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Abstract. We present in this paper unique common coupled fixed-point results for two pairs of w-compatible mappings
that satisfy (1, ¢)-generalized weakly contractive conditions in C*-algebra-valued S,-metric spaces. Additionally, we
provide an illustration to substantiate our findings. Additionally, the paper offers an application that demonstrates the

existence and uniqueness of a solution for a non-linear integral equation, as well as homotopy.

1. INTRODUCTION

Stefan Banach first proposed the concept of contraction in 1922 and established the well-known
Banach contraction theorem. The Banach Principle of Contraction [1] on metric spacesis of essential
relevance in the fields of fixed points and nonlinear analysis, mathematical physics, and applied
sciences. Literature has produced new results relating to proving the generalisation of metric space
and obtaining a refinement of the contractive condition.

The concept of coupled fixed points was initially introduced by Guo and Lakshmikantham [2] in
1987. Subsequently, utilizing a weak contractivity assumption, Bhaskar and Lakshmikantham [3]
formulated an innovative fixed point theorem for a mixed monotone mapping within a metric
space governed by partial ordering. In 1998, Jungck and Rhoades [4] proposed the concept of
weak compatibility, establishing that compatible mappings are weakly compatible, although the
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converse does not hold. Refer to the study results in ( [5]- [8]) and associated references for further
findings on coupled fixed point outcomes.

The concept of C*-algebra-valued metric spaces was first introduced by Ma et al. in the year
2014 [9]. In the year 2015, they presented the concept of C*-algebra-valued b-metric spaces and
analyzed a few findings [10]. Additionally, Razavi and Masiha conducted research on C*-algebra-
valued b-metric spaces [11] in order to comprehend the prevailing concepts.

The authors Sedghi et al. [12] constructed S,-metric spaces by integrating the notions of S and
b-metric spaces. They also demonstrated that these spaces exhibit common fixed point results.
Many writers, in an effort to make improvements, have developed a large number of results on
Sp-metric spaces (for example, [13]- [19]).

Drawing upon the contributions of Souayah and Mlaiki as referenced in [13], Razavi and col-
leagues introduced the concept of C*-algebra-valued S,-metric space in 2023 [20], and subsequently
established several common fixed point results within this framework [21].

In C*-algebra-valued S,-metric spaces, this work seeks to offer linked fixed point findings for
two sets of w-compatible mappings that meet (¢, ¢)-generalized weakly contractive requirements.
Additionally, we are able to give appropriate and pertinent instances pertaining to homotopy and

integral equations. First we recall some basic results.

2. PRELIMINARIES

This section offers a concise overview of certain aspects related to the theory of C*-algebras [22].
Let us consider the scenario where U represents a unital C* algebra, characterized by the presence
of the unit element 1y. Define the set ;, as follows: A, = {s € A : s = s*}. An elements € A is
classified as positive, denoted by s > Oy, if and only if it satisfies two conditions: first, s must equal
its adjoint, s*, and second, the spectrum of s, denoted ¢(s), must be contained within the interval
[0, ). Here, Oy represents the zero element in the algebra U. On ¥, a natural partial ordering can
be identified, where ¢ < p holds if and only if ¢ — ¢ > Oy. We define A, = {s € A : s > Oy} and
W ={seW:st=1tsVt eA}.

Definition 2.1. ( [20])
Let G be a non-empty set and « € W such that ||x|| > 1. Let Sy : G > Wbea function that satisfies the

following properties:
(Sp,) Sp(ee, @ f8) = Oy forall e, e, 8 € G,
(Sp,) Sp(e,@f) =0 cae=0c=4,
(Sp,) Sp(e@, @ f) < x(Sy(e, 2, 0)+ Sy, 0) + Sp(B,L,0)) forall e,c,f3,0 € G.
The combination (G, U, Sy) is then referred to as a C*-algebra-valued Sy-metric space (C*-AV-S,MS) with

a coefficient k, and the function Sy is referred to as a C*-algebra-valued Sy-metric on G.

Definition 2.2. ([20]) A C*-AV-5,MS is symmetric if Sy(e, &, @) = Sp(ce, @, &)
Ye,aeeG
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Definition 2.3. ([20]) Let (G, ¥, Sy) represent a C*-AV-SpMS, and let {),,} denote a sequence in G.
(1) Ifforalln € N, ISy (Xp+n, Xptn, Xu)ll = O, where p — oo, then {x,} is a Cauchy sequence in G.
(2) ISy (xns Xp, X)Il = O, where p — oo, then {x,} converges to x, and we present it with lim x, = x.
p—)OO

(3) If every Cauchy sequence converges in G, then the structure (G,U,Sy) qualifies as a complete
C*-AV-5,MS.

Definition 2.4. ( [20])

Let (G1, 1, Spy1) and (Ga, Wa, Sy, ) represent two C*-AV-S,MS structures. Define a function I that maps
(G1,Uq,Sp1) to (Go, o, Spy). Then, T is continuous at a point x € G if, for every sequence, {x,} in G, it
holds that Sy(Xn, Xn, X) — Oy as n — oo implies Sp(T' (xn),T(xn),v(x)) — Oy as n approaches infinity.

A function T is continuous at Gy if and only if it is continuous at every x € Gi.

Lemma 2.5. ([23]) Suppose that W is a unital C*-algebra with a unit 1y
(1) If{é,[,};":1 C Nand r}1_)n20 &p = Oy, then for any & € ¥, 1}1_)11010 & &EE = Oy
(2) IfE,£E €Wy and s € W’ then & < B yields s& < sE in which W_= A, N W,
(3) If& € Wy with ||E|| < 4 then 1g — & is invertibleand ||E(1y — &) 7Y < 1.
(4) If& B € A, such that EE = EE, then EE = Oy.

3. MaiIN ResuLts

This section begins with the introduction of (i, ¢)-generalized weakly contraction, followed by

the proof of our main result.

