Stability Analysis Tumour Growth Model with Interphase Delay: A Computational Study
Main Article Content
Abstract
Purpose: In this manuscript, we study a mathematical model of the tumor cell cycle with delay to understand and improve patient quality of life, and design better treatment strategies.
Design/Methodology: This study investigates the system of differential equations to the represent the cell cycle progression in tumour growth model with interphase delay. This analysis seeks to determine the competition model of immune system react cell cycle progression of a specific drug of cycle phase. This theoretical analysis utilized to find impact of immune response, and the effects of specific drugs in cycle-phase and bifurcation analysis in biological process.
Findings: We demonstrate the influence of delay and the stability of the tumor growth with delay differential equation model. The tumor population is stable within 20 days without delay. But in the presence of delay, the tumor growth is stable around 120 days. Increased interphase duration enhanced the rate of cell death in mitosis, and potential drug resistance. Without drug and immune cells, tumor growth is unstable and reaching 10 × 106 cells around 160 days in interphase.
Originality/values: This study presents a novel investigation into the stability of delay differential equations for tumor population. We explore new territory in tumor growth model with interphase delay by considering cell cycle that have not been thoroughly examined in prior studies despite their obvious relevance.
Article Details
References
- N.A. Awang, N. Maan, Analysis of Tumor Populations and Immune System Interaction Model, AIP Conf. Proc. 1750 (2016), 030049. https://doi.org/10.1063/1.4954585.
- N.A. Awang, N. Maan, D. Sul’ain, Tumour-immune Interaction Model with Cell Cycle Effects Including G0 Phase, Matematika (2018), 33–44. https://doi.org/10.11113/matematika.v34.n3.1137.
- C.T.H. Baker, G.A. Bocharov, C.A.H. Paul, F.A. Rihan, Modelling and Analysis of Time-Lags in Some Basic Patterns of Cell Proliferation, J. Math. Biol. 37 (1998), 341–371. https://doi.org/10.1007/s002850050133.
- M. Barton-Burke, G.M. Wilkes, K. Ingwersen, Cancer Chemotherapy Care Plans Handbook, Jones & Bartlett Learning, 2002.
- B.G. Birkhead, E.M. Rankin, S. Gallivan, L. Dones, R.D. Rubens, A Mathematical Model of the Development of Drug Resistant to Cancer Chemotherapy, Eur. J. Cancer Clin. Oncol. 23 (1987), 1421–1427. https://doi.org/10.1016/0277-5379(87)90133-7.
- D.A. Charlebois, G. Balázsi, Modeling Cell Population Dynamics, In Silico Biol. 13 (2018), 21–39. https://doi.org/10.3233/isb-180470.
- L. Cojocaru, Z. Agur, A Theoretical Analysis of Interval Drug Dosing for Cell-Cycle-Phase-Specific Drugs, Math. Biosci. 109 (1992), 85–97. https://doi.org/10.1016/0025-5564(92)90053-y.
- Z. Darzynkiewicz, G. Juan, E. Bedner, Determining Cell Cycle Stages by Flow Cytometry, Curr. Protoc. Cell Biol. 1 (1999), 8.4.1–8.4.18. https://doi.org/10.1002/0471143030.cb0804s01.
- A. Das, K. Dehingia, E. Hinçal, F. Özköse, K. Hosseini, A Study on the Dynamics of a Breast Cancer Model with Discrete-Time Delay, Phys. Scr. 99 (2024), 035235. https://doi.org/10.1088/1402-4896/ad2753.
- A. Das, K. Dehingia, H.K. Sarmah, K. Hosseini, K. Sadri, S. Salahshour, Analysis of a Delay-Induced Mathematical Model of Cancer, Adv. Contin. Discret. Model. 2022 (2022), 15. https://doi.org/10.1186/s13662-022-03688-7.
- L.G. De Pillis, A. Radunskaya, A Mathematical Tumor Model with Immune Resistance and Drug Therapy: an Optimal Control Approach, Comput. Math. Methods Med. 3 (2000), 79–100. https://doi.org/10.1080/10273660108833067.
- K. Dehingia, P. Das, R.K. Upadhyay, A.K. Misra, F.A. Rihan, K. Hosseini, Modelling and Analysis of Delayed Tumour–immune System with Hunting T-Cells, Math. Comput. Simul. 203 (2023), 669–684. https://doi.org/10.1016/j.matcom.2022.07.009.
- K. Dehingia, H.K. Sarmah, Y. Alharbi, K. Hosseini, Mathematical Analysis of a Cancer Model with Time-Delay in Tumor-Immune Interaction and Stimulation Processes, Adv. Differ. Equ. 2021 (2021), 473. https://doi.org/10.1186/s13662-021-03621-4.
