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ABSTRACT: The main objective of the present research is to propose a new mathematical formulation for the 

concentration of volatile substances corresponding to spherical electrodes through applying steady state reaction 

diffusion equations within the electrode surface in the presence of chemically modified electrodes. This model requires 

into consideration the diffusion of reactants and charge carriers that occur within the chemically modified layer that is 

positioned at the electrode surface. All probable experimental responses of the parameter may utilise appropriate 

mediator, substrate, and current concentrations evaluated analytically through the implementation of the Akbari Ganji 

Method. A numerical representation of the issue being studied can also be obtained implementing MATLAB software 

aimed at assisting comprehend the dynamics of the system. An appropriate degree of concurrence is subsequently 

provided once the ensuring results have been examined using currently accessible numerical data with previously 

discovered information. 

 

1.Introduction 

Over the past two decades, Chemists have made attempts to effectively manipulate an 

electrode’s chemical constituents which has culminated to an enormous surge in pursuit of 

Chemically modified electrodes (CME). Numerous significant uses for chemically modified 

electrodes have been discovered in the field of electrocatalysis, corrode detection, molecular 

electronics, selective electro organic synthesis, solar power generation and electrochromic 
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monitor devices ([1], [2], [3], [4], [5]). A relatively modern approach to electrode systems, CME 

are useful in a variety of fundamental electrochemical investigations for instance the interactions 

between chemical reactivity and heterogeneous electron transfer to electrode surface chemistry, 

electrostatic occurrences at electrode surfaces and electron mobility through polymers. They are 

further valuable in the construction of electrochemical devices and components for utilisation in 

the molecular electronics, electrochromic displays chemical sensing [6]. The distinctive feature 

that initiatives a CME detached from other electrode concepts in electrochemistry is that in a 

reasonable, chemically designed manner a typically exceptionally thin layer of an assigned 

chemical is stuck to or coated on the electrode surface in order to provide the electrode, the 

chemical electrochemical, ocular, electrical, transport and other envisioned properties associated 

with the film. ([7], [8]) 

Additionally, chemically modified electrodes may contain an assortment of chemical 

modifiers sometimes embedded in the electrode substrate and possibly these modifiers may have 

a precisely structured spatial configuration. That is, a CME could contain two electrocatalysis: 

One that transport energy between the electrode and the first catalyst and the second catalyst 

performs through accepter or comprising multiple different chemical polymers with the second 

polymer deposited on the surface of the first to create a bilayer of polymer films might also 

makeup the chemically modified electrode. A mathematical model explaining transport and 

electrocatalytic kinetics in surface immobilised modified electrode that function via two different 

forms of redox interactions – a Michale type addict formation reaction and a simple chemical 

second order was modelled by Puida et al. [9]. Albery et al. [10] suggested an extensive model for 

polymer modified electrodes which aims to estimate the continuous momentary reaction of a 

redox polymer film employing mediated electroanalysis. Vinolyn Syluia et al. [11] presented the 

analytic result for the transient current of catalytic process at chemically modified electrode using 

Homotopy Perturbation Method. Romas Baronas Romas et al. established the amperometric 

biosensors based on chemically modified electrodes [12].  

 The present research investigation proposes to establish a mathematical formulation 

concerning the concentration of volatile compounds associated to a spherical electrode exploiting 

steady state reaction diffusion equations over the surface of electrode amid chemically modified 

electrode.  

 

2. Mathematical Modelling 

 We will only provide a brief description, as an exhaustive investigation of the basic 

assumptions and tangible manifestation of this issue has been done previously by Romas Barnous 

Romas et al. [12]. This model considers an ordered ping-pong approach for enzyme catalysed 

substrate conversion with a mediator. The chemically modified electrode consists of a thin layer 
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of low soluble mediator encased over an enzyme membrane. The system comprised as three 

regions, an enzyme layer for enzymatic reactions and mass transport by diffusion, a diffusion 

limiting, region for mass transport exclusively and a convective region to maintain analytic 

concentration constant.  An electrode that fact may have been chemically modified acts as where 

the reaction originates. A comparatively thin layer membrane of the inadequate accessible 

mediator and an enzyme membrane encapsulate the CME and this is regarded as an electrode. 