Definition 3.1. Let (G, U, Sy) be a C*-AV-S,MS with coefficient ||x|| > 1. Let Q : GXG — G be a
mapping, an element (&, @) € G is called coupled fixed point of Q if Q(z, @) = @ and Q(e,2) = @

Definition 3.2. Let (G, U, S;,) be a C*-AV-S,MS with coefficient ||x|| > 1 and suppose Q) : G*> — G and
A : G — G be two mappings:
(a) Anelement (2, ) is said to be a coupled coincident point of Qand Aif Q) (2, ) = Az, Q (@, 2) =
Ace,
(b) An element (e, ce) is said to be a common coupled fixed point of Q and A if Q) (e, ) = Ae =
x Qe x)=Ae=c,
(c) A pair (Q,A) is called weakly compatible if A(Q(z,@)) = Q(Azx, Ae) and A(Q(e,2)) =
QO(Ace, Aee) whenever for all e, e € G such that
Q@) =Ae, Q@)= A

In this manuscript we indicate:

R Y : A — AL /¢ is monotonically non-decreasing, continuous and
1 =
gb(a) = OQI 1= OQ[

(i) ® = {¢p: AL - A, /¢ is lower semi-continuous and ¢(a) = Oy = a = Oy}
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Definition 3.3. Let (G, U, Sy,) be a C*-AV-S,MS with coefficient ||x|| > 1,

[,Q:G*—> Gand A, O : G — G be four mappings. Then we say that T, Q), A, ® be a (¢, ¢)-generalized
weakly contractive mappings if there exists & > Oy and v € ¥, ¢ € ® and a € W in which || V2al| < 1 such
that for all £, », 2, @ € G, we have

Y (2xSp (T(6, %), T(6,n), Qee,@))) <P (@ ML, #,2,@)a) — P (a"M(L, n, 2, @)a) + EN (€, %, 2, @)
(3.1)

Sy (AL, AL,O), S, (Ax, Ax,Oc),
Sy (AC, AL T(E,%)),S, (O, Oz, (2, @)),

where M (€, %, 2, @) = max{ Sy (Ax, Ax,T(x,()),S, (O, O, O(e, 2)),
Sp(ALALO(®,®))+S, (02,02, ((,x))

2kt ¢
Sp(Ax,Ax,Q(C,2))+5,(0,00,T (L))

2xc4

Sy (AL, ALT(L%)),S, (O, O, Az, @), Sy (AL, AL, Q2 @)), }
)

and N (¢, », 2, @) = min
Sy (Ax, Ax, Q(e,@)),S, (Ox,02,T(¢,%)),S, (O, O, T'(x, )

We start our work by proving the following one crucial Lemma.

Lemma 3.4. If (G, U, Sp) be a C*-AV-S,MS with ||| > 1 and suppose that {a,} is a C*-AV-S;-convergent
to €, then we have

~Sh(p, 9, ) < ph_r)go inf Sp(p, 9, &) < lim sup Sp(9, 9, 2p) < 2kS(9, 9, )
forall € G. In particular, if { = @, then we have im Sy(&p, £y, 9) = Oqr.
p—)OO

Proof. using condition (Sy,) of Definition-2.1, we have
Su(9, 9, ) < 2xS4(p, 9, €) + xSp(eep, e, £) and
Sp(9,9,0) < 2xS(9, 9, 8p) + 1Sp(€, €, ep).
Taking the upper limit as p — oo in the first inequality and the lower limit as p — oo in the
second inequality we obtain the desired result. m]

Theorem 3.5. Let (G, %, S,) be a complete C*-AV-S,MS, suppose T, Q) : G*> — Gand A,® : G — G be
four mappings with the following assumptions:

(i) T(6?) € ©(G) and O(G?) € A(G);
(ii) T,Q, A, © are (Y, §)- generalized weakly contractive mappings;
(iii) {T, A} and {Q), ®} are w-compatible pairs;
(iv) one of A(G) or QU(G) is complete subspaces of (G, U, Sy) .
Then T, Q), A and © have a unique common coupled fixed point in G .

Proof. Let @y, cep € G be arbitrary, and from (i), we construct the sequences {ae,,} , {oep} ,in G as

r(aezp, Oezp) = OQaypi1 =, T ((Ezp, 882p) = Ooegpt1 = Py,

Q (aezp+1,oezp+1) = Aeegpio = lopy1, Q) (082p+1,882p+1) = Aceypi2 = @2p11, wherep =0,1,2,....
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Notices that in C*-algebra, ifa,b € Wand a < b, then for any ; € A, both j*aj and ;b are positive

elements and j*aj < j*D;.
Now we show that I', (2, A and ® have common coupled fixed point in G.

By using (3.1), for each p € N, we have

IP(ZKSb(fsz,fzp+1,{’2p+2)) = IP(21<5b(r(382p+1,092p+1),F(ae2p+1,082p+1),0(882p+2, 082p+2)))

IA

Y (H*M (@2p11,02p 41, @2p12, 082p+2)ﬂ)
—¢ (ﬂl*M (ee2pt1,02p 41, @2p12, 082p+2)ﬂ)

+&N (882p+1, ®2p 11, ®2p+2, Oezp+2) (3.2)
Now, by simple computations, we have

M (882p+1, 022p+1, E2p+2, 082p+2)

Sb (A%Zpﬂl Neegpyi, @882p+2) ,
Sb (A082p+1, Acegpi1, @082p+2) ,
Sp (Aae2p+1/ Neeyy i1, T (e2py1, 0€2p+1)) ,

b 2042, 2042, 20+2, F2p+2) ),
S (@aep Oaepy2, a2y 12, Co2p ))
= maX
Sp (Acezpi1, Acery i1, T(0e2pr1,22p41) ),
P P P P
Sp (@082p+2, Oceopt2, Aep12, 882p+2)) ,
Sp(Adey 41,A8 11,0882y 12,02 12) ) +5, (O 12,082 12, T (@2y11,0241))
2ic
Sp (A(E2p+1/1\@2p+1,0(CE2p+2,392p+2 ) ) +5Sp <@(22p+2,®(92p+2,r((32p+1,362p+1) )
2ic

7

Sp (€2p/ tap, 52p+1) ,Sb (502;;, V2, @2p+1) p
Sp (fzp, oy, 52p+1) ,Sp (52p+1, bop 1, 52p+2) ,

= max{ Sb (SOZp/ $2p, 502p+1) +Sp (802p+1/ P2p+1, 502p+2) ,
S (Cap,ap bap2) +Su (Laps1,bop1,b2p1)

