Mathematical Modelling and Nonlinear Analysis of Reaction Diffusion Mechanism of the Volatile Compounds Alongside Spherical Electrodes Embedded within the Chemically Modified Electrodes

Main Article Content

A. Uma, R. Swaminathan

Abstract

The main objective of the present research is to propose a new mathematical formulation for the concentration of volatile substances corresponding to spherical electrodes through applying steady state reaction diffusion equations within the electrode surface in the presence of chemically modified electrodes. This model requires into consideration the diffusion of reactants and charge carriers that occur within the chemically modified layer that is positioned at the electrode surface. All probable experimental responses of the parameter may utilise appropriate mediator, substrate, and current concentrations evaluated analytically through the implementation of the Akbari Ganji Method. A numerical representation of the issue being studied can also be obtained implementing MATLAB software aimed at assisting comprehend the dynamics of the system. An appropriate degree of concurrence is subsequently provided once the ensuring results have been examined using currently accessible numerical data with previously discovered information.

Article Details

References

  1. O. Farghaly, R. Hameed, A.H. Abu-Nawwas, Analytical Application Using Modern Electrochemical Techniques, Int. J. Electrochem. Sci. 9 (2014), 3287-3318. https://doi.org/10.1016/s1452-3981(23)08010-0.
  2. A.J. Bard, Chemical Modification of Electrodes, J. Chem. Educ. 60 (1983), 302. https://doi.org/10.1021/ed060p302.
  3. J.A. Cox, R. Jaworski, P.J. Kulesza, Electroanalysis with Electrodes Modified by Inorganic Films, Electroanalysis 3 (1991), 869-877. https://doi.org/10.1002/elan.1140030902.
  4. S. Dong, Y. Wang, The Application of Chemically Modified Electrodes in Analytical Chemistry, Electroanalysis 1 (1989), 99-106. https://doi.org/10.1002/elan.1140010203.
  5. R.A. Durst, Chemically Modified Electrodes: Recommended Terminology and Definitions (IUPAC Recommendations 1997), Pure Appl. Chem. 69 (1997), 1317-1324. https://doi.org/10.1351/pac199769061317.
  6. R.W. Murray, Chemically Modified Electrodes, Accounts Chem. Res. 13 (1980), 135-141. https://doi.org/10.1021/ar50149a002.
  7. R.W. Murray, A.G. Ewing, R.A. Durst, Chemically Modified Electrodes. Molecular Design for Electroanalysis, Anal. Chem. 59 (1987), 379A-390A. https://doi.org/10.1021/ac00132a001.
  8. R.W. Murray, Molecular Design of Electrode Surfaces, Wiley, New York, 1992.
  9. M. Puida, A. Malinauskas, F. Ivanauskas, Modeling of Electrocatalysis at Chemically Modified Electrodes: A Combination of Second-Order and Michaelis-Type Chemical Kinetics, J. Math. Chem. 50 (2012), 2001-2011. https://doi.org/10.1007/s10910-012-0016-8.
  10. W. Albery, A. Hillman, Transport and Kinetics in Modified Electrodes, J. Electroanal. Chem. Interfacial Electrochem. 170 (1984), 27-49. https://doi.org/10.1016/0022-0728(84)80034-0.
  11. S. Vinolyn Sylvia, R. Joy Salomi, M. Lyons, L. Rajendran, Transient Current of Catalytic Processes at Chemically Modified Electrodes, Int. J. Electrochem. Sci. 16 (2021), 210452. https://doi.org/10.20964/2021.04.36.
  12. R. Baronas, J. Kulys, Modelling Amperometric Biosensors Based on Chemically Modified Electrodes, Sensors 8 (2008), 4800-4820. https://doi.org/10.3390/s8084800.