 We anticipate a sequential Ping-Pong approach of stimulated Enzyme(A), substrate(B), 

transformation within the midst of mediator(C).  

   A1 + B ⇋ AB → A2 + X 

   A2 + C → A1 + Y 

 The intermediate complex concentration is predicted that it stays consistent in the steady 

state estimation. A series of reaction diffusion equations may be utilised as well to provide insight 

in the distribution of mass and reactions in the enzyme layer, provided that the electrode has 

spherical geometry and confined enzyme is distributed correspondingly throughout the 

uniformly thick film. A system of reaction diffusion equations could possibly be used to represent 

it as 

   
2𝔇𝒮

𝓊
 
𝑑𝐵

𝑑𝑢
  = 𝔇𝐵

𝑑2𝐵

𝑑𝑢2
 - 𝜇𝐵 (𝐵(𝑢)𝐶(𝑢))     (2.1) 

2𝔇ℳ

𝓊
 
𝑑𝐶

𝑑𝑢
= 𝔇𝐶

𝑑2𝐶

𝑑𝑢2
  - 𝜇𝐶( 𝐵(𝑢)𝐶(𝑢))       (2.2) 

Following are the boundary conditions that describe the problem 

At 𝑢 = 0, = 𝒞𝑇 ; 
𝑑𝐵

𝑑𝑢
= 0.         (2.3) 

At 𝑢 = 0, 𝑠 = 𝕂𝑠∞ ; 
𝑑𝐶

𝑑𝑢
 = 0.         (2.4) 

The Net flux is represented as  

 𝒞𝔍 = 𝔇𝐵(
𝑑𝐵

𝑑𝑢
)𝑢=𝑟 = −𝔇𝐶(

𝑑𝐶

𝑑𝑢
)𝑢=0       (2.5) 

The results of the final evaluation should be presented in dimensionless parameters before 

we progress on to a complete mathematical review of the boundary value problem described in 

the equations (2.1) -(2.5) 

We introduce the Non-Dimensional Parameters as, 

𝑥 =  
𝐵

∆2𝑠
∞ ; 𝑦 =  

𝐶

𝒞𝑇
 ; 𝜗 =

𝑢

𝑟
 ; 𝜉𝐵 =

∆2𝒞𝑇𝑟
2

𝔇𝐵
 = 

𝜙𝑅

𝜙𝒮
=

∆1

∆3
2 ; 𝜉𝐶 =

µ𝕂𝑠∞𝑟2

𝔇𝐶
 = 

𝜙𝑅

𝜙𝐶
=

∆1

∆2∆3
2 ;    (2.6) 

 The reaction diffusion parameters 𝜉𝐵 and 𝜉𝐶 are used to measure the correlation between 

the chemical reaction rate and the amount of charge percolation or substrate diffusion. Three 

independent dimensionless parameters ∆1, ∆2, ∆3 have been utilized to simulate the current. 

∆1=
 𝜙𝐵

 𝜙𝐷
 ;   ∆2=

𝜙𝐶

 𝜙𝐵
 ;    ∆3=

  𝜙𝑅𝜙𝐵

 𝜙𝐷
2 ;      (2.7) 

The system nonlinear reaction-diffusion equation can be written as  
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𝑑2𝑥(𝜗)

𝑑𝜗2
 + 
2

𝑡
 
𝑑𝑥(𝜗)

𝑑𝜗
 - 𝜉𝐵𝑥(𝜗)𝑦(𝜗) = 0       (2.8) 

 
𝑑2𝑦(𝜗)

𝑑𝜗2
 + 
2

𝑡
 
𝑑𝑦(𝜗)

𝑑𝜗
 - 𝜉𝐶𝑥(𝜗)𝑦(𝜗) = 0       (2.9) 

The appropriate boundaries were expressed as 

 
𝑑𝑥(0)