2Kt ’
Sp (920,929 92042) +Sp (92p+1.92p11,92041 )
2xc

Sp (fzp, tap, €2p+1) +Sb (802;7, P2, 502p+1) ,

Sp (fzp+1, Copt1, 52p+2) ,Sp (502P+1, P2p+1, S/L)Zp+2) p
= Mmax S (Cap lop lapi2) +Su(Lopi1,Laps1,api1)

214 7
Sp (@2p,502p,5<)2p+2) +Sp (mpﬂ,mpﬂ D+ )

2kt

and

Sp (Aaezp+1/ Neegp i1, I'(eepi1, 092p+1)) ,

Sp (9382p+2, Oaeop 12, QN(ezp 12, Oezp+2))

Sp (Aaezp+1, Aaegpi1, Q(eezpy2, 082p+2)) ,

Sp (A(E2p+lr Aceyy i1, Qe 2, aezp+2)) ,

Sp (@ae2p+2, @aeop 2, T'(aep41, 002p + 1)) ,
Sp (@Oezp+2, Oceyy+2, I'(Copt1, @2p11 ))

7

N(382p+1,@2p+1r%2p+2,@2p+2) = min
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Sp (52p, by, 52p+1) +Sb (52p+1, bopt1, fzp+2) ,
= min Sp (fzp, oy, fzp+2) +Sp (802p, 92p, 502p+2) ,

Sp (52p+1, bop 11, 52p+1) ,Sb (KJZp-i-lr P2p+1, K)zp+1)

= O

From (3.2), we have

4’(ZKSb(fsz,52p+1,52p+2)) < 1|a’ max

—¢

Notice that

Sb (€2p/ €2p/ €2p+2) +Sp (€2p+1/ £2p+1/ €2p+1)

a® max

Sp (fzp, top, 52p+1) ,
Sb (@2;;, 92p, 802p+1) ,
Sb (52p+1, Uopi1, 52p+2) ,

Sp (802P+1, P2p+1, 802p+2) ,
Sb(Lap Cap Lapt2) +S (baps1,Lop11,bapi1)
24 4
S (92p,920,92p12) +S5 (92p-41,92p+1,92p41)
214

So (€29, Cop, Cap1),
Sp (S{)Zp/ $2p, KJZp-&-l) ’
Sp (fzpﬂ, bopt1, 52p+2) ,

Sp (@2p+1, Pop+1, 802p+2) ,
Sp (t’Zp,l’zp,fzp+2 ) +Sp (52p+1,52p+1,52p+1)

2xc ’
Sp (mp,mp,mpﬁ) +Sp (@2p+1 H2+1,92p+1 )
2xc4

2K Sy (€2p1 oy, 52p+1) + kSp (52p+2, bop 2, fzpﬂ)

2t - 21k
Sy oy, €0, € ,
< max b ( 2ps 2p 2p+1)
Sb (52p+1, Copi1, fzp+2)
and
Sp (sz, 92p, @2p+2) + Sp (802p+1, P2p-+1/ 502p+1) 2KkSp (502;9, 92, 802p+1) + xSy (@2p+2, Pop+2, @2p+1)
24 - 2k
<

Therefore, we have

¢(ZKSb(fszrl,fzp+1,fzp+2)) < ¢|a"max

max Sb (@2;9, P2, 802p+1) ,
Sb (502p+1, Pop+1, 802p+2)

Sp (fzp, tap, €2p+1) ,
Sb (502;7, 92p, @2p+1) ,
Sb (52p+1, bop 11, 52p+2) ,
S (sozp+1, P2p+1s 502p+2)
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By the definition of 1), we have that

1 1
. -Sp(C2p, Cop, Cop1) 5 Su (92p, P2p, P2p41)
Sb(£2P+lr€2p+1/£2p+2) < a max{ 2k ( pr=ep p+) 2k ( pr¥2p P+) p

1 1
525b (52p+1, lop i1, 52p+2) + 525b (@2p+1, Pop+1, 802p+2)

If for some p € N, 5555, (€2p, Cop, Cap1) < %Sp (Cps1, Cap1, Cap12) and

%Sb (QZp/ $2p, @2p+1) < 2175b (802p+1, $2p+1, 802p+2), then we have

1
\ 5250 (Copr1, Copr1, Copy2 ),
Sp(Caps1, Copr1, Capy2) < " maxq 2 ( e p+) a. 3.3)
—Sb(pz 1, 92p+1, 92 2)
2K p+1,82p+1, 87 2p+
Similarly, we can prove that
1
. 5250 | Copr1, Copr1, Copi2 ),
5b(802p+1,%’2p+1,502p+2) < a'max{ 2" ( Pl Teptls oy ) a
55D (802p+1, P2p+1, @2p+2)
(3.4)

Combining (3.3) and (3.4), we can get

Sp(€ L , , 1 Sp L ylopi1, € ,
max 1S (€2p11, C2p 11, Lop42) ] < Lol max | b( 2941, Cop i1 2p+2)||
1S (92p+1, P2p+1, P2p-2) 2x ISy (502p+1, P2p+1, Ksz+2) |

S S 1ISe (52p+1,52p+1,52p+2)||, ‘
2K ISy (K)zpﬂ, Pop+1, 502p+2) I

we get a contradiction. Hence for all p € IN, we have

max Sp(Capi1, Copy1, Cop12), - iu*max Sb(fzp,fzp,fzpﬂ), .
5b(@2p+1,&>2p+1,802p+2) S 2k Sh(f@ZprS{)ZpIS{)ZP—Q—l)

Sp(€aps1, Caps1, € ,
Let52p+1=max{ b(Caps1, Loptr, p2)

. Now by above inequality, we have
Sp(92p+1, 92p+1, P2p+2)

Jopy1 = %a*ﬁzpa
< Ty
= (21<)12p+1 (a")? 1 8o (a) 1,
Thus,
Sp(Lapt1, Cops1, Lopi2) < W(a*)”“%(ﬂ)zf’ﬂ,
and

1 .
Sp(92p+1, 92p+1, P2p+2) < W<a V# LG (a) %!
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Now, we can obtain for any p € IN

S g /f /f 4
I, = max b(Caps Lap: Cop 1) < ia*ﬁp-la
Sv(92p, 92p, P2p+1) 2K
1 .
< W(ﬂ )25p_2(a)2
1 *\P p
< G
Thus,
1 .
Sp(Cap, Loy, top 1) < (ZK)P( )¥3o(a)
and
1 .
Sh(SOZp; 802;)/ @2}?4’1) < (ZK)p (Dl )pSO(a)p

