed framework, specifically on the

generalized Ulam stability of quartic functional equations. By combining direct approaches with advanced fixed-point

techniques, we prove that quartic-type mappings exist, are unique, and stable, providing strong extensions of Hyers-

Ulam-Rassias stability. We present a new method for studying stability phenomena in abstract nonlinear systems and

fulfill a gap between fuzzy analysis and non-Archimedean normed structures. Future applications in computational

mathematics, fuzzy modeling, and uncertain systems analysis will benefit from these insights, which strengthen the

theoretical framework.

1. Introduction

The study of stability in functional equations has garnered significant attention since the pioneer-

ing problem posed by Ulam [32] in 1940, which inquired whether approximate homomorphisms

between groups could be approximated by exact homomorphisms. This question was affirma-

tively answered by Hyers [33] for Banach spaces, leading to what is now referred to as Hyers-Ulam
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stability. Rassias [26] later generalized this concept by allowing the deviation from exactness to

be unbounded, thus initiating a broader study known as Hyers-Ulam-Rassias stability theory.

These foundational works established the groundwork for various stability results across different

types of functional equations. Among the important equations studied, the quartic functional

equation, which naturally arises in several contexts including approximation theory, optimiza-

tion, and theoretical physics, has received particular attention. The advent of fuzzy set theory by

Zadeh [35] revolutionized the mathematical modeling of uncertainty and imprecision. Building on

this foundation, Atanassov [36] introduced the concept of intuitionistic fuzzy sets, characterized

by a membership function, a non-membership function, and a hesitation margin, providing a more

flexible and realistic framework for addressing uncertainties than traditional fuzzy sets.

The development of intuitionistic fuzzy normed spaces (IFN-spaces), which combine normed

linear structures with intuitionistic fuzziness, has enabled the extension of classical analytical and

algebraic theories into the realm of fuzzy logic. In recent years, the concept of non-Archimedean

spaces has gained relevance in analysis due to their strong triangle inequality, which allows

for alternative approaches to continuity and convergence (see [5–7]). The Intuitionistic fuzzy

normed spaces (IFN-spaces), which blend normed linear structures with intuitionistic fuzziness,

has enabled the extension of classical analytical and algebraic theories into the domain of fuzzy

logic. Saadati and Park [37] extended topological and analytical concepts into intuitionistic fuzzy

settings, providing the tools necessary to investigate continuity, convergence, and compactness

within these spaces.

A central question in the theory of functional equations is whether a function that approximately

satisfies a given functional relation must be close to an exact solution. This inquiry was first posed

by Ulam in 1940 [28]. In response, Hyers [9] addressed the problem in 1941 by studying mappings

in Banach spaces that meet the criteria of Hyers stability under a fixed constant. Later, Aoki [1]

extended this result to a broader setting by incorporating sums of powers of norms. Rassias [25]

further advanced this line of study in 1978 by introducing a generalization of the Hyers theorem

that permitted an unbounded Cauchy difference. Since then, many researchers have contributed

to the generalization and extension of stability concepts for various functional equations (see, for

example, [2, 4, 8, 14, 22, 27]).

Motivated by these developments, this study aims to investigate the stability of a quartic func-

tional equation in non-Archimedean intuitionistic fuzzy normed spaces. The unique interplay

between the quartic functional form and the non-Archimedean fuzzy structure creates a rich and

nuanced framework for examining the existence, uniqueness, and stability behavior of solutions.

Our results not only extend the classical theory of functional equations but also contribute to the

expanding body of literature on fuzzy and non-Archimedean analysis.stability of a quartic func-

tional equation in non-Archimedean intuitionistic fuzzy normed spaces. The unique interplay

between the quartic functional form and the non-Archimedean fuzzy structure provides a rich

and nuanced framework in which to examine the existence, uniqueness, and stability behavior
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of solutions. Our results not only extend the classical theory of functional equations but also

contribute to the growing body of literature on fuzzy and non-Archimedean analysis.

