Certain Applications of \(\left(\psi, \phi\right)\)-Contractions in \(C^*\)-Algebra-Valued \(S_b\)-Metric Spaces

Main Article Content

N. Narsimha, G. Upender Reddy, P. Naresh, B. Srinuvasa Rao

Abstract

We present in this paper unique common coupled fixed-point results for two pairs of ω-compatible mappings that satisfy (ψ, φ)-generalized weakly contractive conditions in C-algebra-valued Sb -metric spaces. Additionally, we provide an illustration to substantiate our findings. Additionally, the paper offers an application that demonstrates the existence and uniqueness of a solution for a non-linear integral equation, as well as homotopy.

Article Details

References

  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  2. D. Guo, V. Lakshmikantham, Coupled Fixed Points of Nonlinear Operators with Applications, Nonlinear Anal.: Theory Methods Appl. 11 (1987), 623–632. https://doi.org/10.1016/0362-546x(87)90077-0.
  3. T.G. Bhaskar, V. Lakshmikantham, Fixed Point Theorems in Partially Ordered Metric Spaces and Applications, Nonlinear Anal.: Theory Methods Appl. 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017.
  4. G. Jungck, B.E. Rhoades, Fixed Point for Set Valued Functions Without Continuity, Indian J. Pure Appl. Math. 29 (1998), 227–238.
  5. M. Abbas, M. Ali Khan, S. Radenović, Common Coupled Fixed Point Theorems in Cone Metric Spaces for $w$-Compatible Mappings, Appl. Math. Comput. 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042.
  6. A. Aghajani, M. Abbas, E.P. Kallehbasti, Coupled Fixed Point Theorems in Partially Ordered Metric Spaces and Application, Math. Commun. 17 (2012), 497–509.
  7. W. Long, B.E. Rhoades, M. Rajović, Coupled Coincidence Points for Two Mappings in Metric Spaces and Cone Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 66. https://doi.org/10.1186/1687-1812-2012-66.
  8. J.G. Mehta, M.L. Joshi, On Coupled Fixed Point Theorem in Partially Ordered Complete Metric Space, Int. J. Pure Appl. Sci. Technol. 1 (2010), 87–92.
  9. Z. Ma, L. Jiang, H. Sun, $C^ast$-Algebra-Valued Metric Spaces and Related Fixed Point Theorems, Fixed Point Theory Appl. 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206.
  10. Z. Ma, L. Jiang, $C^ast$-Algebra-Valued $b$-Metric Spaces and Related Fixed Point Theorems, Fixed Point Theory Appl. 2015 (2015), 222. https://doi.org/10.1186/s13663-015-0471-6.
  11. S. Razavi, H. Masiha, Common Fixed Point Theorems in $C^ast$-Algebra-Valued $b$-Metric Spaces with Applications to Integral Equations, Fixed Point Theory 20 (2019), 649–662. https://doi.org/10.24193/fpt-ro.2019.2.43.
  12. S. Sedghi, A. Gholidahneh, T. Dosenovic, J. Esfahani, S. Radenovic, Common Fixed Point of Four Maps in $S_b$-Metric Spaces, J. Linear Topol. Algebra 5 (2016), 93–104.
  13. N. Souayah, N. Mlaiki, A Fixed Point Theorems in $S_b$-Metric Spaces, J. Math. Comput. Sci. 16 (2016), 131–139.
  14. N. Souayah, A Fixed Point in Partial Sb-Metric Spaces, An. Univ. "Ovidius" Constanta - Ser. Mat. 24 (2016), 351–362. https://doi.org/10.1515/auom-2016-0062.
  15. K.P.R. Sastry, K.K.M. Sarma, P.K. Kumari, Fixed Point Theorems for $(psi, varphi, lambda)$-Contractions in $S_b$-Metric Spaces, Int. J. Math. Trends Technol. 56 (2018), 28–38. https://doi.org/10.14445/22315373/IJMTT-V56P505.
  16. Y. Rohen, T. Dosenovic, S. Radenovic, A Note on the Paper "a Fixed Point Theorems in $S_b$-Metric Spaces", Filomat 31 (2017), 3335–3346. https://doi.org/10.2298/fil1711335r.
  17. D. Venkatesh, V.N. Raju, Some Fixed Point Outcomes in $S_b$-Metric Spaces Using $(phi, psi)$-Generalized Weakly Contractive Maps in $S_b$-Metric Spaces, Glob. J. Pure Appl. Math. 18 (2022), 753–770.
  18. K.P.R. Rao, G.N.V. Kishore, S. Sadik, Unique Common Coupled Fixed Point Theorem for Four Maps in $S_b$-Metric Spaces, J. Linear Topol. Algebra 6 (2017), 29–43. https://core.ac.uk/reader/357548660.
  19. G.N.V. Kishore, K.P.R. Rao, D. Panthi, B.S. Rao, S. Satyanaraya, Some Applications via Fixed Point Results in Partially Ordered $S_b$-Metric Spaces, Fixed Point Theory Appl. 2017 (2017), 10. https://doi.org/10.1186/s13663-017-0603-2.
  20. S.S. Razavi, H.P. Masiha, $C^ast$-Algebra-Valued $S_b$-Metric Spaces and Applications to Integral Equations, AUT J. Math. Comput. 6 (2025), 31–39. https://doi.org/10.22060/ajmc.2023.22211.1140.
  21. S.S. Razavi,, H.P. Masiha, M. De La Sen, Applications in Integral Equations through Common Results in $C^ast$-Algebra-Valued $S_b$-Metric Spaces, Axioms 12 (2023), 413. https://doi.org/10.3390/axioms12050413.
  22. G.J. Murphy, $C^ast$-Algebras and Operator Theory, Academic Press, 1990.
  23. Q. Xin, L. Jiang, Z. Ma, Common Fixed Point Theorems in $C^ast$-Algebra-Valued Metric Spaces, J. Nonlinear Sci. Appl. 09 (2016), 4617–4627. https://doi.org/10.22436/jnsa.009.06.100.