If 3y = Oy, then from (S;,) of Definition-2.1, we know (£, o) is a coupled fixed point of T, O, A
and ©. Now letting 3y > Oy, we get for any p € IN, for any / € IN and using condition (Sp,) of
Definition-2.1,

So(Cap+1, Cap1, Cap1-1) + So(Cap1, Capr1, Copy1-1)

Sp(Capt1, Copri, C2p) +Sp(Lap, Cap, Copyi-1)
C2psr Lop -

=< 2kSp(Epr1, Cpits Cpyi-1) + xSp(Lp, €, Cpi-1)
= 2xSp(Capr1, Copr1, Copr1-1) + KSp(Copri-1, Copr1-1, C2p)
< 2kSp(Capst, Coprts Capsi-1) + 262Sp(Copr1-1, Capri-1, Copr1-2)
+12Sp(Capy1-2, Cop+1-2, Lop)
< 2kSp(Coprt, Coprts Copri-1) + 22 Sp(Copri-1, Copri-1, Caps1-2)
+213Sy (Copr1-2, Cap 12, opi=3) + - - + 2K Sy (Capi1, Cops1, Layp)
2p+1-1 I-m-+2p
K *\Mm m
< 2 Z g (a*)" o (a)
m=2p
2p+i-1 l m+2p 1 qel-m+2p
— 59(2 (K 1 m
= 2 3, (i) (sl o)
m=2p
2pt 1( l-m+2p | 1 * 1 ql-m+2p
— 2 Y [ mz) (35 g
2 (2%)m (2x)m
2p+1-1 1 l me2p
< 2 ) 195 (=) (@) P

m=2p
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2p+1-1 2

P
2300l Y, Ml

m=2p

IA

[cll"+ a2V
l122llP=* (11212]] = llall)

in which 1y is the unit element in A. As {5} is a Cauchy sequence in G with respect to A. By

< 2/l

191—>0asp—>oo.

similar arguments, we obtain {5, } is an C*-AV-5,-Cauchy sequence in G. Suppose A(G) is complete
subspace of (G, U, S), then the sequences {£,} and {g,} are converge to e and ce respectively A(G).

Thus there exist ¢, 9 € A(G) such that
lim {5y = ph_r)n Neeyp1 =@ =Al and pll_I)n P2 = ph_r)n Ay = @ = Ap (3.5)

p—00

Now we show thatI'({,9) = e and I'(p, () = ce.

Suppose I'(¢,p) # eeand I'(p, £) # ce by Lemma (3.4), we have

%5 (T(69), T(69) @) < lim inf S, (T(¢,9),T(£,9), )
Now from (3.1) and applying 1) on both sides, we have
Y (S (F(L o) T(Ep) ) < lim inf g (28, (T (£, 9), T(€,9), ()

= ph_}n;) infy (21(51, (1"(5, 9),T(L,9),T (a2, oezp))

IA

lim sup ¢ (a*IM(f, 9, &, oezp)a)

p—oo

— lim sup ¢ (a*]M(f, 9, @2, oezp)a)

p—oo
+ lim sup EN (€, 0, 2, ceay) (3.6)
Now, by simple computations, we have
Sp (AL, AL, Oceyp),
Sb (ASO/ Ag’/ ®(E2p) 7

Sy (AL, ALT(E,9)),
. . Sb (@%2;,, @&2;;, Q(&2p; (EZp)) ’
lim sup M (5, 9, &2p, Oezp) = lim sup max Sp (Ap, Ap,T(p,0)),

p—)OO p—)oo
Sy (Ocezy, Oceyy, O(ceyy, 22p)),
Sp(ALALQ(@Rsp,082) ) +5, (2,022 I (L))

K4 ’
S (Ago,Ago,Q((Ezp,aezp)% +5p,(©0R2,000,,T(9,£))
2xct
Sb (AL, AL tp1),Sp (A9, Ap, 92p-1),
Sp (AL, ALT(L,9)),Sp (Cop-1, Lop-1, Lap) s

= lim sup max Sp (ASOr Ap, F(SO/ f)) »Sp (K')Zp—ll 2p-1, @2;1) ’
p—eo Sp(ALALEy)+Sy(Lap-1,bop-1 T (L))

2K 4
Sy (Ap,Ap.92p ) +Sp (92919291 (9.0))
2kt
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= max{ Sy (ee,,T(¢,9)),Sp (e, T(p,°)) }
= max{ S, (T(£,9),T((,9),2),5 (T(9,0),T(p,0), ) |

and

lim supIN (t’, 9, @2, Oezp) =

p—00

Hence from (3.6), we have

Y (Sp (T, 9),T(L,9) ) =

IA

By the definition of 1), we have that

Sb (r(& 80>I r(& 80); %)

Similarly, we prove

Sb (F(SO/ f), F(SO, f)/ (E)

Therefore,

max {

”Sb (r(f, 50),1_'(5, gO),&%) ”/
”Sb (F(SO/ g)/r<80/ f),(E) ”

lim sup min

p—o0

IA
ENY
'
=t
Q
b
——
<

} < lal? max{

Sy (AL, AL T(L,9)),
Sb (pr—ll U1, fz;g) ,
So (AL AL, L),

Sy (Ao, A9, 03),

Sb (fzp—ll top-1,T(C, @)) ,
Sp (@2;;—1, 92p-1, T (9, 5))

= Oy

”Sb (r(f, @)/ r(f, 80)1 ae) ”/
”Sb (F(go, 5)zr(80/ f),CE) ” .

