Integrable and Continuous Solutions of the Nonlinear Delayed Abel Fractal Integral Equation of the Second Kind
Main Article Content
Abstract
In this paper, we define the nonlinear delayed Abel fractal integral equation of the second kind. The existence of solutions in the two classes, of continuous C[0, T] and integrable L1[0, T] functions, will be proved. The continuous dependence of the unique solution on the parameters will be proved. The Hyers-Ulam stability of the problem itself will be studied.
Article Details
References
- R.P. Agarwal, D. O'Regan, An Introduction to Ordinary Differential Equations, Springer, New York, (2008). https://doi.org/10.1007/978-0-387-71276-5.
- M.F. Barnsley, R.L. Devaney, B.B. Mandelbrot, H. Peitgen, D. Saupe, et al., The Science of Fractal Images, Springer, New York, 1988. https://doi.org/10.1007/978-1-4612-3784-6.
- R.F. Curtain, A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, (1977).
- A. Deppman, E. Megías, R. Pasechnik, Fractal Derivatives, Fractional Derivatives and q-Deformed Calculus, Entropy 25 (2023), 1008. https://doi.org/10.3390/e25071008.
- N. Dunford, J.T. Schwartz, Linear Operators, Part 1: General Theory, Inderscience Publishers, (1957).
- A.M.A. El-Sayed, M.M.S. Ba-Ali, E.M.A. Hamdallah, An Investigation of a Nonlinear Delay Functional Equation with a Quadratic Functional Integral Constraint, Mathematics 11 (2023), 4475. https://doi.org/10.3390/math11214475.
- A.M.A. El-Sayed, W.G. El-Sayed, S.I. Nasim, On the Solvability of a Delay Tempered-Fractal Differential Equation, J. Fract. Calc. Appl. 15 (2024), 1–14.
- A.M.A. El-Sayed, W.G. El-Sayed, S.I. Nasim, Fractal and Tempered-Fractal Gronwall's Inequalities Type, Adv. Inequal. Appl. 2024 (2024), 2. https://doi.org/10.28919/aia/8810.
- L.E. Elsgolts, Differential Equations and the Calculus of Variations, Mir Publishers, (1970).
- K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152.
- R. Gorenflo, S. Vessella, Abel Integral Equations, Analysis and Applications, Lecture Notes in Mathematics 1461, Springer-Verlag, Berlin (1991).
- A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, (2003). https://doi.org/10.1007/978-0-387-21593-8.
- H.H.G. Hashem, A.M.A. El-Sayed, S.M. Al-Issa, Investigating Asymptotic Stability for Hybrid Cubic Integral Inclusion with Fractal Feedback Control on the Real Half-Axis, Fractal Fract. 7 (2023), 449. https://doi.org/10.3390/fractalfract7060449.
- M.O. John, A. Terhemen, T. Tertsegha, Solution of Generalized Abel’s Integral Equation Using Orthogonal Polynomials, Open J. Math. Anal. 6 (2022), 65–73. https://doi.org/10.30538/psrp-oma2022.0113.
- S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-9637-4.
- A.N. Kolmogorov, Introductory Real Analysis, Dover Publications, (1975).
- B.B. Mandelbrot, Fractal Geometry: What Is It, and What Does It Do?, Proc. R. Soc. Lond. A 423 (1989), 3–16. https://doi.org/10.1098/rspa.1989.0038.
- S.I. Nasim, A.M.A. El-Sayed, E.M.A. Hamdallah, Fractal-Fractional Differential and Integral Operators: Definitions, Some Properties and Applications, J. Fract. Calc. Appl. 16 (2025), 1–11. https://doi.org/10.21608/jfca.2025.402383.1178.
- S. Nasim, A.M.A. El-Sayed, W. El-Sayed, Solvability of an Initial-Value Problem of Non-Linear Implicit Fractal Differential Equation, Alex. J. Sci. Technol. 1 (2024), 76–79. https://doi.org/10.21608/ajst.2024.252610.1022.
- A. Parvate, A.D. Gangal, Fractal Differential Equations and Fractal-Time Dynamical Systems, Pramana 64 (2005), 389–409. https://doi.org/10.1007/bf02704566.
- H. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals, Springer, New York, 2004. https://doi.org/10.1007/b97624.
- W.H. Steeb, Problems and Solutions: Nonlinear Dynamics, Chaos and Fractals, World Scientific, (2016).