- L.G. dePillis, A. Eladdadi, A.E. Radunskaya, Modeling Cancer-Immune Responses to Therapy, J. Pharmacokinet. Pharmacodyn. 41 (2014), 461–478. https://doi.org/10.1007/s10928-014-9386-9.
- M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Springer, Berlin, 2013. https://doi.org/10.1007/978-3-642-93126-0.
- P. Garcia-Peñarrubia, A.D. Bankhurst, Kinetic Analysis of Effector Cell Recycling and Effector-Target Binding Capacity in a Model of Cell-Mediated Cytotoxicity., J. Immunol. 143 (1989), 2101–2111. https://doi.org/10.4049/jimmunol.143.7.2101.
- A.K. Golmankhaneh, S. Tunç, A.M. Schlichtinger, D.M. Asanza, A.K. Golmankhaneh, Modeling Tumor Growth Using Fractal Calculus: Insights Into Tumor Dynamics, BioSystems 235 (2024), 105071. https://doi.org/10.1016/j.biosystems.2023.105071.
- J.G. Hardman, L.E. Limbird, A.G. Gilman, Goodman and Gilman's: The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, 1996.
- X. Guo, L. Chen, From G1 to M: a Comparative Study of Methods for Identifying Cell Cycle Phases, Briefings Bioinform. 25 (2024), bbad517. https://doi.org/10.1093/bib/bbad517.
- D. Hart, E. Shochat, Z. Agur, The Growth Law of Primary Breast Cancer as Inferred From Mammography Screening Trials Data, Br. J. Cancer 78 (1998), 382–387. https://doi.org/10.1038/bjc.1998.503.
- N. Kar, N. Özalp, A Fractional Mathematical Model Approach on Glioblastoma Growth: Tumor Visibility Timing and Patient Survival, Math. Model. Numer. Simul. Appl. 4 (2024), 66–85. https://doi.org/10.53391/mmnsa.1438916.
- A.I. Khamidullina, Y.E. Abramenko, A.V. Bruter, V.V. Tatarskiy, Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets, Int. J. Mol. Sci. 25 (2024), 1263. https://doi.org/10.3390/ijms25021263.
- D. Kirschner, J.C. Panetta, Modeling Immunotherapy of the Tumor - Immune Interaction, J. Math. Biol. 37 (1998), 235–252. https://doi.org/10.1007/s002850050127.
- F. Kozusko, P. Chen, S.G. Grant, B.W. Day, J.C. Panetta, A Mathematical Model of in Vitro Cancer Cell Growth and Treatment with the Antimitotic Agent Curacin A, Math. Biosci. 170 (2001), 1–16. https://doi.org/10.1016/s0025-5564(00)00065-1.
- V. Kuznetsov, I. Makalkin, M. Taylor, A. Perelson, Nonlinear Dynamics of Immunogenic Tumors: Parameter Estimation and Global Bifurcation Analysis, Bull. Math. Biol. 56 (1994), 295–321. https://doi.org/10.1016/s0092-8240(05)80260-5.
- W. Liu, T. Hillen, H.I. Freedman, A Mathematical Model for M-Phase Specific Chemotherapy Including the $G_0$-Phase and Immunoresponse, Math. Biosci. Eng. 4 (2007), 239–259. https://doi.org/10.3934/mbe.2007.4.239.
- Y. Liu, Y. Zhuang, Time Delays in a Double‐layered Radial Tumor Model with Different Living Cells, Math. Methods Appl. Sci. 48 (2024), 2655–2664. https://doi.org/10.1002/mma.10456.
- M.C. Mackey, Cell Kinetic Status of Haematopoietic Stem Cells, Cell Prolif. 34 (2001), 71–83. https://doi.org/10.1046/j.1365-2184.2001.00195.x.
- H. Meng, Y. Huan, K. Zhang, X. Yi, X. Meng, E. Kang, S. Wu, W. Deng, Y. Wang, Quiescent Adult Neural Stem Cells: Developmental Origin and Regulatory Mechanisms, Neurosci. Bull. 40 (2024), 1353–1363. https://doi.org/10.1007/s12264-024-01206-1.
- L. Norton, A Gompertzian Model of Human Breast Cancer Growth, Cancer Res. 48 (1988), 7067–7071.
- L. NORTON, R. SIMON, H.D. BRERETON, A.E. BOGDEN, Predicting the Course of Gompertzian Growth, Nature 264 (1976), 542–545. https://doi.org/10.1038/264542a0.
- J. Panetta, A Mathematical Model of Periodically Pulsed Chemotherapy: Tumor Recurrence and Metastasis in a Competitive Environment, Bull. Math. Biol. 58 (1996), 425–447. https://doi.org/10.1016/0092-8240(95)00346-0.
