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Abstract.

Purpose: In this manuscript, we study a mathematical model of the tumor cell cycle with delay to understand and

improve patient quality of life, and design better treatment strategies.

Design/Methodology: This study investigates the system of differential equations to the represent the cell cycle

progression in tumour growth model with interphase delay. This analysis seeks to determine the competition model

of immune system react cell cycle progression of a specific drug of cycle phase. This theoretical analysis utilized to

find impact of immune response, and the effects of specific drugs in cycle-phase and bifurcation analysis in biological

process.

Findings: We demonstrate the influence of delay and the stability of the tumor growth with delay differential equation

model. The tumor population is stable within 20 days without delay. But in the presence of delay, the tumor growth

is stable around 120 days. Increased interphase duration enhanced the rate of cell death in mitosis, and potential drug

resistance. Without drug and immune cells, tumor growth is unstable and reaching 10 × 106 cells around 160 days in

interphase.

Originality/values: This study presents a novel investigation into the stability of delay differential equations for tumor

population. We explore new territory in tumor growth model with interphase delay by considering cell cycle that have

not been thoroughly examined in prior studies despite their obvious relevance.

1. Introduction

A single parent cell assists in the development of the new cell population, a process known as the

cell cycle, which involves the duplication of DNA and the division of two daughter cells. The cell

cycle has three stages, such as the quiescent phase, interphase, and mitosis. The quiescent phase
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is a G0 phase when cells are active and dividing; they enter this phase mainly because of outside

conditions and lack of nutrients, which are necessary for growth. The development program

includes the most metabolically active cells, which have fully differentiated to the terminal G0

phase. Interphase division involves both cell growth and DNA replication. Mitosis, a nuclear

division, occurs before other organelles through the process of cytokinesis. Mitosis is the process

by which a eukaryotic cell divides its nuclear DNA and chromosomes into two distinct but identical

sets of nuclei. The cell cycle process reacts to the interconnected immune system, playing a role

in immune cell proliferation. The immune system can influence cell cycle immunity, including

tolerance and autoimmunity. The immune system protects the body from diseases such as viruses,

bacteria, and cancer cells. Such as viruses, bacteria, and cancer cells.

Delays influence key phenomena in the progression of cell cycle phases. Mathematical models

using delay differential equations (DDEs) help accurately capture behaviors such as stability,

oscillations, and uncontrolled proliferation. The biological process of tumor development involves

complex cell proliferation and tightly regulated cell cycle control during growth and division. In

cancer, this regulation is disrupted, leading to uncontrolled proliferation—a process that is not

instantaneous due to delays in DNA replication and other cellular mechanisms. The slow response

of the cell cycle to growth factors and treatment significantly affects how quickly tumors grow and

how long they remain stable. Accurate modeling improves the prediction of tumor progression

and enhances the timing of therapies such as chemotherapy and radiotherapy. Tumor growth is

further complicated by the presence of a quiescent phase, where some cells temporarily exit the

active cycle. These quiescent cells can re-enter the cycle, contributing to tumor regrowth after

treatment. Transitions between quiescent and proliferating states are delayed, and thus, delay

differential equations provide a natural framework for modeling these dynamics and describing

the system’s behavior over time.

Birkhead [5] developed to the resistance of chemotherapy via multiple mechanisms, which

diminishes the efficacy of treatment and contributes to tumor recurrence. The tumor is categorized

into populations of cells that are sensitive to pharmacological agents and those that exhibit

resistance to such treatments. Cojocaru [7] focused to the drugs that are unique to certain stages

of the cell cycle, such as the S-phase or M-phase, are designed to target tumor cells during those

specific phases.

Incorporating important biological processes as cell cycle dynamics, medication resistance, and

tumor heterogeneity, a nonlinear cell population model depicts the progression of cancer cells

under periodic treatment in Webb [48]. Bifurcation analysis may detect situations that result

in the complete removal of a tumor, its stable size, or its uncontrolled progression. Kuznetsov

[25] investigated the immunogenic tumors through the lens of nonlinear dynamics entails the

modeling of interactions between the immune system and tumor cells. These models frequently

integrate essential biological processes, including tumor-immune interactions, mechanisms of

immune evasion, and responses to immunotherapy.
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Cycle-specific chemotherapeutic agents exert their effects during distinct stages of the cell cycle,

rendering timing and scheduling essential for optimal treatment in Panetta [33] and Kirschner [23].

Based on the DNA makeup of the cells, Darzynkiewicz [8] examined the cells were spread out

during the different stages of the cell cycle. It includes coloring cells with DNA-binding dye and

measuring the strength of the light to find out DNA is in each cell. A clear peak is made by cells

with a single DNA content. The DNA content of cells in the synthesis phase is in the middle,

making a broad distribution. Cells that have copied their DNA (tetraploid) make a different peak

with twice the light strength of the G1 phase.

Kozusko [24] developed a competitive framework to imitate the interactions between these

groups, which would allow for the observation of tumor development, immune response, and

the effects of treatment. The study presents novel chemotherapy procedures based on numerical

simulations and optimum control mechanisms. These improved procedures are compared with

typical pulsed periodic treatments, which shows that they may be more effective in treating

patients. A delay differential equations model of tumor growth incorporating the immune response

and drugs introduced by De [11], and Villasana [45, 46].