Since then, many researchers have expanded these concepts to various types of functional equa-

tions, including additive, quadratic, cubic, and quartic equations. Among these, quartic functional

equations closely related to polynomial functions of degree four have garnered significant atten-

tion due to their mathematical structure and applications in modeling physical phenomena and

engineering problems. Specifically, the general quartic functional equation is expressed as follows:

In this work, the authors examine the Ulam stability results of the quartic functional equation

φ

( n∑
i=1

xi

)
=

∑
1≤i< j<k<l≤n φ(xi + x j + xk + xl) + (−n + 4)

∑
1≤i< j<k≤n φ(xi + x j + xk)

+

(
n2
−7n+12

2

)∑n
1=i;i, j φ(xi + x j) −

∑n
i=1 φ(2xi)

+

(
−n3+9n2

−26n+120
6

)∑n
i=1

(
φ(xi)+φ(−xi)

2

)
(1.1)

whereφ(0) = 0, and n is a nonnegative integer with n > 4 in non-Archimedean IFN spaces (briefly,

non-Archimedean IFN spaces) over a field by using direct and fixed-point techniques.

2. Preliminaries

We can refer to some needed preliminaries in [15,17,21,30], and using the alternative fixed point

theorem which some important results in fixed point theory.

Definition 2.1. Let E be a linear space over K with | · |. A mapping ‖ · ‖ : E → [0,∞) is known as a
non-Archimedean norm if it satisfies:

(i) ‖v‖ = 0 if and only if v = 0;
(ii) ‖rv‖ = |r|‖v‖, for every v ∈ E and r ∈ K;

(iii) the strong triangle inequality

‖x1 + x2‖ ≤ max{‖x1‖, ‖x2‖}, for every x1, x2 ∈ E.

Then (E, ‖ · ‖) is known as a non-Archimedean normed space.
Every Cauchy sequence converges in a complete non-Archimedean normed space, which we call a complete

non-Archimedean normed space.

Proposition 2.1. (1) If T = TL or T = TP, then

lim
m→∞

T
∞

i=1xm+i = 1 ⇔
∞∑

i=1

(1− xi) < ∞.

(2) It T is of Hadzic-type, then

lim
m→∞

T
∞

i=mxi = lim
m→∞

T
∞

i=1xm+i = 1

for all {xi}i∈N in [0, 1] such that limi→∞ xi = 1.
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Definition 2.2. Let membership degree τ and non-membership degree θ of an intuitionistic fuzzy set from
E× (0,+∞) to [0, 1] satisfies τv(t) + θv(t) ≤ 1 for all v ∈ E and all t > 0. The triple (E, Nτ,θ, T) is called
as an non-Archimedean intuitionistic fuzzy Menger norm if a vector space E, a continuous t-representable
T and Nτ,θ : E× (0,+∞)→ L∗ satisfying: for all x1, x2 ∈ E, s, t > 0,

(IFN1) Nτ,θ(x1, t) = 0 for all t ≤ 0;
(IFN2) x1 = 0⇔ Nτ,θ(x1, t) = 1, t > 0;
(IFN3) Nτ,θ(αx1, t) = Nτ,θ(x1, t

|α| ) for all α , 0;
(IFN4) Nτ,θ(x1 + x2, max{s, t}) ≥ T (Nτ,θ(x1, s), Nτ,θ(x2, t)).
(IFN5) limt→∞Nτ,θ(x1, t) = 1.

If Nτ,θ is a non-Archimedean intuitionistic fuzzy Menger norm on E, then (E, Nτ,θ, T) is said to be a
non-Archimedean IFN - space. It is important to note that the condition (IFN4) implies

Nτ,θ(x1, t) ≥ T (Nτ,θ(0, t), Nτ,θ(x1, s)) = Nτ,θ(x1, s),

for all 0 < s < t and x1, x2 ∈ E. i.e., (Nτ,θ, ·) is increasing for every x1, which gives

Nτ,θ(x1, s + t) ≥ Nτ,θ(x1, max{s, t}).