Since |la]| < 1, which implies that IS, (T'(¢, ¢),T(¢,9),2) || = 0, and
1Sy (T(p,€),T(p,€), )|l =0and hence'(¢{,p) = e, T'(p, ) = ce. It follows that (¢, p) = & = AL
and I'(p,{) = ce = Agp. Since {T, A} is weakly compatible pair, we have I'(ee,ce) = Az and

I'(ce, ) = Ace, then we prove that Aee = @ and Ace = ce. From Lemma (3.4), we have

ﬁSb (A, Ae,) < liminf§, (Aae, Aee, t’zp).

p—00
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Now from (3.1) and applying 1) on both sides, we have

Y (Sp (A, A, @) <

p—oo

lim inf (2«5, (A, Az, &)))

= lim infy (21<sb (r(ae, ), T (e, ce), T (g, cezp))

p—oo

IA

p—)OO

lim sup ¢ (a*]M(ae, ce, 2y, oezp)a)

— lim sup ¢ (a*]M(ae, e, 22y, oezp)a)

p—)OO

+ lim sup EIN (ae, 08, &), oezp)

p—)OO

Now, by simple computations, we have

lim sup M (ae, e, &2, Oezp) = lim supmax

Sp (Aae, Aee, @aezp) ,
Sv (Ace, Ace, @cey),
Sy (Aee, A, T'(ee, ),
Sy (@2ezy, Oy, O (22, ce2y))
Sy (Ace, Ace,T'(ce,)),

Sy (@Oazp, @(Ezp, Q ((EZp/ 592;;)) ’
Sp(Ade, A& (a8s,,00,) ) +Sy (Oa0,, 030, I'(2R,cR))

214 ’
Sp(ACR,ACR,Q(0R,),85) )+, (©08,, 002y, T(00,2))

2kt
Sb (A%, A&, €2p—1) , Sb (A(E, A(E, 5/‘)2}7—1) ,
Sv (A, Aze,T (e, @), Sy (Lop-1, Cap1, Cap) s

Sb (A@, A@, I—'((EI £)) s Sb (802;7—1/ 802;7—1/ 802;7) ’
Sp (A%,A%,[zp ) +Sp ({’2,,_1,{’2,,_1,1“(%,(2) )

2xc4 4
Sy (A0R,AQR, 95 ) +Sh (92p-1,92p-1.T(CR,2) )
2kt

= max{ Sy (Aee, Aee, @), S, (Ace, Ace, ) }

p—)OO p—)OO
= lim supmax
p—)OO
and

lim sup IN (ae, e, &2y, oezp) = lim supmin

p—o0 p—o0

Hence from (3.7), we have

V(S (Aee, A, ) < ¢ [a* max{

Sy (Aee, A, T(e, ),
Sp (€2p—1/€2p—1/€2p) ,
Sp (Aze, Aze, 0),

Sv (Ace, Ace, 93p),

Sb (fzp—ll typ1,T (22, oe)) ,
Sp (@2;;—1, 921, (ce, 38))

= Oq.

Sy (Aee, A, @),
a
Sp (Ace, Ace, )

(3.7)
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By the definition of 1), we have that

. Sy (Aee, Aee, @),
Sy (A, Aee,®) =< a"max a.

Sp (Ace, Ace, )

Similarly, we prove

. Sy (Aee, Aee, @),
Sp (Ace, Ace,@) =< a"max a.
Sp (Ace, Ace, )

Therefore,

ISy (Aee, Aee, ) |, 2 ISy (Ace, Aee, ) ||,
ax < lall max .
ISy (Ace, Ace, ce) || ISy (Ace, Ace, ce) ||

Since [la]| < 1, which implies that||S, (Aee, A, ) || = 0, [|Sy (Ace, Ace, @) || = 0 and hence Az = e,
Ace = ce. It follows that I'(ee, 02) = Aee = @ and

[(ce,2) = Ace = ce. Thus (=, ce) is common coupled fixed point of I and A. Since T'(G?) C O(G)
so there exist %, 88 € G such that I'(ee,ce) = & = Ox and I'(ce, &) = ce = OF. Now we show that
Q(x,8) = e and (B, x) = ;e Now from (3.1), we have

O

IA

¥ (Sp (2, Q(x,8))) < ¢ (2kSp (T (2, c), T2, ), (3, B)))
Y (@ M(ee, e, %, 8)a) — ¢ (a"M(ee, ce, %, 8)a) + EN (e, e, %, B)
Y (a* max{ Sy (e, 2, (%, B)), Sy (e, e, QA(B, n)) }a)

IA

IA

By the definition of 1), we have that
Sy (e, (%, B)) < a max{ Sy (e, @, (2%, 8)),Sy (e, e, OB, %)) }a.
Therefore,

max{ Sy (e, @, Q(x%,8)),Sp (e, e, Q(B, %)) } < a*max{ Sy (e, @, Q(x,8)), }a'

Sp (0e, e, M(B, %))

Since ||a|| < 1, this implies that Q(x, 8) = @ and Q(8, #) = ce. Since {2, O} is weakly compatible
pair, we have Q)(a, ce) = Oae and )(ce, &) = Oce, then we prove that Oz = & and Oce = ce. Now

from (3.1), we have

O

IA

Y (Sp (e, ,0x)) < ¢ (2xS, (T'(ee, ce), T'(e, ), Q(ee, e)))
Y (0 M(ee, e, e, @)a) — ¢ (a'M(ee, ce, 28, e)a) + EN (e, e, e, ce)
1/J(a*max{ Sy (e, @, @), Sy, (ce, e, Oce) ]a)

IA

IA

By the definition of 1), we have that

Sp (e, e, 02) < a*max{ Sy (e, ¢, @), Sy, (ce, e, Oce) }a.
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Therefore,

S 7 /® 7
0 < max{ [IS, (2, O) |, IS (ce, ce, Oce) | | < ||a||2max{ ISy (ze, 2, O) | }

ISy (ce, ce, Oce) ||

Since |la]| < 1, we get that @ = @ and Oce = ce. Hence ()(a,¢) = O = @ and Q(ce, @) =
Oce = ce. Thus, (e, ce) is common coupled fixed point of I', 0, A and ©. in the following we will
show the uniqueness of common coupled fixed point in G. Let us take (e, ) # (&', e’) be an
another fixed point of I', (3, A and © then,

Ou < U (Sp(e,e,@)) <y (2kS, (T(ee, ), T, e), Qe e)))
< Y (@Mlee, 0e,, @ )a) - ¢ (A" M(ee, ce, ', )a) + EN (e, e, ', )
< 1#(11* max{ Sy (e, e, @’),S (ce, e, ) }a)

By the definition of 1), we have that
Sy (e, @,&’) < a max{ Sy (e, 2, 2’),Sy (oo, 08, c0’) }a.
Therefore, we have
max { 1S, (e, &, @) Il 1Sy (e, e, ) 1|} < llall? max { 1S, (ae, 2, 2”) IL 1S (e, e, ) | }-