Liu [26] examined the prospective advantages of synchronizing cancer cells to concurrently

enter the M-phase prior to the administration of M-phase specific medicines, with the objective

of enhancing therapeutic efficacy. The activity of cells in the G0-phase substantially affects overall

cancer dynamics, indicating that targeting this phase may improve therapy success. Yafia [49]

developed a model that emphasizes the eradication of tumors by effector T cells. This model

highlights a number of immunosuppressive processes, such as the interactions between cytokines

and the effect that tumor growth has on the infiltration of immune cells.

Eisen [15] proposed a differential equation model that included immune system reactions and

medication interactions. The research looks at equilibrium points, stability qualities, and how

sensitive they are to chemotherapeutic factors. The importance of activating the immune system

in the success of therapy is shown by numerical simulations. Sensitivity analysis shows that

drug-induced tumor mortality and degradation rates have a major effect on therapy. Depillis [14],

Awang [1], and Awang’s [2] proposed a concept that separates the tumor cell population into

interphase cells, mitosis cells, and quiescent cells. This model considers how the immune system

targets and eliminates tumor cells, both growing and quiescent cells. Charlebois [6] determined

mathematical modeling cell population dynamics, including simple models, complex models, the

underscores the significance of population modeling in biology, accentuating its comprehending

to the biological processes and occurrences.

The equilibrium point stability, and Hopf bifurcation situations that cause periodic solutions, and

time delays affect tumor-immune system stability, perhaps causing oscillations in Dehingia [13].

Sardar [38] introduced a conceptual mathematical model consisting of three interrelated nonlinear

mathematical model fot tumor cells. This model integrates discrete time delays to accommodate

the duration necessary for the development of immune responses. Das [10], and Dehingia [12]
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presented an altered prey-predator model that includes tumor cells. This work illustrating the

temporal dynamics of immune responses, and offers a mathematical model for the immune system

and tumor cells.

Khamidullina [22] and Das [9] studied biological processes involved in breast cancer

development, including cell proliferation, immune response, and angiogenesis (formation of new

blood vessels). The dynamics of cancer are intricate, encompassing not only the proliferation of the

primary tumor but also its interactions with the encircling environment. Tumor development may

often be represented by differential equations that consider the non-linear and frequently chaotic

characteristics of cancer proliferation and dissemination, where fractal calculus provides more

accurate methodologies Golmankhaneh [17]. Kar [21] developed a fractional order mathematical

model to examine glioblastoma proliferation, emphasizing the prediction of tumor appearance in

medical imaging and the evaluation of patient survival. The model employs fractional derivatives

to more precisely depict the intricate, diverse characteristics of glioblastoma tumors.

Sardar [39] analyzed the intricate interactions between tumor cells and the immune system,

combining three distinct time delays. These delays signify distinct biological processes, including

the duration necessary for the immune system to identify tumor cells and initiate a reaction.

The model seeks to elucidate the complex connections and feedback mechanisms intrinsic to

tumor-immune dynamics. Guo [19] and Meng [29] concentrate an extensive assessment of

diverse computational methodologies employed to ascertain cell cycle phases from single-cell

RNA sequencing data. The efficacy of these methodologies is examined across various datasets

by Wang [47].

Recently, Serizay [40] examined the unique cyclin switch changes the normal cell cycle to make

it easier for multiciliated cells to differentiate. This type of cell cycle uses a cyclin-dependent kinase

threshold that is lower than the S-phase threshold. This system lets the cell change the genetic

program for the cell cycle by controlling only certain parts to change CDK activity from division

to differentiation. Tubtimsri [43] shows that quercetin can cause death by creating reactive oxygen

species and stopping the cell cycle in the S and G2/M stages. Park [34] constructed a mathematical

model to elucidate the dynamic mechanism via which cancer cells attain a permanent state in

response to pharmacological intervention. This model seeks to forecast the circumstances in which

cancer cells endure therapeutic treatments by developing a drug-tolerant phenotype. Liu [27]

developed a free boundary problem technique to simulate the tumor progression, integrating time

delays to reflect the time frame necessary for cell multiplication. They undertake a linear stability

analysis to these delays effect the tumor growth dynamics and stability.

2. Mathematical formulation

In this section, we consider the mathematical modeling and interactions between immune cells,

drug, and tumor cells on the cell cycle. Goodman [18] studied the effects of dosing intervals in

the proliferating and resting cells on the tumor populations. Their model approaches the cycling
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tumor cell population into phases but they didn’t discuss the quiescent phase combined with

interphase delay. This study interact tumor cell cycle with interphase delay, immune system

and drug responses. The cell cycle appear naturally and it is explained by Baker [3]. The cell

cycle duration is approximately 24 hours for most typical normal cells with various exceptions.

Tubiana [42] provided that the median duration of 30 solid human tumors phases is 2 days and

distributed by 1 day for pre-synthetic G1, 18 hours for synthetic S, 6 hours for post-synthetic

G2, and approximately 1 hour for mitosis M (see [11, 23, 25]). The cell cycle and mathematical

model for tumor growth with interphase delay is shown in Figures 1, and 2. We assume that the

concentration of drug (D) exponentially decreases with time and destroyed tumor cells in mitosis

TM.