If (IFN4) holds, then

(IFN6) Nτ,θ(x1 + x2, s + t) ≥ T (Nτ,θ(x1, s), Nτ,θ(x2, t)).

We frequently employ that

N(−x1, t) = N(x1, t), x1 ∈ E, t > 0,

which is derived from (IFN3). We should also remark that the Definition 2.2 of a non-Archimedean

Menger norm is more broad than definition in [20, 29], which only considers fields with | · |.

Definition 2.3. Let a non-Archimedean IFN-space (E, Nτ,θ, T) and {xn}m∈N in E. Then {xn}m∈N is called
as convergent if there is v ∈ E satisfies

lim
m→∞

Nτ,θ(xn − v, t) = 1

for every t > 0.
Here, v is said to be limit of {xn}m∈N and we refer to it as

lim
m→∞

xn = v.

The sequence {xn}m∈N in E is called a Cauchy sequence if

lim
m→∞

Nτ,θ(xm+i − xn, t) = 1

for every t > 0 and i = 1, 2, 3, · · · .
A complete non-Archimedean IFN-space is defined as one in which every Cauchy sequence in E is

convergent.
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Example 2.1. [12] Let (E, ‖ · ‖) be a normed space. Let T (u, v) = (u, v, min(u2 + x2, 1)) for all
u = (u1, u2), v = (x1, x2) ∈ L∗ and let τ,θ be membership and non-membership degree of an intuitionistic
fuzzy set defined by

Nτ,θ(v, t) =
( t
t + ‖v‖

,
‖v‖

t + ‖v‖

)
, ∀ t ∈ R+.

Then the triple (E, Nτ,θ, T) is an IFN-space.

For specific later use, we note the subsequent Diaz and Margolis [3] results.

Theorem 2.1. Let (W, d) be a generalized complete metric space and a strictly contractive function M :

W →W with Lipschitz constant L < 1. Then, for every x1 ∈W, either

d
(
Mmx1, Mm+1x1

)
= ∞, m ≥ m0;

or there exists a positive integer m0 such that

(i) d
(
Mmx1, Mm+1x1

)
< ∞, m ≥ m0;

(ii) the sequence {Mmx1}m∈N converges to a fixed point x∗1 of M;
(iii) x∗1 is the unique fixed point of M in W∗ = {x2 ∈W|d(Mm0x1, x2) < ∞};
(iv) d(x2, x∗2) ≤

1
1−L d(Mx2, x2), for every x2 ∈W∗.

Throughout all the sections, we consider K as a valued field, E and F are vector spaces over K

and (F, Nτ,θ, T) is a complete non-Archimedean IFN space over K. For our notational simplicity,

we can define the mapping φ : E→ F by

Dφ(x1, x2, · · · , xn) = φ

(∑n
i=1 xi

)
−

∑
1≤i< j<k<l≤n φ(xi + x j + xk + xl)

−(−n + 4)
∑

1≤i< j<k≤n φ(xi + x j + xk)

−

(
n2
−7n+12

2

)∑n
1=i;i, j φ(xi + x j) +

∑n
i=1 φ(2xi)

−

(
−n3+9n2

−26n+120
6

)∑n
i=1

(
φ(xi)+φ(−xi)

2

)
, (2.1)

for all x1, x2, · · · , xn ∈ E.

3. Ulam Stability: Direct Approach

Theorem 3.1. Suppose that a mapping Ψτ,θ : En
× [0,∞)→ [0, 1] such that

lim
i→∞

Ψτ,θ(2ix1, 2ix2, · · · , 2ixn, |2|4it) = 1 (3.1)

and

lim
l→∞
T
∞

i=l T (Ψτ,θ(2ix, 0, · · · , 0, |2|4i+1t))

= lim
l→∞
T
∞

i=1T (Ψτ,θ(2l+i−1x, 0, · · · , 0, |2|4i+2l−1t))

= 1 (3.2)
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for all x1, x2, · · · , xn ∈ E and t > 0. If an even mapping φ : E→ F is defined by (2.1), which satisfying

φ(0) = 0, (3.3)

and

Nτ,θ (Dφ(x1, x2, · · · , xn), t) ≥ Ψτ,θ(x1, x2, · · · , xn, t) (3.4)

for all x1, x2, · · · , xn ∈ E and all t ∈ [0,∞), then there exists a unique quartic mapping Q4 : E → F
satisfying

Nτ,θ (φ(x) −Q4(x), t) ≥ T∞i=1T
(
Ψτ,θ(2i−1x, 0, · · · , 0, |2|4i−1t)

)
, (3.5)

for all x ∈ E and all t > 0.