Since [la|| < 1, it is incongruous. Consequently, & = @&’ and ce = ce’. Therefore, the UCCFP of
I,Q,A and O is (e, ce). In order to prove that I', (), A and © have a unique fixed point, we only

have to prove & = ce, we have

Ou = 9 (Sp (e e 0e)) =1 (2cSy (T(ee, c0), I'(ee, o), e, 22)))
< Y (@M(ee, oo, @)a) — ¢ (A" M(e, ce,0e,2)a) + EN (e, e, ce, )
< Y (a'Sy (e, @ e)a)

Therefore,
0 < [ISp (e, 2, ) || < llallPlISp (e, 2, ce) ||

This is incongruous. Consequently, @& = ce, which means that I', (), A and © have a unique fixed

point of the form (e, &) in G . m]

Theorem 3.6. Let (G, %, S;) be a complete C*-AV-SyMS, suppose T : G> — Gand A : G — G be two

mappings with the following assumptions:

(i) T(G?) € A(G) and A(G) is closed sub spaces of G;
(ii) T, A are (¢, §)- generalized weakly contractive mappings;
(iii) {T, A} is w-compatible pairs.

Then I and A have a unique common coupled fixed point in G .

Proof. The proof follows from Theorem (3.5) by taking I' = (Y and A = ©. O
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Corollary 3.7. Let (G, %,S;) be a complete C-AV-S,MS, T : G* — G is (¥, ¢)- generalized weakly

contractive mapping then I has a unique coupled fixed point in G.

Proof. The proof follows from Theorem (3.5) by takingI' = Q and A = © = I. m|

2
Example3.8. Let G = {0,1,2} and A = M, (IR) beall 2 X 2 matrices whose norm is || || = maxi<j<z ), aijl
i=1

and define the mapping d : G* — [0, o) as

d(0,0) = d(1,1) = d(2,2) = 0,d(0,1) = d(1,0) = 2,d(1,2) = d(2,1) = 3and d(0,2) = d(2,0) = 20.
Then clearly, (G,d) is b-metric space with « = 22" where b > 1. Let S, : G° — Ma(R) be as
Sv(p,q,v) = (d(p,q) +4d(q,r)+d(r,p) 0). Then, clearly (G,U,Sy) is a complete C*-AV-S,MS with
]| =4 > 1.

Let ,¢ : Ay — Ay defined by P(R) = 8, ¢(N) = & and a € A with ||al| = % < 1. We define
mappings T,Q: G* — G, A, @ : G — G as follows

) <] ! ife =@ =2 Q(aew):{1 ifee =1, =1

’ 0 ifeeecfo1} 0 ife,ecl0?2)
A(g):{z fe=2 oo [2 Fx=1
0 ifeecio 1}’ 0 ifecl02}

Alsoput & > Oy with ||E|| = 2. Then clearly, T(G?) € ©(G) and Q(G*) € A(G). One can show that (, ce)
is a coupled coincidence point of I, 3, A and © if and only if & = e = 0. Since (A0, AO) = A(T(0,0))
and Q(©0, ®0) = O(Q(0,0)), we get that {T', A} and {Q), O} are w-compatible pairs. Now from inequality
(3.1), we have

Y (2xSp (T(€, %), T(€¢, n), O, @))) 2P (a'M(¢, %, 2,@)a) — P (aM(L, x, 2, @)a) + EN (¢, %, 2, @)
implies that
[121cSp (T(€, %), (€, %), Q(, ) || < 19—0||a||2||]l\/[(€, x, 2, @)l + IEIIN (¢, %, 2, @) |

Now, we consider the following cases:
(i) (¢, ) =(0,0) and (e, @) = (1,1), then

324

81

~ 100
(ii) (¢, ») =(1,1) and (e,c) = (0,0) then
185, (T(1,1),T(1,1),0(0,0)) Il = 0 < 5IM(1,1,0,0)]1 + 2/IN (1,1,0,0) | = 0
(iii) (¢, ») = (0,0) and (2, ) = (2,2) then
”8Sb (F(0,0),F(O, 0>/Q(212)) ” =0< %”M(O/Orzlz)” + 2”N (0/ 0/212) ” =0
(iv) (€, %) = (2,2) and (e, ) = (0,0) then
324

81
1855 (T(2,2), T(2,2), €2(0,0)) | = 32 < 751IM(2,2,0,0)[|+ 21N (2,2,0,0) | = 35
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(v) (6, %) = (1,1) and (2, @) = (2,2) then

81
185, (I'(1,1),T(1,1),0(2,2)) I =0 < 7ogM™(1, 1,2, 2)I +2IN (1,1,2,2)[|=0

(vi) (€, x) = (2,2) and (e, ) = (1,1) then

81 843

Thus, all conditions of Theorem 3.5 are satisfied and therefore I (), A and © have a unique common fixed

point (namely, (2,2) = (0,0))in G .

4. ArprrLicAaTION TO INTEGRAL EQUATIONS

We take into account the subsequent integral equation as an application:
Consider the integral equation

o) = f (Ki(ts) + Kol 5)) (7(5, €(5)) + a(s, £(s)) ) ds + A(E) ¥ £ € . (4.1)
&

where & is a Lebesgue measurable set and m(E) < oo. In what follows, we always let G = L*(8)
denote the class of essentially bounded measurable functions on & Now, we consider the functions
K1, Kz, T, g fulfill the following assumptions:
(i) K1 : E* = [0,00), K : E* — (—00,0] and f,g : EXR — R are integrable, and A € L®(E)
(i1) 360 €(0,1) such thatforallx,ye Randt € &,
0<f(tx)—f(ty) < ﬁ(x—y) and —ﬁ(x—y) <g(tx)—g(t,y) <0
(i2) sup [|Ki(t,s) — Ka(t,s)ldt < 1.
te€ &

Theorem 4.1. Under the assumption (i)-(i2), the equation (4.1) has a unique solution in L*(E).