Figure 1. Schematic diagram of the cell cycle

Figure 2. Mathematical model for tumor growth with interphase delay
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The mathematical model of the system is characterized by [2, 26, 45, 46]

dQ
dt

= 2a1 f TM(t) − d1Q(t) −m1Q(t) − δ1I(t)Q(t) (2.1)

dTI

dt
= a2Q(t) + 2a3(1− f )TM(t) − d2TI(t) −m2TI(t− τ) − δ2I(t)TI(t) (2.2)

dTM

dt
= m2TI(t− τ) − d3TM(t) −m3TM(t) − δ3I(t)TI(t) − α1(1− exp(−α2D(t)))TM(t) (2.3)

dI
dt

= K +
ρI(t)(TI(t) + TM(t) + Q(t))n

λ+ (TI(t) + TM(t) + Q(t))n − d4I(t) − δ4I(t)TI(t) − δ5I(t)TM(t)

− δ6I(t)Q(t) − α3(1− exp(−α4D(t)))TI(t) (2.4)

dD
dt

= −γD(t) (2.5)

with initial conditions given by

Q(t) = φ1(t), TI(t) = φ2(t), TM(t) = φ3(t),

I(t) = φ4(t), D(t) = φ5(t), for t ∈ [−τ, 0]. (2.6)

where the tumor cells population in the cell cycle at time is denoted by interphase TI(t) contains

G1 + S + G2, mitosis TM(t), immune system I(t), and drug D(t) respectively, τ be the rate of time

resident in interphase, di, (i = 1, 2, 3, 4) denotes the rate of natural death of cells, ai, (i = 1, 2, 3)

is flow rate of cells add from another phase, f is flow rate of cells that enter in quiescent phase,

mi, (i = 1, 2, 3) represent losses of tumor cells from the phase in cell cycle, δi, (i = 1, 2, ..., 6) terms

represent tumor cells destroyed by immune cells, αi terms represent tumor cells destroyed by

drug, K is constant growth of immune cells, ρ, and λ are growth of the immune due to stimulus

and saturation level without stimulation, and γ is decay of drugs.

Tumor cells inside the interphase at a time t continue in the cycle, and assuming that the cells

enter mitosis at time t − τ. The population of the tumor cell obtained by mitosis TM and τ that

regulate the rate of cell division. This explains the terms TI(t − τ) in system (2.1) to (2.5). (see

references [20, 30–32]). We assume that u(0) = u0 > 0 at time t = 0 (see [45]). The values of the

parameters are summarized in Table 1.

Consider the non-dimensional variables [46]

u(t) =
Q

Q(0)
, v(t) =

TI

TI(0)
, w(t) =

TM

TM(0)
,

x(t) =
I

I(0)
, y(t) =

D
D(0)

, s =
Q(0)
TI(0)

, TI(0) = TM(0). (2.7)

Using the non-dimensional change of variables 2.7, the system 2.1 to 2.5 has been rewritten in the

form of dimensionless variables u, v, w, x, y

du
dt

=
2a1 f

s
w(t) − d1u(t) −m1u(t) − δ1I(0)u(t)x(t) (2.8)

dv
dt

= a2su(t) + 2a3(1− f )w(t) − d2v(t) −m2v(t− τ) − δ2I(0)x(t)v(t) (2.9)
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dw
dt

= m2v(t− τ) − d3w(t) −m3w(t) − δ3I(0)x(t)w(t) − α1

(
1− e−α2D(0)y(t)

)
w(t) (2.10)

dx
dt

=
K

I(0)
+
ρx(t) (su(t) + v(t) + w(t))n

λ+ (su(t) + v(t) + w(t))n − d4x(t) − δ4I(0)x(t)v(t) − δ5TM(0)x(t)w(t)

− δ6Q(0)x(t)u(t) − α3

(
1− e−α4D(0)y(t)

)
x(t) (2.11)

dy
dt

= −γy(t). (2.12)

Table 1. Parameter values

Source Estimated value of the parameters

[25, 32, 41]

τ = 2 hr (≈ 0.9167 days)

a3 = 0.9159 day−1

d2 = 0.1145 day−1

m2 = 0.8470 day−1

δ2 = δ3 = 2.16× 10−7 cell−1 day−1

d3 = 0.6641 day−1

m3 = 0.9159 day−1

[25, 28, 37, 46]

a1 = a2 = 0− 1 day−1

d1 = 0− 1 day−1

m1 = 0− 0.056 day−1

δ1 = 0.1× 10−8
− 1× 10−8 cell−1 day−1

[32, 46]
α1 = α3 = 0− 1 day−1

α2 = α4 = 0.01× 10−2
− 1× 10−2 mg−1

[25]

k = 1.3× 104 cell day−1

ρ = 0.2 day−1

λ = (0.3× 106 cell)3

d4 = 0.04 day−1, where
dI
dt

= k− d1I

δ4 = δ5 = 3.422× 10−10 cell−1 day−1 day−1

[4, 25, 46]
δ6 = 0.01× 10−6

− 1× 10−6 cell−1 day−1

γ = 0.1× 10−2
− 1× 10−2 day−1

[16, 35, 36, 44] n = 3

[26, 46]

I(0) = 3.5× 105

TI(0) = Tm(0) = 0.1× 106

Q(0) = 0.1× 106

D(0) = 8
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3. Result and discussion

In this section, we examine the dynamics of tumor cell populations under a range of experimental

conditions. The dimensionless equations (2.8) to (2.12) with the initial conditions (2.7) are solved

using the dde23 procedure in matlab, and the their results are graphically illustrated.

We first analyze the population with and without delay to observe the impact of timing on cell

proliferation. Specifically, we compare scenarios where a delay is introduced in the interphase

and mitosis phases, and assess how this delay affects tumor growth. Next, we explore the effect

of drug treatment, both with and without delay. This allows us to investigate how therapeutic

intervention alters tumor progression under different time constraints.