Proof. Fix for every x ∈ E and every t > 0. Replacing (x1, x2, · · · , xn) by (x, 0, · · · , 0) in (3.4), we

arrive

Nτ,θ

(
φ(2x) − 24φ(x), t

)
≥ Ψτ,θ(x, 0, · · · , 0, t). (3.6)

From inequality (3.11), we get

Nτ,θ

( 1
24
φ(2x) −φ(x), t

)
≥ T

(
Ψτ,θ(x, 0, · · · , 0, |2|4t)

)
. (3.7)

Therefore, one can get

Nτ,θ

( 1
24(l+m)

φ(2l+mx) −
1

24l
φ(2lx), t

)
≥ T

l+m−1
i=l T

(
Ψτ,θ(2ix, 0, · · · , 0, |2|4i+1t)

)
,

and thus from (3.2), it follows that the sequence
{
φ(2ix)

24i

}
i∈N

is a Cauchy sequence in a complete

non-Archimedean IFN space.

Thus, we can define a mapping Q4 : E→ F by

lim
i→∞

Nτ,θ

( 1
24iφ(2

ix) −Q4(x), t
)
= 1.

Next, for every l ∈N with l ≥ 1, we obtain

Nτ,θ

(
φ(x) −

1
24l
φ(2lx), t

)
≥ T

l
i=1Nτ,θ

( 1
24(i−1)

φ(2i−1x) −
1

24iφ(2
ix), t

)
≥ T

l
i=1T

(
Ψτ,θ(2i−1x, 0, · · · , 0, |2|4(i−1)t)

)
.

Therefore,

Nτ,θ (φ(x) −Q4(x), t) ≥ T

(
Nτ,θ

(
φ(x) −

1
24l
φ(2lx), t

)
, Nτ,θ

( 1
24l
φ(2lx) −Q4(x), t

))
≥ T

(
T

l
i=1T

(
Ψτ,θ

(
2i−1x, 0, · · · , 0, |2|4i−1t

)))
,

Nτ,θ

(
2−4lφ

(
2lx

)
−Q4 (x), t)

)
.
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Taking the limit l→∞ in the above inequality, we obtain (3.5). Hence, the mapping Q4 is quartic.

Consider an another quartic function Q
′

4 : E → F satisfying (3.5). Hence, by φ(2x) = 24φ(x) and

(3.2), (3.5), it follows that

Nτ,θ

(
Q4 (x) −Q

′

4 (x) , t
)

= Nτ,θ

(
Q4

(
2lx

)
−Q

′

4

(
2lx

)
, |2|4l+2i−1t

)
≥ T

(
T
∞

i=1T

(
Ψτ,θ

(
2l+i−1x, 0, · · · , 0, |2|4l+2i−1t

)
,

T
∞

i=1T

(
Ψτ,θ

(
2l+i−1x, 0, · · · , 0, |2|4l+2i−1t

)
,

Ψτ,θ

(
2l+i−1x, 0, · · · , 0, |2|4l+2it

)))
→ 1 (as l→∞),

and therefore, Q4 = Q
′

4. This ends the proof. �

Theorem 3.2. Suppose that a mapping Ψτ,θ : En
× [0,∞)→ [0, 1] such that

lim
i→∞

Ψτ,θ(2−ix1, 2−ix2, · · · , 2−ixn, |2|−4it) = 1 (3.8)

and

lim
l→∞
T
∞

i=l T (Ψτ,θ(2−i−1x, 0, · · · , 0, |2|−4i−1t) (3.9)