Proof. Suppose G = L*(E) and B(L?(&)) is a set of bounded linear operators on a Hilbert space
L%(E). We equip G with S, : GX G X G — B(L*(E)), which is ascertained by Sj(ee,,ce) =
M jae—cep+1B-cel)y where M je_cep+1B-ceyy 18 the multiplication operator on L?(&) ascertained by
My (a) = h.a, a € L*(E). Therefore, (G, B(L%(E)),S;) is a complete C*-AV-S,MS with x = 22(~1)
where p = 2 > 1 and ||&|| = 0. Define the mappings i, ¢ : A — A, by ¢(a) = a, p(a) = 2 and
I:G*—> Gasforallte&

T(¢,»)(t) = f?(l(t,s) (f(s,€(s)) + (s, #(s))) ds + f‘Kz(t,S) (f(s, %#(s)) + a(s,£(s))) ds + A(t)
& &

we have

Sp (T(€,2),T(€,%),T (e, ) = Mr(ex)-r(2e,0e))r
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Let us first evaluate the following expression:

UL, ) =T (e, ce)) (E)F

— or

IA
N
<

IA

IA

(4

<

(4

Therefore,

[Ki(t,s) (i(s, €(s)) + (s, x(5))) ds + [ Ka(t,s) (i(s, x(s)) + a(s, €(s))) ds
& &
p

—8f7(1(t,s) (f(s,e(s)) + (s, 0e(s))) ds —8f7(2(t,s) (f(s, ce(s)) + a(s,(s))) ds

p

(t,5) ((7(s, €(s)) = T(s,2(s)) + a(s, %(s)) = a(s, e(s))) ) ds

+ 8f7<2(f,5) ((7(s, #(s)) = 7(s,e(s))) +a(s, £(s)) — a(s,e(s)))) ds

p

ds

J K (t,5)| (7(s, €(s)) = (5,2 (s)) + a(s, x(s)) = a(s, ce(s)))
&

((s, % (s)) = (s, 02(5))) + (s, £(s)) - 8(s,22(s))) |ds

° 5

B

- f(}(z(t, S)
&

zpsup[ggw(s) ()|+—|% ][f?(lts — Kt s)d ]

se&

@

)P

[2][€ — aellco + 22¢ — ]| ] [supf‘](l (t,5) —Ka(t,s) ]
te&

2116 — lloo + 2112t — cellleo)”

)P

Il (215 (T (€, %), T (£, %), T (2, ) || = l126Sp (T (£, %), T (€, %), T (22, ce)|

- e (M) -r(ee ceyprh h)
=1

= 2 sup (M -r(ae,cephs 1)
=1

= 2isup | (2/IT(€, x)(t) — T (e, ce)(t))h(t)h(t)dt
[kll=1 %

< 2k 0
T T (avey
gmax{ 1S5(¢, &, @), 1S5 (%, %, )l }

< I (@ ML 3,2, 2)a) — (ML, 2,2, ce)a) + EN(L, 2, 2, @)

2P7HIISy (¢, €, @)l + 11Sp (%, 2, )]

IA

By setting a = Vo 01p(12(s)), thena € B (L2(&)) and |ja|| = || V6| < 1. Hence, applying our Corollary

3.7, we get the desired result m]
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5. ArpLicaTioN TO HOomMoTOPY
In this section, we investigate whether homotopy could have a unique solution.

Theorem 5.1. If (G, U, S) is a complete C*-AV-S,MS, then W and U are open and closed subsets of G,
— —2

respectively, such that W C . Let $, : W x [0,1] — G be an homotopy operator meeting the requirements

listed below.

(t0) € # Dp(€, 1,s), and »x + Dy(x, ¢, s) for each £, € MW and s € [0,1] (here W is boundary of Win
G)

(11) there exist £, x, e, @ € Use [0,1] and a € Wwith ||a]| < 1 such that

Sp(x, %, @)

Sp(l, ¢ ),
—¢|a" max (6 6) a
Sp(n, %, ce)
(t2) AMy = Oy 3 Sp(Du(€, %,5), Dp(€, ,5), Dp(€, %, 1)) < [IMpllls —t| for every €, » € Wand s,t €
[0,1];

Then 9y(.,s) has a coupled fixed point for some s € [0,1] & (., t) has a coupled fixed point for some
te0,1].

P (2kSy (D0 (€, %,5), D(, %,5), Dp (e, @, 5))) =< w[a*max { Sp(¢, ¢, ), }a]

Proof. From (1) it follows that 9, is continuous in the second variable. From (77) it follows that

9y is continuous in the first Variable. We have that

A

0 (2684 (96, %,5), 9u(6,%,5), 16, %7,5))) = ¢(a*max { S(6,6,6), }a]

Sp(%, %, 1p)

—¢ | a* max So(l G Gy). a
Sp(, %, 1p)

Sp(¢,4,¢y),
yb(a*max{ bl 2 }a)eoglasp—nm.

IA

Sb(%l %1 %P)

If £, — ¢and x, — x, theny (21<Sb(55b({’, %,s), Dp(€, %,s), Dp(p, %p,s))) — Oy asp — oo. Therefore,
Sp(Du(€,2,8), Du(€,1,5), Dp(€, #,5)) = Oy and also we have S,(9y(x,¢,s), Dp(x,€,5), Dp(x,¢,5)) =
Ogr.
Now
Sb(55b(€,%,s),55b(€, %,S),Sﬁb(%,(E,t)) < 2KSb(55b(€,%,S),Sjb(€, %,S),Sjb(%,(E,S))
+xSp(Dp(ee, e, t), Hp(ee, e, t), Dy(ee, 0e,5))

A

= 2KSb($b<€l X, S)/ 5517({1 %/S)/ 5!1(%/ @,S)) + K”Mb”IS - tl
. Sp(L, €, ),
< 2xa’ max a + x||Mpl|ls — t| — Oy
Sb(%, %,(E)

as (€, %,s) — (&, 0e,t).
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—2
Hence 9, is a continous function on ' x [0,1] . Also

Y (Sp(Dp(€, 2,58), Dp(€,2,5), Dp(ee, e s))) < (2xSp(Dp(€, %,5), Dp(€, #,5), Hi(ee, ce,5)))
sst6=), | ) . Sp(L, €, ),
Sp(x, %, ce) a|= | max Sp(x, %, ) /

Sp(¢, ¢,
amax{ b ®), }a]iffiae,%ioe

IA
/—\/T\A
Q
e
—_——

o max (€, %,s), 9p(€, #,5), Dp(ee, ce,s)) <4 max Sp(¢, ¢, @), .
Sb(g) (%,f,S),Sf)b(%,5,5),55(@,&,5)) Sb(%,%,(E)