Additionally, we consider a scenario in which both immune response and drug treatment are

absent. This condition serves as a baseline to understand the natural growth and equilibrium of the

tumor population in the absence of external factors. Finally, we study the effects of increasing delay

in the absence of drug treatment, providing insight into the role of timing in tumor cell regulation

and how a prolonged delay might influence the overall population dynamics. By comparing these

various scenarios, we aim to gain a comprehensive understanding of the factors influencing tumor

cell behavior and potential therapeutic strategies.

3.1. Tumor population without delay (τ = 0). Figure 3, we illustrate the dynamics of the tumor

population in the absence of delay in the growth cycle. Without delay, the proliferation of tumor

cells occurs rapidly, leading to a stabilization of the tumor cell population within a span of 20 days.

This rapid growth phase is critical as it highlights the aggressive nature of tumor cells, which can

quickly adapt and proliferate in a conducive environment.

We observe that the drug cells completely vanish after 175 days. This decline occurs under the

assumption that the rate of drug cell depletion is linear, specifically at a rate of 0.1 × 10−2 cells

per day. The linear decrease suggests a consistent and predictable reduction in the effectiveness

of the drug over time, which may be attributed to factors such as drug resistance. In parallel,

the behavior of immune cells in response to the tumor environment. Initially, the immune cell

population experiences a significant increase, reaching up to 4.3 × 106 cells within the first 60

days. This rapid expansion indicates a robust immune response aimed at combating the tumor.

However, after this initial growth phase, the rate of immune cell proliferation begins to slow

down. By the end of the 175-day observation period, the immune cell population stabilizes at

approximately 4.5 × 106 cells. This slight increase beyond the 60-day mark suggests that while

the immune system is initially effective in mobilizing resources against the tumor, it may face

challenges in maintaining this heightened state of activity over time.

3.2. Impacts of delay (τ = 0.9167) on tumor population with and without drug. From figure 4

and 5, we illustrate the tumor population with drug and without drug. The impact of delay in the

interphase cell cycle is significant, as it directly influences the progression of cells through mitosis

and the quiescent phase. When the drug is administered, the tumor population initially shows
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an unstable and declining trend, indicating the drug’s effectiveness in reducing tumor growth.

This reduction occurs approximately in a linear, suggesting that the drug consistently targets

proliferating tumor cells over time. After around 120 days, the tumor population reaches a stable

state, indicating that the drug has achieved control over the tumor dynamics, maintaining a lower

tumor burden. Eventually, the system stabilizes after approximately 160 days. This delayed

stabilization compared to the drug-treated scenario highlights the crucial role of therapeutic

intervention in achieving earlier and controlled tumor suppression.

In the quiescent phase, where cells primarily prepare for division, tumor cell growth is effectively

stable after a duration of 120 days (approximately). This regulation implies that the rate of cellular

proliferation is moderated, preventing uncontrolled growth in Figures 4(a) and 5(a). With the drug,

the cell growth in this phase is 0.004× 106 cells (60 days), while without the drug, it is significantly

lower at 0.0009 × 106 cells (60 days). This difference suggests that the drug has a cytostatic effect,

encouraging more cells to enter or remain in the quiescent state rather than undergoing active

division. By pushing cells into a dormant state, the drug may reduce the overall proliferation of

tumor cells, indirectly controlling tumor growth.

During the interphase, where cells prepare for division by undergoing growth and DNA

replication, the effect of the drug is more pronounced in Figures 4(b) and 5(b). With the drug, the

growth of cells in this phase reaches 0.03× 106, which is five times higher than the value observed

without the drug (0.006 × 106). This substantial increase suggests that the drug may enhance

cell survival during interphase, possibly by improving DNA repair mechanisms or slowing the

transition to mitosis. Conversely, without the drug, fewer cells survive this phase, likely due to

the absence of drug-induced stabilization.

The mitotic phase, where cells actively divide, demonstrates a different effect in Figures 4(c) and

5(c). With the drug, the growth rate is −0.02× 106, indicating a net loss of cells. This negative value

suggests that the drug is highly effective at inducing cell death during division, a characteristic of

many cytotoxic drugs that target rapidly dividing cells. In contrast, without the drug, the cell loss

in mitosis is reduced to −0.008 × 106, reflecting a lower rate of cell death. The higher cell death

rate in the presence of the drug indicates its effectiveness in disrupting mitosis and reducing the

proliferative capacity of the tumor.

This accelerated tumor growth necessitates a more robust immune response to maintain

homeostasis. This effect is clearly illustrated when comparing Figures 4(d) and 5(d). With the

drug, the immune cell count is 6.1 × 106, while without the drug, it is slightly higher at 6.5 × 106.

This marginal reduction with the drug could be due to mild immunosuppression, a common side

effect of some anti-tumor drugs. Alternatively, it may indicate that the drug reduces the need for

a strong immune response by directly targeting tumor cells.

Finally, from Figures 4(f) and 5(e) the growth of tumor cells provides critical insight into the

overall effectiveness of the drug. With the drug, tumor cell growth is 0.01 × 106 cells, whereas

without the drug, it is 0.002 × 106 cells. This counterintuitive result indicates that the drug may
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inadvertently support a higher rate of tumor cell survival. This can occur if the drug drives cells into

less active states (such as the quiescent or interphase phases), where they are not directly targeted

by cytotoxic effects. The higher growth rate with the drug may also suggest the development of

drug resistance, where surviving tumor cells adapt to the treatment.