- J. Panetta, J. Adam, A Mathematical Model of Cycle-Specific Chemotherapy, Math. Comput. Model. 22 (1995), 67–82. https://doi.org/10.1016/0895-7177(95)00112-f.
- J.T. Park, H. Levine, Mathematical Characterization of Drug-Induced Persistence in Cancer, bioRxiv 2025.01.21.634165 (2025). https://doi.org/10.1101/2025.01.21.634165.
- E. Petersson, G. Hedlund, Proliferation and Differentiation of Alloselective Nk Cells After Alloimmunization–evidence for an Adaptive Nk Response, Cell. Immunol. 197 (1999), 10–18. https://doi.org/10.1006/cimm.1999.1560.
- M.J. Robertson, B.T. Williams, K. Christopherson, Z. Brahmi, R. Hromas, Regulation of Human Natural Killer Cell Migration and Proliferation by the Exodus Subfamily of CC Chemokines, Cell. Immunol. 199 (2000), 8–14. https://doi.org/10.1006/cimm.1999.1601.
- S. Rubinow, J. Lebowitz, A Mathematical Model of the Acute Myeloblastic Leukemic State in Man, Biophys. J. 16 (1976), 897–910. https://doi.org/10.1016/s0006-3495(76)85740-2.
- M. Sardar, S. Khajanchi, S. Biswas, S.F. Abdelwahab, K.S. Nisar, Exploring the Dynamics of a Tumor-Immune Interplay with Time Delay, Alex. Eng. J. 60 (2021), 4875–4888. https://doi.org/10.1016/j.aej.2021.03.041.
- M. Sardar, S. Khajanchi, S. Biswas, S. Ghosh, A Mathematical Model for Tumor-Immune Competitive System with Multiple Time Delays, Chaos Solitons Fractals 179 (2024), 114397. https://doi.org/10.1016/j.chaos.2023.114397.
- J. Serizay, M. Khoury Damaa, A. Boudjema, R. Balagué, M. Faucourt, N. Delgehyr, C. Noûs, L. Zaragosi, P. Barbry, N. Spassky, R. Koszul, A. Meunier, Cyclin Switch Tailors a Cell Cycle Variant to Orchestrate Multiciliogenesis, Cell Rep. 44 (2025), 115103. https://doi.org/10.1016/j.celrep.2024.115103.
- G. Steel, Cell Loss as a Factor in the Growth Rate of Human Tumours, Eur. J. Cancer (1965) 3 (1967), 381–387. https://doi.org/10.1016/0014-2964(67)90022-9.
- M. Tubiana, E. Malaise, Comparison of Cell Proliferation Kinetics in Human and Experimental Tumors: Response to Irradiation, Cancer Treat. Rep. 60 (1976), 1887–1895.
- S. Tubtimsri, T. Chuenbarn, S. Manmuan, Quercetin Triggers Cell Apoptosis-Associated Ros-Mediated Cell Death and Induces S and G2/m-Phase Cell Cycle Arrest in Kon Oral Cancer Cells, BMC Complement. Med. Ther. 25 (2025), 34. https://doi.org/10.1186/s12906-025-04782-5.
- M. Ullberg, J. Merrill, M. Jondal, Interferon‐induced Nk Augmentation in Humans, Scand. J. Immunol. 14 (1981), 285–292. https://doi.org/10.1111/j.1365-3083.1981.tb00566.x.
- M. Villasana, G. Ochoa, S. Aguilar, Modeling and Optimization of Combined Cytostatic and Cytotoxic Cancer Chemotherapy, Artif. Intell. Med. 50 (2010), 163–173. https://doi.org/10.1016/j.artmed.2010.05.009.
- M. Villasana, A. Radunskaya, A Delay Differential Equation Model for Tumor Growth, J. Math. Biol. 47 (2003), 270–294. https://doi.org/10.1007/s00285-003-0211-0.
- X. Wang, H. Lu, G. Sprangers, T.C. Hallstrom, UHRF2 Accumulates in Early $G_1$-Phase After Serum Stimulation or Mitotic Exit to Extend $G_1$ and Total Cell Cycle Length, Cell Cycle 23 (2024), 613–627. https://doi.org/10.1080/15384101.2024.2353553.
- G.F. Webb, A Nonlinear Cell Population Model of Periodic Chemotherapy Treatment, in: Recent Trends in Differential Equations, World Scientific, 1992: pp. 569–583. https://doi.org/10.1142/9789812798893_0042.
- R. Yafia, A Study of Differential Equation Modeling Malignant Tumor Cells in Competition with Immune System, Int. J. Biomath. 04 (2011), 185–206. https://doi.org/10.1142/s1793524511001404.