Now consider the set

B={se[0,1]: €= D¢, n,5),n = Hp(x,¢{s) for some ¢, x € U}. Suppose s is a limit point of B.
Then there exists a {s,} in B such that s, — s. Then there exist a sequences {{,}, {x} € G such that
ty = Su(€p, #psp) and 2, = Hy(%p, €y, 5p). Now we show that {£,}, {} are 5;-Cauchy sequences in
(G, U, Sy). Suppose that {€y}, {} are not S-Cauchy sequences with respect 2. So there exists € > Oy

and monotonically increasing sequences of natural numbers {g,} and {p.} such that p, > g,
St (Cger bgor bp.) Z € Sp (g % 2p.) 2 € (5.1)
and
Sb (g Cgorbp) <€ Sy (g g %, ) <€ (5.2)

From (5.1) and (5.2), we have

m
IA

So (4.1 .0 €.
215y (fqz’ 5‘12’ 5‘1z+1) + xSp (€q2+1’ 5‘1z+1/ gPZ)

IA

By applying 1 on both sides, and letting z — oo we have that

P (2€) < lim 9 (2xS; (€., Lz 6p.)) (5.3)

Z—00

Suppose |s —sg| < e and € € S,(€o,0), € # €o, # € Sp(x0,0), # # np, then

Y (2xSp (96(€, %,90), Dp(€, %, 50), D6 (€0, %0,50))) = yb[a"max{ S8, & ), }a)
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Therefore,

max 156 (96(£, 2, 50), Du (€, ,50), D (€0, 20,50)) I, - L” Pm 1Sy(€, €, €o)ll,
1Sy (551,(%, ¢, So),Sjb(%, f,So),Sﬁb(%o, o, So)) [| (12| ||Sh(%, X, %0)”
< 6.

But

Sb (g)b (€/ X, S)/ 5!)(5/ X, S)/ g)b(f()/ o, SO))

IA

2kSp (Dp(€, %,8), Du(€, %,5), Dp(€, %, 50))

+1Sp (96 (€0, 20,%0), Do (o, %0,50), Du (€, %, 50))
2x||Mp|lls = sol

+xSp (Do, %0,50), Do (€0, %0, 50), Du (¢, %, %0))

IA

Therefore,
1Sy (96(€, %,5), (£, %,5), 96 (€0, %0,50)) 1| < 2llxlllIMyllls — sol + ||K||m||a||2é
o)
< 2AlliMlle + 3
o) o)
< 2IMple— 4 = =&
"Myl 2
Hence

1Sy (Sf)b(f, %,s),@b(f, %,S),fo) < ISy (555(5, %,S),Sf)b(f, %,S),Sﬁb(fo, %0,50)) <6

Therefore, (¢, x,s) € W and similarly, we prove that $,(x, {,s) € W. Thus, Thus for
any s, with |[s —sg| < € and s € [0, 1], it follows that

T : Sy(€o,0) X Sp(€o,0) = Sp(€o,0) defined by I'(€, #) = 9y (¢, 1, s) satisfies all the hypothesis of the
corollary (3.7). Hence I has a coupled fixed point. i.e

['(¢,x) = ¢ for some ¢ € Sp(€y,0) € Wand I'(x%,f) = u for some x € Sy(xp,0) € U therefore,
L6, %) =96, n,8) =Cand T'(x,€) = Hyp(x,{,s) = x and hence s € B. Thus |s —sp| <€ = s € B.
But

lim (21{5[7( Qz+17 qu’gpz))

= lim w (ZKSb ( ‘iz+1’ Agiar S5/z+1 - D (&/u—l’ Hipiar S‘iz+1) Do (€PZ’ HpzrSp. )))
qz+1’ f]z+1’ al= hmqb 4" max Sb(fqz-%—l’ng-#l’gpz)/ a
Sb %qurl’ %q”l/ %pz oo Sb(%qurl/ %qurl’ %}72)
}tpz }

< lim 1/)[11 max{ bar bgenr b ]

e Sb %qurl’%qurl’
Sp(lyis o O
1im(2||1<||—||a||2)max{ 150 (G Crcias ) }so
Z—>00

A

5
<

h

=1

joV]

b

—_—

It follows that

1S5 (%q.11) Kgir s 2p. )
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Thus lim Sy(¢y..,, g, €p.) = Oy and lim Sy(¢y_,,, %y, .., %p,) = Oy. Hence from (5.3) and by the
Z—00 Z—00

def of 1, we have that € < Oy which is a contradiction. Hence {{,} and {x,} are a C*-AV-5,-CS in

C*-AV-5,MS (G, ¥, Sp,) and by the completeness of (G, ¥, Sp), there exist &, ce € U with

lim fp =@ and lim Hp = Ce.

p—eo p—

Suppose s, — s, then (£, %p,5,) — (e, 0e,5). Since 9 is continuous so that (¢, x,5,) —
Hp(e,0e,5) and as well as 9p(xp, 6y, 5p) — Dp(ce,e,s). But 9Hy(Lp, %p,sp) = €, — @ and
Sv(%p, tp,sp) = % — ce. Therefore, we have Hy(e, ce,s) = e and Hy(ce,e,5) = ce. Hence B
is closed.

Now we show that B is open. Let B be sg. Then, €y, ¢ exists in U such that £y = 9, (€0, 0, S0) and
o = Hp(»0,€0,50). Because U is open, 6 > 0 must exist for S, (¢, ¢,{y) < 6 and Sp(x, %, xp) < O
implies that £, € U. Choose € such that 0 < € < WM, Then s¢ is an interior point of B.
Hence B is open. Consequently 8 is both closed and open. Therefore, either B = 0 or B = [0, 1].
Now suppose 9(.;s) has a coupled fixed point for some s € [0,1],then B # 0 so that B = [0,1].
Therefore, $;(.; ) has a coupled fixed point for all ¢ € [0, 1].

CONCLUSION

In this paper we conclude some applications to homotopy theory and integral equations by
using (¢, ¢)-generalized weakly contractive type coupled fixed point theorems in the context of

complete C*-algebra valued S;-metric spaces .
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