3.3. Tumor population in the absence of immune response and drug. From Figure 6, in the

absence of immune cells and drug, tumor cells experience unchecked proliferation, reaching a

peak growth rate around day 45. Without immune regulation, the balance between cell division

leading to accelerated tumor expansion is unstable. On day 160, approximately 10 × 106 cells

transition from the interphase stage, indicating a high proliferation potential. However, only

5× 106 of these cells successfully progress from interphase to mitosis, where they actively divide.

Meanwhile, a smaller fraction, around 0.8 × 106 cells, are recycled back into the quiescent phase,

where they enter a non-dividing, resting state. The remaining cells that do not advance to mitosis

or enter the quiescent phase are lost due to natural cell death. This natural cell attrition is a critical

factor in maintaining cellular homeostasis under normal conditions. However, in the absence

of immune intervention, this balance is tilted in favor of tumor growth. Consequently, despite

the initial 10 × 106 cells leaving interphase, the effective growth rate of the tumor on day 160 is

approximately 5 × 106 cells. This value represents the net increase in dividing tumor cells after

accounting for the losses due to recycling and natural death. The inability to eliminate excess

tumor cells due to the absence of an immune response further exacerbates tumor progression,

highlighting the critical role of immune cells in maintaining cellular balance and controlling tumor

growth.

As shown in Figure 7, prolonging the delay time from 2 to 12 hours in the interphase and mitosis

phases markedly alters the steady-state distribution of the tumor cell population. Specifically, as

the delay time increases, the transition of cells from interphase to mitosis is slowed, disrupting the

natural progression of the cell cycle. This disruption affects the overall balance of cell distribution

across the different phases. One of the most notable consequences of this increased delay is a

reduction in the number of cells that transition from the quiescent phase to the active phases of

reproduction. In a normal cycle, a portion of quiescent cells re-enter the cell cycle, contributing

to tumor growth. However, with extended delay in interphase, fewer cells successfully complete

the transition to mitosis, which means fewer cells are available for subsequent divisions. This

imbalance ultimately leads to an increase in the overall growth of tumor cells. As a result, the

delay in interphase allowing the tumor cells to accumulate without effective control.
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Figure 3. Solution of the tumor growth model without delay
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Figure 4. Solution of the tumor growth model with delay (τ = 0.91)
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Figure 5. Solution of the tumor growth model with delay (τ = 0.91), without drug
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Figure 6. Solution of the tumor growth model with delay (τ = 0.91), without

immune and drug
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Figure 7. Solution of the tumor growth model with immune and drug responses vs delay

4. Conclusion

In this manuscript, we investigated the stability analysis of delay differential equation for tumour

growth model with interphase delay. The findings of the manuscript are listed as follows:

• In the absence of delay, the tumor population rapidly stabilizes within 20 days, and the drug

cells deplete linearly over 175 days, reflecting a predictable decline in drug effectiveness.

Consequently, immune cells exhibit an initial rapid increase, reaching approximately 4.3×

106 cells within 60 days before stabilizing around 4.5× 106 cells, indicating an early strong

immune response that gradually weakens over time.

• In the presence of delay, the tumor growth is stabilizing around 120 days with drug, and

takes around 160 days to stabilize without the drug. The drug also significantly impacts

cell cycle states such as increasing interphase, and enhancing cell death up to 0.008× 106 in

mitosis, while immune response is stable. A higher tumor cell growth rate with the drug

suggests a potential for drug resistance and the complexity of treatment outcomes.

• Without immune cells and drug, the growth of tumor cells reaches approximately 10× 106

around 160 days from interphase but only 5 × 106 progressing to mitosis, reflecting high
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proliferation. Increasing the delay in interphase and mitosis disrupts cell cycle progression,

reducing the transition of quiescent cells into active phases and creating an imbalance

that promotes tumor expansion. This highlights the immune cells and precise cell cycle

controlling tumor growth.

Future directions

The limitations of this study include interphase delay with immune and drug responses.

However, we did not consider cells from quiescent phase destroyed by drug and delay in drug

cells. Therefore, our future study will focus on these aspects.

Author Contributions: The authors equally contributed in this manuscript. G. Veerabathiran,

and G. Jagan Kumar contributed to the methodology, validation and prepared the original draft.

V. Govindan, and Siriluk Donganont was responsible for formal analysis, and investigation, and

supervision.

Funding: S. Donganont was supported by the University of Phayao and Thailand Science Research

and Innovation Fund (Fundamental Fund 2026).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] N.A. Awang, N. Maan, Analysis of Tumor Populations and Immune System Interaction Model, AIP Conf. Proc.

1750 (2016), 030049. https://doi.org/10.1063/1.4954585.

[2] N.A. Awang, N. Maan, D. Sul’ain, Tumour-immune Interaction Model with Cell Cycle Effects Including G0 Phase,

Matematika (2018), 33–44. https://doi.org/10.11113/matematika.v34.n3.1137.

[3] C.T.H. Baker, G.A. Bocharov, C.A.H. Paul, F.A. Rihan, Modelling and Analysis of Time-Lags in Some Basic Patterns

of Cell Proliferation, J. Math. Biol. 37 (1998), 341–371. https://doi.org/10.1007/s002850050133.

[4] M. Barton-Burke, G.M. Wilkes, K. Ingwersen, Cancer Chemotherapy Care Plans Handbook, Jones & Bartlett

Learning, 2002.