𝑑𝜗
 = 0; 𝑥(0) = 1.         (2.10) 

    
𝑑𝑦(1)

𝑑𝜗
= 0 ;  𝑦(1) = 1.         (2.11) 

The following equation represents the normalized steady-state current response  

  Ω = (
𝑑𝑥

𝑑𝑡
)𝑡=1  𝑜𝑟  Ω =  −(

𝑑𝑦

𝑑𝑡
)𝑡=0         (2.12) 

 

3. Analytical Solution of The Concentrations Using Akbari Ganji Mathod 

 Over the last few decades, a number of authors have concentrated on studying the 

solution of nonlinear equations using a range of methods, such as the Homotopy perturbation 

Method [13-16], Taylor Series Method [17-19], Akbari Ganji Method [20-23] and Variational 

Iteration Method [24-25]. Akbari Ganji's Method is highly precise, effective, and effective in a 

conservative approach. An AGM solution function exhibiting indeterminate constant coefficients 

solves its inception and boundary requirements. The above procedure can be implemented for 

resolving nonlinear equations (2.8) through (2.11). 

Consider the trial solution for Equations (2.8) and (2.9) as  

𝑥(𝜗) = A cosh (𝛼𝜗) + B sinh (𝛼𝜗)       (3.1) 

 𝑦(𝜗) = C cosh (𝛽𝜗) + Dcosh (𝛽𝜗)       (3.2) 

Using the boundary conditions (2.10) and (2.11), we get  

  A= 
1

cosh𝛼
 , B = 0, C = 1, D = − tanh 𝛽                    (3.3) 

Substituting (3.3) in (3.1) and (3.2) we have  

𝑥(𝜗) = 
𝑐𝑜𝑠ℎ(𝛼𝜗)

cosh(𝛼)
          (3.4) 

 𝑦(𝜗) = 
𝑐𝑜𝑠ℎ((1−𝜗)𝛽)

𝑐𝑜𝑠ℎ(𝛽)
         (3.5) 

Eqns. (2.8) and (2.9) becomes, 

 
𝑑2

𝑑𝜗2
[
𝑐𝑜𝑠ℎ(𝛼𝜗)

cosh(𝛼)
] + 

2

𝜗
 
𝑑

𝑑𝜗
[
𝑐𝑜𝑠ℎ(𝛼𝜗)

cosh(𝛼)
] - 𝜉𝐵 [

𝑐𝑜𝑠ℎ(𝛼𝜗)

cosh(𝛼)
] [
𝑐𝑜𝑠ℎ((𝜗+1)𝛽)

𝑐𝑜𝑠ℎ(𝛽)
] = 0     (3.6) 

𝑑2

𝑑𝜗2
[
𝑐𝑜𝑠ℎ((𝜗+1)𝛽)

𝑐𝑜𝑠ℎ(𝛽)
] + 

2

𝜗
 
𝑑

𝑑𝑡
[
𝑐𝑜𝑠ℎ((𝜗+1)𝛽)

𝑐𝑜𝑠ℎ(𝛽)
] - 𝜉𝐶 [

𝑐𝑜𝑠ℎ(𝛼𝜗)

cosh(𝛼)
] [
𝑐𝑜𝑠ℎ((𝜗+1)𝛽)

𝑐𝑜𝑠ℎ(𝛽)
] = 0    (3.7) 

By the application of L-Hospitals’ rule in (18) and (19) and 𝜗 → 0, we get  

𝛼 = √
𝜉𝐵

3
  and 𝛽 = √

𝜉𝐶

3 cosh𝛼
          (3.8) 

Substituting the values of α and β in equations (3.4) and (3.5), we obtain the analytical formulation 

for the substrate and mediator concentrations, which is stated as, 
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 𝑥(𝜗) = 
𝑐𝑜𝑠ℎ(𝜗(

𝜉𝐵
3
)
1
2)

𝑐𝑜𝑠ℎ((
𝜉𝐵
3
)
1
2)

         (3.9) 

 𝑦(𝜗)= 

𝑐𝑜𝑠ℎ

(

 
 