= lim
l→∞
T
∞

i=1T (Ψτ,θ(2−l−i−1x, 0, · · · , 0, |2|−4i−2l−1t))

= 1 (3.10)

for all x1, x2, · · · , xn ∈ E and t > 0. If an even mapping φ : E → F satisfying (3.3) and (3.4), then there
exists a unique quartic mapping Q4 : E→ F satisfying

Nτ,θ (φ(x) −Q4(x), t) ≥ T∞i=1T
(
Ψτ,θ(2−i−1x, 0, · · · , 0), |2|−4i−1t)

)
,

for all x ∈ E and all t > 0.

Proof. Fix for every x ∈ E and every t > 0. Replacing (x1, x2, · · · , xn) by (x, 0, · · · , 0) in (3.4), we

obtain

Nτ,θ

(
φ(2x) − 24φ(x), t

)
≥ Ψτ,θ(x, 0, · · · , 0, t). (3.11)

Replacing x by x
2 in (3.11), we get

Nτ,θ

(
φ (x) − 24φ

(x
2

)
, t
)
≥ Ψτ,θ(x, 0, · · · , 0, t). (3.12)

Therefore, one can get

Nτ,θ

( 1
2−4(l+m)

φ(2−(l+m)x) −
1

2−4l
φ(2−lx), t

)
≥ T

l+m
i=l T

(
Ψτ,θ(2−ix, 0, · · · , 0, |2|−4it)

)
,

and thus from (3.2), it follows that the sequence
{
φ(2−ix)

2−4i

}
i∈N

is a Cauchy sequence in a complete

non-Archimedean IFN space.
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Thus, we can define a mapping Q4 : E→ F by

lim
i→∞

Nτ,θ

( 1
2−4iφ(2

−ix) −Q4(x), t
)
= 1.

Next, for every l ∈N with l ≥ 1, we obtain

Nτ,θ

(
φ(x) −

1
2−4l

φ(2−lx), t
)
≥ T

l
i=1Nτ,θ

( 1
2−4(i−1)

φ(2−i−1x) −
1

2−4iφ(2
−ix), t

)
≥ T

l
i=1T

(
Ψτ,θ(2−i−1x, 0, · · · , 0, |2|−4(i−1)t)

)
.

Therefore,

Nτ,θ (φ(x) −Q4(x), t) ≥ T

(
Nτ,θ

(
φ(x) −

1
2−4l

φ(2−lx), t
)

, Nτ,θ

( 1
2−4l

φ(2−lx) −Q4(x), t
))

≥ T

(
T

l
i=1T

(
Ψτ,θ

(
2−i−1x, 0, · · · , 0, |2|−4i−1t

)))
,

Nτ,θ

(
2−4lφ

(
2−lx

)
−Q4 (x), t)

)
.

Taking the limit l→ ∞ in the above inequality, we arrive (3.5). Hence, the mapping Q4 is quartic.

Consider an another quartic function Q
′

4 : E → F satisfying (3.5). Hence, by φ
(

x
2

)
= 1

24φ(x) and

(3.2), (3.5), it follows that

Nτ,θ

(
Q4 (x) −Q

′

4 (x) , t
)

= Nτ,θ

(
Q4

(
2−lx

)
−Q

′

4

(
2−lx

)
, |2|−4l−2it

)
≥ T

(
T
∞

i=1T

(
Ψτ,θ

(
2−l−i−1x, 0, · · · , 0, |2|−4l−2it

)
,

T
∞

i=1T

(
Ψτ,θ

(
2−l−ix, 0, · · · , 0, |2|−4l−2it

)
,

Ψτ,θ

(
2−l−ix, 0, · · · , 0, |2|−4l−2it

)))
→ 1 (as l→∞),

and therefore, Q4 = Q
′

4. This ends the proof. �

4. Ulam Stability: Fixed-Point Approach

Theorem 4.1. Let Ψτ,θ : En
× [0,∞)→ [0, 1] be a mapping, which satisfies (3.1) and such that