  13. S. Loghambal, L. Rajendran, Mathematical Modeling of Diffusion and Kinetics in Amperometric Immobilized Enzyme Electrodes, Electrochimica Acta 55 (2010), 5230-5238. https://doi.org/10.1016/j.electacta.2010.04.050.
  14. R. Swaminathan, R. Saravanakumar, K. Venugopal, L. Rajendran, Analytical Solution of Non Linear Problems in Homogeneous Reactions Occur in the Mass-Transfer Boundary Layer: Homotopy Perturbation Method, Int. J. Electrochem. Sci. 16 (2021), 210644. https://doi.org/10.20964/2021.06.51.
  15. R. Swaminathan, K.L. Narayanan, V. Mohan, K. Saranya, L. Rajendran, Reaction/diffusion Equation with Michaelis-Menten Kinetics in Microdisk Biosensor: Homotopy Perturbation Method Approach, Int. J. Electrochem. Sci. 14 (2019), 3777-3791. https://doi.org/10.20964/2019.04.13.
  16. R. Swaminathan, K. Venugopal, M. Rasi, M. Abukhaled, L. Rajendran, Analytical Expressions for the Concentration and Current in the Reduction of Hydrogen Peroxide at a Metal-Dispersed Conducting Polymer Film, Química Nova 43 (2019), 58-65. https://doi.org/10.21577/0100-4042.20170454.
  17. R. Swaminathan, M. Chitra Devi, L. Rajendran, K. Venugopal, Sensitivity and Resistance of Amperometric Biosensors in Substrate Inhibition Processes, J. Electroanal. Chem. 895 (2021), 115527. https://doi.org/10.1016/j.jelechem.2021.115527.
  18. R. Usha Rani, L. Rajendran, M.E. Lyons, Steady-state Current in Product Inhibition Kinetics in an Amperometric Biosensor: Adomian Decomposition and Taylor Series Method, J. Electroanal. Chem. 886 (2021), 115103. https://doi.org/10.1016/j.jelechem.2021.115103.
  19. R. Usha Rani, L. Rajendran, Taylor’s Series Method for Solving the Nonlinear Reaction-Diffusion Equation in the Electroactive Polymer Film, Chem. Phys. Lett. 754 (2020), 137573. https://doi.org/10.1016/j.cplett.2020.137573.
  20. M.R. Akbari, D.D. Ganji, A.K. Rostami, M. Nimafar, Solving Nonlinear Differential Equation Governing on the Rigid Beams on Viscoelastic Foundation by AGM, J. Mar. Sci. Appl. 14 (2015), 30-38. https://doi.org/10.1007/s11804-015-1284-z.
  21. B. Manimegalai, M.E. Lyons, L. Rajendran, A Kinetic Model for Amperometric Immobilized Enzymes at Planar, Cylindrical and Spherical Electrodes: The Akbari-Ganji Method, J. Electroanal. Chem. 880 (2021), 114921. https://doi.org/10.1016/j.jelechem.2020.114921.
  22. L. Rajendran, R. Swaminathan, M.C. Devi, A Closer Look of Nonlinear Reaction-Diffusion Equations, Nova Science Publishers, 2020. https://doi.org/10.52305/RRSY7475.
  23. M.R. Akbari, D.D. Ganji, M. Nimafar, A.R. Ahmadi, Significant Progress in Solution of Nonlinear Equations at Displacement of Structure and Heat Transfer Extended Surface by New Agm Approach, Front. Mech. Eng. 9 (2014), 390-401. https://doi.org/10.1007/s11465-014-0313-y.
  24. S. Loghambal, L. Rajendran, Analysis of Amperometric Enzyme Electrodes in the Homogeneous Mediated Mechanism Using Variational Iteration Method, Int. J. Electrochem. Sci. 5 (2010), 327-343. https://doi.org/10.1016/s1452-3981(23)15288-6.
  25. G. Rahamathunissa, L. Rajendran, Application of He’s Variational Iteration Method in Nonlinear Boundary Value Problems in Enzyme– Substrate Reaction Diffusion Processes: Part 1. the Steady-State Amperometric Response, J. Math. Chem. 44 (2008), 849-861. https://doi.org/10.1007/s10910-007-9340-9.
  26. S. Rebouillat, M.E.G. Lyons, A. Flynn, Heterogeneous Redox Catalysis at Conducting Polymer Ultramicroelectrodes, Analyst 124 (1999), 1635-1644. https://doi.org/10.1039/a905973c.