 

(1−𝜗)

(

 
 𝜉𝐶

3 cosh (
𝜉𝐵
3
)

1
2

)

 
 

1
2

)

 
 
 

𝑐𝑜𝑠ℎ

(

 
 
 

(

 
 𝜉𝐶

3 cosh (
𝜉𝐵
3
)

1
2

)

 
 

1
2

)

 
 
 

        (3.10) 

When the current is normalized, it becomes, 

 Ω = (
𝜉𝐵

3
)

1

2
tanh ((

𝜉𝐵

3
)

1

2
)  (or)       (3.11) 

            Ω = (
𝜉𝐶

3 cosh (
𝜉𝐵
3
)

1
2

)

1

2

𝑡𝑎𝑛ℎ

(

 (
𝜉𝐶

3 cosh (
𝜉𝐵
3
)

1
2

)

1

2

)

       (3.12) 

4. Specifying Cases 

 By contrasting the diffusion coefficients and kinetic properties, we have deduced the 

substrate and mediator's concentration equations here. 

4.1 Electron absorption over the chemical layer occurs at a faster pace than substrate transport  

 In consideration of the circumstances 
𝜉𝐶

𝜉𝐵
 ≪ 1 or ∆2→ ∞. Although it is expected that 

electron charge penetration around the chemical chain will occur quickly and that the chemical 

interaction between the mediator and substrate will occur too quickly, relatively many mediator 

species will be ingested throughout the chemical layer, and it is assumed that  𝜉𝐶 = 1. 

Equations (2.8) and (2.9) were reduced to  

𝑑2𝑥(𝜗)

𝑑𝜗2
 + 
2

𝑡
 
𝑑𝑥(𝜗)

𝑑𝜗
 - 𝜉𝐵𝑥(𝜗) = 0        (4.1) 

 
𝑑2𝑦(𝜗)

𝑑𝜗2
 + 
2

𝑡
 
𝑑𝑦(𝜗)

𝑑𝜗
 = 0          (4.2) 

We found the analytical statement for the mediator and substrate as, utilizing boundary   

conditions (2.10) – (2.11), 

 𝑥(𝜗) = 
𝑐𝑜𝑠ℎ(𝑣(

𝜉𝐵
3
)
1
2)

𝑐𝑜𝑠ℎ((
𝜉𝐵
3
)
1
2)

         (4.3) 

 𝑦(𝜗) =1          (4.4) 

The current transforms Ω = (
𝜉𝐵

3
)

1

2
tanh ((

𝜉𝐵

3
)

1

2
)       (4.5) 
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(ii)Substrate diffusion flows across the chemical layer greater than electron diffusion  

 Considering the circumstances into account 
𝜉𝐶

𝜉𝐵
 ≫ 1 or ∆2→ 0. Due to the quick substrate 

diffusion within the layer and the assumption that minimal substrate is wasted during transit 

through the layer, take the following into consideration  𝜉𝐵 =1. 

Equations (2.8) and (2.9) simplified to  

𝑑2𝑥(𝜗)

𝑑𝜗2
 + 

2

𝜗
 
𝑑𝑥(𝜗)

𝑑𝜗
  = 0         (4.6) 

 
𝑑2𝑦(𝜗)

𝑑𝜗2
 + 

2

𝜗
 
𝑑𝑦(𝜗)

𝑑𝜗
 - 𝜉𝑐𝑦(𝜗) = 0        (4.7) 

With boundary conditions (2.10) – (2.11) applied, we were able to get the analytical equation for 

the substrate and mediator as,  

𝑥(𝜗) = 1          (4.8) 

 𝑦(𝜗) = 
𝑐𝑜𝑠ℎ((1−𝜗)(

𝜉𝑐
3
)
1
2)

𝑐𝑜𝑠ℎ((
𝜉𝐶
3
)
1
2)

         (4.9) 

The current changes to Ω =−[(
𝜉𝐶

3
)

1

2
tanh ((

𝜉𝐶

3
)

1

2
) ]      (4.10) 