Ψτ,θ

(
2x1, 2x2, · · · , 2xn, |2|4Lt

)
≥ Ψτ,θ (x1, x2, · · · , xn, t) , (4.1)

for all x1, x2, · · · , xn ∈ E and L ∈ (0, 1). If an even mapping φ : E→ F satisfying (3.3) and (3.4), then there
exists a unique quartic mapping Q4 : E→ F satisfying

Nτ,θ (φ (x) −Q4 (x) , t) ≥ T
(
Ψτ,θ

(
x, 0, · · · , 0, |2|4(1− L)t

))
, (4.2)

for all x ∈ E and all t > 0.

Proof. Defining the set W := {p : E→ F} and introducing the generalized metric m on W:

m(p, q) = inf{c ∈ [0,∞] : Nτ,θ (p (x) − q (x) , t)

≥ T

(
Ψτ,θ

(
x, 0, · · · , 0, |2|4t

))
, x ∈ E, t > 0}
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for all p, q ∈ W. A standard verification (see for instance [11]) proves that (W, m) is a complete

generalized metric space. Now, we can define a mapping S : W →W by

Sp (x) =
1
24

p (2x) ,

for all p ∈W and all x ∈ E. Let p, q ∈W and cp,q ∈ [0,∞] with m(p, q) ≤ cp,q. Then,

Nτ,θ

(
p (x) − q (x) , cp,qt

)
≥ T

(
Ψτ,θ

(
x, 0, · · · , 0, |2|4t

) )
,

which together with (4.1) gives

Nτ,θ (Sp (x) − Sq (x) , t) ≥ T
(
Ψτ,θ

(
x, 0, · · · , 0, |2|

4t
Lcp,q

) )
and consequently, m(Sp, Sq) ≤ Lcp,q, this indicates that S is strictly contractive. In addition, it

follows from (3.12) that

Nτ,θ (Sφ (x) −φ (x) , t) ≥ T
(
Ψτ,θ

(
x, 0, · · · , 0, |2|4t

) )
and thus, m(Sφ,φ) ≤ 1 < ∞. Thus, by Theorem 2.1, S has a unique fixed-point Q4 : E → F in the

set W∗ = {p ∈W : m(φ, p) < ∞} such that

1
24

Q4 (2x) = Q4 (x) (4.3)

and

Q4 (x) = lim
i→∞

1
24iφ

(
2ix

)
, x ∈ E.

In addition, the fact that φ ∈W∗, Theorem 2.1, and m(Sφ,φ) ≤ 1, we have

m(φ, Q4) ≤
1

1− L
m (Sφ,φ) ≤

1
1− L

(4.4)

and (4.2) follows. The proof of Theorem 3.1 may also be used to show that the function Q4 is

quartic.

At the end, consider that Q
′

4 : E→ F is an another quartic mapping which satisfying (4.2). Then,

Q
′

4 satisfies (4.3). Therefore, it is a fixed point of S.

Thus, by (4.2), we obtain

m
(
φ, Q

′

4

)
≤

1
1− L

< ∞,

and hence Q
′

4 ∈ W∗. Theorem 2.1 proves that Q
′

4 = Q4, that is, the function Q4 is unique, which

ends the proof of the Theorem. �

Theorem 4.2. Suppose that a mapping Ψτ,θ : Em
× [0,∞)→ [0, 1] such that (3.8) holds and

Ψτ,θ

(
2−1x, 0, · · · , 0, |2|−4Lt

)
≥ Ψτ,θ (x, 0, · · · , 0, t) , x ∈ E,

for L ∈ (0, 1). If an even mapping φ : E → F satisfying (3.3) and (3.4), then there exists a unique quartic
mapping Q4 : E→ F satisfying

Nτ,θ (φ (x) −Q4 (x) , t) ≥ T
(
Ψτ,θ

(
x, 0, · · · , 0, |2|4(L−1

− 1)t
))

,

for all x ∈ E and all t > 0.
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From the main theorems established by way of both direct and fixed-point methods, we can

derive some corollaries that improve the stability results under particular assumptions.