[5] B.G. Birkhead, E.M. Rankin, S. Gallivan, L. Dones, R.D. Rubens, A Mathematical Model of the Development of

Drug Resistant to Cancer Chemotherapy, Eur. J. Cancer Clin. Oncol. 23 (1987), 1421–1427. https://doi.org/10.1016/

0277-5379(87)90133-7.

[6] D.A. Charlebois, G. Balázsi, Modeling Cell Population Dynamics, In Silico Biol. 13 (2018), 21–39. https://doi.org/10.

3233/isb-180470.

[7] L. Cojocaru, Z. Agur, A Theoretical Analysis of Interval Drug Dosing for Cell-Cycle-Phase-Specific Drugs, Math.

Biosci. 109 (1992), 85–97. https://doi.org/10.1016/0025-5564(92)90053-y.

[8] Z. Darzynkiewicz, G. Juan, E. Bedner, Determining Cell Cycle Stages by Flow Cytometry, Curr. Protoc. Cell Biol. 1

(1999), 8.4.1–8.4.18. https://doi.org/10.1002/0471143030.cb0804s01.

[9] A. Das, K. Dehingia, E. Hinçal, F. Özköse, K. Hosseini, A Study on the Dynamics of a Breast Cancer Model with

Discrete-Time Delay, Phys. Scr. 99 (2024), 035235. https://doi.org/10.1088/1402-4896/ad2753.

[10] A. Das, K. Dehingia, H.K. Sarmah, K. Hosseini, K. Sadri, S. Salahshour, Analysis of a Delay-Induced Mathematical

Model of Cancer, Adv. Contin. Discret. Model. 2022 (2022), 15. https://doi.org/10.1186/s13662-022-03688-7.

https://doi.org/10.1063/1.4954585
https://doi.org/10.11113/matematika.v34.n3.1137
https://doi.org/10.1007/s002850050133
https://doi.org/10.1016/0277-5379(87)90133-7
https://doi.org/10.1016/0277-5379(87)90133-7
https://doi.org/10.3233/isb-180470
https://doi.org/10.3233/isb-180470
https://doi.org/10.1016/0025-5564(92)90053-y
https://doi.org/10.1002/0471143030.cb0804s01
https://doi.org/10.1088/1402-4896/ad2753
https://doi.org/10.1186/s13662-022-03688-7


Int. J. Anal. Appl. (2025), 23:241 17

[11] L.G. De Pillis, A. Radunskaya, A Mathematical Tumor Model with Immune Resistance and Drug Therapy:

an Optimal Control Approach, Comput. Math. Methods Med. 3 (2000), 79–100. https://doi.org/10.1080/

10273660108833067.

[12] K. Dehingia, P. Das, R.K. Upadhyay, A.K. Misra, F.A. Rihan, K. Hosseini, Modelling and Analysis of Delayed

Tumour–immune System with Hunting T-Cells, Math. Comput. Simul. 203 (2023), 669–684. https://doi.org/10.1016/

j.matcom.2022.07.009.

[13] K. Dehingia, H.K. Sarmah, Y. Alharbi, K. Hosseini, Mathematical Analysis of a Cancer Model with Time-Delay in

Tumor-Immune Interaction and Stimulation Processes, Adv. Differ. Equ. 2021 (2021), 473. https://doi.org/10.1186/

s13662-021-03621-4.

[14] L.G. dePillis, A. Eladdadi, A.E. Radunskaya, Modeling Cancer-Immune Responses to Therapy, J. Pharmacokinet.

Pharmacodyn. 41 (2014), 461–478. https://doi.org/10.1007/s10928-014-9386-9.

[15] M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Springer, Berlin, 2013. https://doi.org/

10.1007/978-3-642-93126-0.

[16] P. Garcia-Peñarrubia, A.D. Bankhurst, Kinetic Analysis of Effector Cell Recycling and Effector-Target Binding

Capacity in a Model of Cell-Mediated Cytotoxicity., J. Immunol. 143 (1989), 2101–2111. https://doi.org/10.4049/

jimmunol.143.7.2101.

[17] A.K. Golmankhaneh, S. Tunç, A.M. Schlichtinger, D.M. Asanza, A.K. Golmankhaneh, Modeling Tumor Growth

Using Fractal Calculus: Insights Into Tumor Dynamics, BioSystems 235 (2024), 105071. https://doi.org/10.1016/j.

biosystems.2023.105071.

[18] J.G. Hardman, L.E. Limbird, A.G. Gilman, Goodman and Gilman’s: The Pharmacological Basis of Therapeutics,

McGraw-Hill, New York, 1996.

[19] X. Guo, L. Chen, From G1 to M: a Comparative Study of Methods for Identifying Cell Cycle Phases, Briefings

Bioinform. 25 (2024), bbad517. https://doi.org/10.1093/bib/bbad517.

[20] D. Hart, E. Shochat, Z. Agur, The Growth Law of Primary Breast Cancer as Inferred From Mammography Screening

Trials Data, Br. J. Cancer 78 (1998), 382–387. https://doi.org/10.1038/bjc.1998.503.

[21] N. Kar, N. Özalp, A Fractional Mathematical Model Approach on Glioblastoma Growth: Tumor Visibility Timing

and Patient Survival, Math. Model. Numer. Simul. Appl. 4 (2024), 66–85. https://doi.org/10.53391/mmnsa.1438916.