 

5. Previous Analytical Result 

 The variation iteration method found analytical solutions to the nonlinear equations 

involving polymer films. Equations (2.8) and (2.9) with associated boundary conditions were 

resolved by Rebouillat et al. [26] employing the variation iteration approach. Following is how 

they arrived at the analytical formulation for the concentration of mediator and substrate in 

polymer modified ultramicroelectrodes: 

𝑥(𝜗) = 
𝑠𝑖𝑛ℎ(𝜗(𝜉𝐵)

1
2)

𝜗𝑠𝑖𝑛ℎ((𝜉𝐵)
1
2)

         (5.1) 

𝑦(𝜗)=
𝑒𝑥𝑝(−(𝜉𝐶)

1
2)

(𝜉𝐶)
1
2𝑓((𝜉𝐵)

1
2)𝑡

{𝑓(𝜉𝐶)  exp [−(𝜉𝐶)
1

2(1 − 𝜗)] − exp [(𝜉𝐶)
1

2(1 − 𝜗)]}   (5.2) 

Where 𝑓(𝜉𝐶) =
1+(𝜉𝐶)

1
2

1−(𝜉𝐶)
1
2

          (5.3) 

 

6. Numerical Simulation 

 The accuracy of the AGM solution was tested by numerically solving the nondimension

al form of equations (2.8)-(2.9) related to boundary conditions (2.10)-(2.11). The efficiency of the 

current methodology is illustrated by graphical correlations between our analytical results and 

numerical outcomes. Tables 1 and 2 compare preceding analytical results with dimensionless 
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substrate and mediator concentrations based on the analytical representation. For every 

parameter setting under comparison, it provides a satisfactory level of agreement. The most 

recent analytical result (AGM Method) is separated from the previously analysed result by the 

highest typical error of 0.02% in the mediator and 0.05% in the substrate. 

 

Table 1. Comparison among the new (3.9) and previous analytical results (5.1) for the substrate 

concentration for different reaction diffusion parameter values. 

Substrate Concentration 

𝜉𝐶= 0.1 and  𝜉𝐵 =0.1 𝜉𝐶= 1 and  𝜉𝐵 = 1 𝜉𝐶= 10 and  𝜉𝐵 = 10 

𝜗 Previous 

work 

Eqn. (5.1) 

This 

work 

Eqn. (3.9) 

% of variation 

between (5.1) 

and (3.9) 

Previous 

work 

Eqn. (5.1) 

This 

work 

Eqn. (3.9) 

% of variation 

between (5.1) 

and (3.9) 

Previous 

work 

Eqn. (5.1) 

This 

work 

Eqn. (3.9) 

% of variation 

between (5.1) 

and (3.9) 

0.1 0.9837 0.9837 0.0000 0.8523 0.8551 0.0028 0.2727 0.3192 0.0465 

0.3 0.9850 0.9850 0.0000 0.8637 0.8665 0.0028 0.3103 0.3623 0.0520 

0.5 0.9876 0.9876 0.0000 0.8868 0.8895 0.0027 0.3948 0.4542 0.0594 

0.7 0.9916 0.9916 0.0000 0.9221 0.9243 0.0022 0.5476 0.6073 0.0597 

0.9 0.9969 0.9969 0.0000 0.9705 0.9715 0.0010 0.8086 0.8424 0.0338 

1.0 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 

Average 

Error % 

 0.0000   0.0023   0.0502 

 

 

Table 2. Deviation of New analytical solution (3.10) with Previous Analytical findings (5.2) of   

concentration of mediator for various values of reaction diffusion parameters  

Mediator Concentration 

𝜉𝐶= 0.1 and  𝜉𝐵 =0.1 𝜉𝐶= 1 and  𝜉𝐵 = 1 𝜉𝐶= 10 and  𝜉𝐵 = 10 

𝜗 Previous 

work 

Eqn. (5.2) 

This 

work 

Eqn. 

(3.10) 

% of the 

variation 

between (5.2) 

and (3.10) 

Previous 

work 

Eqn. (5.2) 

This 

work 

Eqn. 