Corollary 4.1. Let φ : E → F be a mapping satisfying the quartic functional equation in a complete
non-Archimedean intuitionistic fuzzy normed space (E, Nτ,θ, T), with the control function Ψτ,θ satisfying
the conditions:

lim
i→∞

Ψτ,θ(2ix1, 2ix2, . . . , 2ixn, |2|4it) = 1

and

lim
l→∞

T
∞∏
i=l

T(Ψτ,θ(2ix, 0, . . . , 0, |2|4i+1t)) = 1.

Then the mapping Q4 : E→ F defined by

Q4(x) = lim
i→∞

φ(2ix)
24i

is the unique quartic function approximating φ such that the Hyers-Ulam stability holds.

Proof. According to Theorem 3.1, given the specified assumptions, the sequence{
φ(2ix)

24i

}
i∈N

constitutes a Cauchy sequence within the complete non-Archimedean IFN-space (E, Nτ,θ, T). Con-

sequently, it converges to a limit, which subsequently defines the mapping Q4. By employing the

recursive property associated in the quartic functional equation, we derive:

Q4(2x) = 24Q4(x),

which proves that Q4 is quartic.

The uniqueness aspect is clear; should Q′4 denote another quartic mapping that satisfies the

same inequality, the convergence in the fuzzy norm compels Q4(x) = Q′4(x) for all x ∈ E. �

Corollary 4.2. Suppose the control function Ψτ,θ additionally satisfies the contraction condition:

Ψτ,θ(2x1, 2x2, . . . , 2xn, |2|4Lt) ≥ Ψτ,θ(x1, x2, . . . , xn, t), L ∈ (0, 1).

Then there exists a unique quartic function Q4 : E→ F satisfying:

Q4(x) =
1
24

Q4(2x),

and the stability estimate:

Nτ,θ (φ(x) −Q4(x), t) ≥ T
(
Ψτ,θ(x, 0, . . . , 0, |2|4(1−L)t)

)
,

holds for every x ∈ E and t > 0.
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Proof. Applying Theorem 4.1, we define the operator:

S(p)(x) =
1

24
p(2x),

which acts on the generalized metric space (W, m), where W = {p : E→ F} and

m(p, q) = inf
{
c ≥ 0 : Nτ,θ(p(x) − q(x), t) ≥ T(Ψτ,θ(x, 0, . . . , 0, |2|4t)),∀x ∈ E, t > 0

}
.

By the contraction property:

m(Sp, Sq) ≤ Lm(p, q), for all p, q ∈W,

and the Diaz-Margolis fixed-point theorem, the operator S has a unique fixed point Q4 in W.

This fixed point satisfies:

Q4(x) = S(Q4)(x) =
1

24
Q4(2x),

and the stability estimate follows from the inequality:

m(φ, Q4) ≤
1

1− L
m(Sφ,φ),

which gives the bound on the deviation between φ and Q4 in the fuzzy norm. Uniqueness is

ensured by the strict contractive nature of S. �

5. Conclusion

In this paper, we have successfully established the generalized Ulam stability of the quartic

functional equation in non-Archimedean intuitionistic fuzzy normed spaces using both direct and

fixed-point approaches. We demonstrated that under suitable control functions and fuzzy norm

conditions, any function approximately satisfying the quartic relation is closely approximated by

an exact quartic mapping.

The findings enhance the existing theory of functional equation stability, specifically broadening

its application to fuzzy and non-Archimedean contexts, which are becoming more significant in

contemporary mathematical modeling of uncertainty, imprecision, and non-classical spaces. The

results obtained strengthen the theoretical framework and create opportunities for applications in

approximation theory, information sciences, and p-adic analysis.

Future research could explore the stability of higher-degree or mixed-type functional equa-

tions under similar fuzzy and non-Archimedean settings, as well as practical implementations in

computational algorithms and physical system modeling.
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