[22] A.I. Khamidullina, Y.E. Abramenko, A.V. Bruter, V.V. Tatarskiy, Key Proteins of Replication Stress Response and

Cell Cycle Control as Cancer Therapy Targets, Int. J. Mol. Sci. 25 (2024), 1263. https://doi.org/10.3390/ijms25021263.

[23] D. Kirschner, J.C. Panetta, Modeling Immunotherapy of the Tumor - Immune Interaction, J. Math. Biol. 37 (1998),

235–252. https://doi.org/10.1007/s002850050127.

[24] F. Kozusko, P. Chen, S.G. Grant, B.W. Day, J.C. Panetta, A Mathematical Model of in Vitro Cancer Cell Growth

and Treatment with the Antimitotic Agent Curacin A, Math. Biosci. 170 (2001), 1–16. https://doi.org/10.1016/

s0025-5564(00)00065-1.

[25] V. Kuznetsov, I. Makalkin, M. Taylor, A. Perelson, Nonlinear Dynamics of Immunogenic Tumors: Parameter

Estimation and Global Bifurcation Analysis, Bull. Math. Biol. 56 (1994), 295–321. https://doi.org/10.1016/

s0092-8240(05)80260-5.

[26] W. Liu, T. Hillen, H.I. Freedman, A Mathematical Model for M-Phase Specific Chemotherapy Including the

G0-Phase and Immunoresponse, Math. Biosci. Eng. 4 (2007), 239–259. https://doi.org/10.3934/mbe.2007.4.239.

[27] Y. Liu, Y. Zhuang, Time Delays in a Double-layered Radial Tumor Model with Different Living Cells, Math. Methods

Appl. Sci. 48 (2024), 2655–2664. https://doi.org/10.1002/mma.10456.

[28] M.C. Mackey, Cell Kinetic Status of Haematopoietic Stem Cells, Cell Prolif. 34 (2001), 71–83. https://doi.org/10.1046/

j.1365-2184.2001.00195.x.

https://doi.org/10.1080/10273660108833067
https://doi.org/10.1080/10273660108833067
https://doi.org/10.1016/j.matcom.2022.07.009
https://doi.org/10.1016/j.matcom.2022.07.009
https://doi.org/10.1186/s13662-021-03621-4
https://doi.org/10.1186/s13662-021-03621-4
https://doi.org/10.1007/s10928-014-9386-9
https://doi.org/10.1007/978-3-642-93126-0
https://doi.org/10.1007/978-3-642-93126-0
https://doi.org/10.4049/jimmunol.143.7.2101
https://doi.org/10.4049/jimmunol.143.7.2101
https://doi.org/10.1016/j.biosystems.2023.105071
https://doi.org/10.1016/j.biosystems.2023.105071
https://doi.org/10.1093/bib/bbad517
https://doi.org/10.1038/bjc.1998.503
https://doi.org/10.53391/mmnsa.1438916
https://doi.org/10.3390/ijms25021263
https://doi.org/10.1007/s002850050127
https://doi.org/10.1016/s0025-5564(00)00065-1
https://doi.org/10.1016/s0025-5564(00)00065-1
https://doi.org/10.1016/s0092-8240(05)80260-5
https://doi.org/10.1016/s0092-8240(05)80260-5
https://doi.org/10.3934/mbe.2007.4.239
https://doi.org/10.1002/mma.10456
https://doi.org/10.1046/j.1365-2184.2001.00195.x
https://doi.org/10.1046/j.1365-2184.2001.00195.x


18 Int. J. Anal. Appl. (2025), 23:241

[29] H. Meng, Y. Huan, K. Zhang, X. Yi, X. Meng, E. Kang, S. Wu, W. Deng, Y. Wang, Quiescent Adult Neural

Stem Cells: Developmental Origin and Regulatory Mechanisms, Neurosci. Bull. 40 (2024), 1353–1363. https:

//doi.org/10.1007/s12264-024-01206-1.

[30] L. Norton, A Gompertzian Model of Human Breast Cancer Growth, Cancer Res. 48 (1988), 7067–7071.

[31] L. NORTON, R. SIMON, H.D. BRERETON, A.E. BOGDEN, Predicting the Course of Gompertzian Growth, Nature

264 (1976), 542–545. https://doi.org/10.1038/264542a0.

[32] J. Panetta, A Mathematical Model of Periodically Pulsed Chemotherapy: Tumor Recurrence and Metastasis in a

Competitive Environment, Bull. Math. Biol. 58 (1996), 425–447. https://doi.org/10.1016/0092-8240(95)00346-0.

[33] J. Panetta, J. Adam, A Mathematical Model of Cycle-Specific Chemotherapy, Math. Comput. Model. 22 (1995),

67–82. https://doi.org/10.1016/0895-7177(95)00112-f.

[34] J.T. Park, H. Levine, Mathematical Characterization of Drug-Induced Persistence in Cancer, bioRxiv

2025.01.21.634165 (2025). https://doi.org/10.1101/2025.01.21.634165.

[35] E. Petersson, G. Hedlund, Proliferation and Differentiation of Alloselective Nk Cells After

Alloimmunization–evidence for an Adaptive Nk Response, Cell. Immunol. 197 (1999), 10–18. https:

//doi.org/10.1006/cimm.1999.1560.

[36] M.J. Robertson, B.T. Williams, K. Christopherson, Z. Brahmi, R. Hromas, Regulation of Human Natural Killer

Cell Migration and Proliferation by the Exodus Subfamily of CC Chemokines, Cell. Immunol. 199 (2000), 8–14.

https://doi.org/10.1006/cimm.1999.1601.