(3.10) 

% of the 

variation 

between (5.2) 

and (3.10) 

Previous 

work 

Eqn. (5.2) 

This 

work 

Eqn. 

(3.10) 

% of the 

variation 

between (5.2) 

and (3.10) 

0.1 0.9837 0.9837 0.0000 0.8523 0.8551 0.0028 0.2727 0.3192 0.0165 

0.3 0.9850 0.9850 0.0000 0.8637 0.8665 0.0028 0.3103 0.3623 0.0020 

0.5 0.9876 0.9876 0.0000 0.8868 0.8895 0.0024 0.3948 0.4542 0.0194 

0.7 0.9916 0.9916 0.0000 0.9221 0.9243 0.0010 0.5476 0.6073 0.0197 

0.9 0.9969 0.9969 0.0000 0.9705 0.9715 0.0010 0.8086 0.8424 0.0238 

1.0 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 

Average 

Error % 

 0.0000   0.0020   0.0220 
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7. Results and Discussion 

 The equations (3.9) and (3.10) provides a newly developed analytical formulation of the 

concentration of substrate and mediator in simple closed form. Simple new analytical formulae 

(3.11) and (3.12) describe how much normalized current is present.  

 

Figure 1.  Analytical and numerical evaluations of the solutions for various values of reaction 

diffusion parameter 𝝃𝑩 for the substrate concentration. 

 

Figure (1) depicts the conventional substrate concentration for various amounts of the 

diffusion parameter 𝜉𝐵. The data presented here reveals that 𝑥 is substantially comparable to 1 

for every value of 𝜉𝐶 and 𝜉𝐵 that is less than or equal to 1. As the concentration of substrate goes 

down, 𝜉𝐵 increases. The value of 𝜉𝐵 < 0.1, the concentration reaches the constant value and the 

curve turns into straight line. As the concentration rate is high for the lowest value of 𝜉𝐵, the 

Concentration of substrate is inversely proportional to the reaction rate constant 𝜉𝐵. 

 

Figure 2. Comparison of the solutions both analytically and numerically for different values 

of  𝝃𝑪 for fixed  𝝃𝑩 = 0.1 for the concentration of mediator. 
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Figure 3. Analytical and numerical comparison of the solutions for varying values of 

𝝃𝑪 for fixed 𝝃𝑩 = 1 for mediator concentration. 

 

The series of normalized concentration profiles for a mediator is shown in Figure 2 and 

Figure 3 for various values of the 𝜉𝐶 and for fixed value of 𝜉𝐵 is 0.1 and 1 respectively. All values 

of 𝜉𝐶 and 𝜉𝐵 that are both less than or equal to 1 can be deduced that it is substantially equal to 1. 

As 𝑦 increases either 𝜉𝐶 increases or 𝜉𝐵 decreases. Since the mediator concentration slowly 

increases for all the highest value of 𝜉𝐶, the concentration of mediator is directly correlated to the 

reaction diffusion parameter 𝜉𝐶 . The solid line represents the numerical solution, and the dotted 

line represents the analytical result. 

By the comparison of Figure 2 and Figure 3 depicts that the increasing value of the reaction 

parameter 𝜉𝐵 rises the concentration of mediator corresponding the lowest value of 𝜉𝐶 .  In Figure 

2, the reaction rate constant  𝜉𝐶 ≥ 0.1 yields the concentration of mediator reaches the highest 

stable value as well as the curve turned into straight line. But in Figure 3 𝜉𝐶 ≥ 0.1, the Mediator 

concentration falls down and slowly reaches the steady state. That is, the mediator concentration 

directly correlated to the reaction rate constant 𝜉𝐵 but inversely proportional to 𝜉𝐶.  
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Figure 4. The concentration of Mediator depends on the reaction rate constant 𝝃𝑪 as the flow 

of substrate diffusion across the chemical layer greater than electron diffusion. 

Figure 4 demonstrates that the concentration of mediator for the various values of reaction 

rate constant  𝜉𝐶 whenever the electron diffusion on the chemical layer smaller than the substrate 

diffusion as ∆2→ 0. Considering the aforementioned along with 𝜉𝐵 = 1 to account for the rapid 

diffusion of substrate within the layer and the expectation that a fraction of substrate gets 

eliminated during transit through the layer. Whenever the reaction rate constant 𝜉𝐶 escalates, the 

mediator concentration reduces. The mediator concentration drops towards the steady state at 

the absolute highest significance of the reaction rate constant. 

 

Figure 5. Indeterminate substrate and mediator concentration versus normalized distance 

over enormous parameter values. 
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Figure 5 illustrates the concentration of the unknown substrate and mediator as a function 

of normalised distance over a wide range of parameter values. According to the substrate 

concentration decreases, 𝜉𝐵 grows, and the concentration of mediator that corresponds to the 

lowest value of 𝜉𝐶 also increases as the reaction parameter 𝜉𝐵 grows.  This means that the 

concentration of the mediator impacts the reaction rate constant 𝜉𝐵, which is reversely correlated 

with 𝜉𝐶. 

 

 

Figure 6. Representation of normalized current for the various values of 𝝃𝑩 

 

 

Figure 7.  Plot of normalized current for different values of 𝝃𝑪. 
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Figure 6 represent the concentration of normalized current for various values of reaction 

rate constant 𝜉𝐵. The figure suggests that an increase in 𝜉𝐵 leads to a corresponding decreasing in 

the concentration of current. The concentration of normalised current for a range of response rate 

constant 𝜉𝐶 values is shown in Figure 7. The figure implies that a escalates in the current 

concentration corresponds to an increase in 𝜉𝐶. 

 

 

Figure 7. Three-dimensional Mediator concentration versus dimensionless distance and the 

reaction rate constant 𝝃𝑪. 

 

8. Conclusion 

 The system of nonlinear reaction diffusion equations in chemically modified electrodes at 

a state of stability have been determined analytically in the present study. The novel analytical 

formulations for the concentration of volatile chemicals corresponding to spherical electrodes was 

obtained using the Akbari Ganji Method, which applies steady state reaction diffusion equations 

throughout the electrode surface considering chemically modified electrodes remain afford. A 

straightforward new computational equation is provided for the steady state current response. 

Comparing the final results to preceding restricted case results, it indicates more quantitative 

consistency. These outstanding results are used to model the biosensor based on the system of 

nonlinear reaction diffusion equations. In contrast to other analytical techniques, this approach is 

uncomplicated, yields accurate data, and has a straightforward solution. Other boundary value 

problems in the chemical and physical sciences can be easily resolved with this method. In 

addition to mixed complicated boundary conditions, it seems as though the process may be 

extended to additional two- and three-dimensional geometries and interacting steps of first-order 

chemical reactions. 



Int. J. Anal. Appl. (2025), 23:188 13 

 

Nomenclature 

𝔇𝐵 Diffusion coefficient of substrate 

𝜇𝑚2/𝑠 

𝜉𝐵 Dimensionless diffusion parameter  

𝔇𝐶 Diffusion coefficient of 

mediator 𝜇𝑚2/𝑠 

𝜉𝐶 Dimensionless reaction parameter  

 𝐵 Concentration of substrate 𝜇𝑚 𝑥 Dimensionless Concentration 

substrate  

𝐶 Concentration of oxidized mediator 

𝜇𝑚 

𝑦 Dimensionless concentration of 

mediator  

µ Biomolecular rate constants 𝑚𝑠 𝜗 Dimensionless distance  

𝑢 Distance from the electrode 𝜇𝑚 Ω Dimensionless normalized current 

𝒞𝑇 Total concentration of mediator & 

Substrate 

 𝜙𝑖  Relevant flux factor 

𝑠∞ Bulk concentration of substrate 𝜇𝑚 A1 Oxidized enzyme 

𝒞𝔍 Net flux A2 Reduced enzyme 

𝕂 Partition coefficient  X, Y Reaction Products 
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