[37] S. Rubinow, J. Lebowitz, A Mathematical Model of the Acute Myeloblastic Leukemic State in Man, Biophys. J. 16

(1976), 897–910. https://doi.org/10.1016/s0006-3495(76)85740-2.

[38] M. Sardar, S. Khajanchi, S. Biswas, S.F. Abdelwahab, K.S. Nisar, Exploring the Dynamics of a Tumor-Immune

Interplay with Time Delay, Alex. Eng. J. 60 (2021), 4875–4888. https://doi.org/10.1016/j.aej.2021.03.041.

[39] M. Sardar, S. Khajanchi, S. Biswas, S. Ghosh, A Mathematical Model for Tumor-Immune Competitive System with

Multiple Time Delays, Chaos Solitons Fractals 179 (2024), 114397. https://doi.org/10.1016/j.chaos.2023.114397.

[40] J. Serizay, M. Khoury Damaa, A. Boudjema, R. Balagué, M. Faucourt, N. Delgehyr, C. Noûs, L. Zaragosi, P. Barbry,

N. Spassky, R. Koszul, A. Meunier, Cyclin Switch Tailors a Cell Cycle Variant to Orchestrate Multiciliogenesis, Cell

Rep. 44 (2025), 115103. https://doi.org/10.1016/j.celrep.2024.115103.

[41] G. Steel, Cell Loss as a Factor in the Growth Rate of Human Tumours, Eur. J. Cancer (1965) 3 (1967), 381–387.

https://doi.org/10.1016/0014-2964(67)90022-9.

[42] M. Tubiana, E. Malaise, Comparison of Cell Proliferation Kinetics in Human and Experimental Tumors: Response

to Irradiation, Cancer Treat. Rep. 60 (1976), 1887–1895.

[43] S. Tubtimsri, T. Chuenbarn, S. Manmuan, Quercetin Triggers Cell Apoptosis-Associated Ros-Mediated Cell Death

and Induces S and G2/m-Phase Cell Cycle Arrest in Kon Oral Cancer Cells, BMC Complement. Med. Ther. 25

(2025), 34. https://doi.org/10.1186/s12906-025-04782-5.

[44] M. Ullberg, J. Merrill, M. Jondal, Interferon-induced Nk Augmentation in Humans, Scand. J. Immunol. 14 (1981),

285–292. https://doi.org/10.1111/j.1365-3083.1981.tb00566.x.

[45] M. Villasana, G. Ochoa, S. Aguilar, Modeling and Optimization of Combined Cytostatic and Cytotoxic Cancer

Chemotherapy, Artif. Intell. Med. 50 (2010), 163–173. https://doi.org/10.1016/j.artmed.2010.05.009.

[46] M. Villasana, A. Radunskaya, A Delay Differential Equation Model for Tumor Growth, J. Math. Biol. 47 (2003),

270–294. https://doi.org/10.1007/s00285-003-0211-0.

[47] X. Wang, H. Lu, G. Sprangers, T.C. Hallstrom, UHRF2 Accumulates in Early G1-Phase After Serum Stimulation

or Mitotic Exit to Extend G1 and Total Cell Cycle Length, Cell Cycle 23 (2024), 613–627. https://doi.org/10.1080/

15384101.2024.2353553.

[48] G.F. Webb, A Nonlinear Cell Population Model of Periodic Chemotherapy Treatment, in: Recent Trends in

Differential Equations, World Scientific, 1992: pp. 569–583. https://doi.org/10.1142/9789812798893_0042.

https://doi.org/10.1007/s12264-024-01206-1
https://doi.org/10.1007/s12264-024-01206-1
https://doi.org/10.1038/264542a0
https://doi.org/10.1016/0092-8240(95)00346-0
https://doi.org/10.1016/0895-7177(95)00112-f
https://doi.org/10.1101/2025.01.21.634165
https://doi.org/10.1006/cimm.1999.1560
https://doi.org/10.1006/cimm.1999.1560
https://doi.org/10.1006/cimm.1999.1601
https://doi.org/10.1016/s0006-3495(76)85740-2
https://doi.org/10.1016/j.aej.2021.03.041
https://doi.org/10.1016/j.chaos.2023.114397
https://doi.org/10.1016/j.celrep.2024.115103
https://doi.org/10.1016/0014-2964(67)90022-9
https://doi.org/10.1186/s12906-025-04782-5
https://doi.org/10.1111/j.1365-3083.1981.tb00566.x
https://doi.org/10.1016/j.artmed.2010.05.009
https://doi.org/10.1007/s00285-003-0211-0
https://doi.org/10.1080/15384101.2024.2353553
https://doi.org/10.1080/15384101.2024.2353553
https://doi.org/10.1142/9789812798893_0042


Int. J. Anal. Appl. (2025), 23:241 19

[49] R. Yafia, A Study of Differential Equation Modeling Malignant Tumor Cells in Competition with Immune System,

Int. J. Biomath. 04 (2011), 185–206. https://doi.org/10.1142/s1793524511001404.

https://doi.org/10.1142/s1793524511001404

	1. Introduction
	2. Mathematical formulation
	3. Result and discussion
	3.1. Tumor population without delay (= 0)
	3.2. Impacts of delay (= 0.9167) on tumor population with and without drug
	3.3. Tumor population in the absence of immune response and drug

	4. Conclusion
	Future directions
	Author Contributions:
	Funding:
	 Conflicts of Interest:

	References

