Steady-State Concentration and Current in Enhanced Modeling of Nonlinear Reaction-Diffusion Equations in Different Enzyme Kinetics
Main Article Content
Abstract
The investigation of enzyme kinetics heavily relies on nonlinear reaction-diffusion equations to analyze biochemical reactions and intracellular diffusion processes. However, due to their inherent mathematical complexity, solving such equations presents significant challenges. Traditional analytical approaches often fail to yield exact solutions efficiently, necessitating the development of advanced and more effective modern techniques for obtaining accurate solutions. This study introduces an enhanced framework for modeling enzyme kinetics by employing the Akbari-Ganji Method (AGM) to address nonlinear reaction-diffusion equations. The proposed solution approach aims to achieve greater computational accuracy and efficiency. Owing to its inherent capabilities, the AGM effectively handles the nonlinear nature of reaction-diffusion systems. The validity of the developed method was confirmed through comparison with numerical simulations and established analytical techniques. This improved solution strategy provides deeper insights into enzyme kinetics, offering valuable applications in biochemical research and pharmaceutical development. Modern evaluation methods, such as AGM, overcome issues of computational complexity and limited precision, delivering faster and more reliable results than conventional techniques. Moreover, the AGM proves to be a robust and efficient tool for solving nonlinear reaction-diffusion equations relevant to enzyme kinetics and drug discovery processes.
Article Details
References
- L. Rajendran, R. Swaminathan, M.C. Devi, A Closer Look of Nonlinear Reaction-Diffusion Equations, Nova Science Publishers, 2020. https://doi.org/10.52305/RRSY7475.
- K. Ranjani, R. Swaminathan, S. Karpagavalli, Mathematical Modelling of a Mono-Enzyme Dual Amperometric Biosensor for Enzyme-Catalyzed Reactions Using Homotopy Analysis and Akbari-Ganji Methods, Int. J. Electrochem. Sci. 18 (2023), 100220. https://doi.org/10.1016/j.ijoes.2023.100220.
- R. Senthamarai, R. Jana Ranjani, Solution of Non-Steady-State Substrate Concentration in the Action of Biosensor Response at Mixed Enzyme Kinetics, J. Phys.: Conf. Ser. 1000 (2018), 012138. https://doi.org/10.1088/1742-6596/1000/1/012138.
- A. Reena, S. Karpagavalli, R. Swaminathan, Theoretical Analysis and Steady-State Responses of the Multienzyme Amperometric Biosensor System for Nonlinear Reaction-Diffusion Equations, Int. J. Electrochem. Sci. 18 (2023), 100293. https://doi.org/10.1016/j.ijoes.2023.100293.
- R. Joy Salomi, S. Vinolyn Sylvia, M. Abukhaled, M.E. Lyons, L. Rajendran, Theoretical Analysis of Transient Responses of Amperometric Biosensor Based on the Phenol–Polyphenol Oxidase Model, Int. J. Electrochem. Sci. 17 (2022), 22047. https://doi.org/10.20964/2022.04.42.
- K. Ranjani, R. Swaminathan, S. Karpagavalli, A Theoretical Investigation of Steady-State Concentration Processes at a Carrier-Mediated Transport Model Using Akbari-Ganji and Differential Transform Methods, Partial. Differ. Equ. Appl. Math. 8 (2023), 100594. https://doi.org/10.1016/j.padiff.2023.100594.
- K. Nirmala, B. Manimegalai, L. Rajendran, Steady-State Substrate and Product Concentrations for Non-Michaelis-Menten Kinetics in an Amperometric Biosensor-Hyperbolic Function and PadéApproximants Method, Int. J. Electrochem. Sci. 15 (2020), 5682–5697. https://doi.org/10.20964/2020.06.09.
- R.U. Rani, N. Jha, L. Rajendran, A Theoretical and Computational Analysis of the Concentration of Substrate and Product in Enzyme-Based Electrochemical Biosensors: Akbari-Ganji’s Method, J. Electroanal. Chem. 956 (2024), 118077. https://doi.org/10.1016/j.jelechem.2024.118077.
- R. Swaminathan, M. Chitra Devi, L. Rajendran, K. Venugopal, Sensitivity and Resistance of Amperometric Biosensors in Substrate Inhibition Processes, J. Electroanal. Chem. 895 (2021), 115527. https://doi.org/10.1016/j.jelechem.2021.115527.
- S.M. Hashem Zadeh, M. Heidarshenas, M. Ghalambaz, A. Noghrehabadi, M. Saffari Pour, Numerical Modeling and Investigation of Amperometric Biosensors with Perforated Membranes, Sensors 20 (2020), 2910. https://doi.org/10.3390/s20102910.
- S.V. Sylvia, R.J. Salomi, L. Rajendran, M. Lyons, Amperometric Biosensors and Coupled Enzyme Nonlinear Reactions Processes: A Complete Theoretical and Numerical Approach, Electrochimica Acta 415 (2022), 140236. https://doi.org/10.1016/j.electacta.2022.140236.
- R. Joy Salomi, S. Vinolyn Sylvia, L. Rajendran, Transport and Kinetic Analysis of Amperometric Response Towards Ppo-Based Rotating Disk Bioelectrodes, J. Electroanal. Chem. 928 (2023), 117067. https://doi.org/10.1016/j.jelechem.2022.117067.
- K. Lakshmi Narayanan, J. Kavitha, R.U. Rani, M.E. Lyons, L. Rajendran, Mathematical Modelling of Amperometric Glucose Biosensor Based on Immobilized Enzymes: New Approach of Taylors Series Method, Int. J. Electrochem. Sci. 17 (2022), 221064. https://doi.org/10.20964/2022.10.47.
- A. Goyal, P.K. Bairagi, N. Verma, Mathematical Modelling of a Non‐enzymatic Amperometric Electrochemical Biosensor for Cholesterol, Electroanalysis 32 (2020), 1251–1262. https://doi.org/10.1002/elan.201900354.
- R. Shanthi, M. Chitra Devi, M. Abukhaled, M.E. Lyons, L. Rajendran, Mathematical Modeling of Ph-Based Potentiometric Biosensor Using Akbari-Ganji Method, Int. J. Electrochem. Sci. 17 (2022), 220349. https://doi.org/10.20964/2022.03.48.
- R.U. Rani, N. Jha, L. Rajendran, A Theoretical and Computational Analysis of the Concentration of Substrate and Product in Enzyme-Based Electrochemical Biosensors: Akbari-Ganji’s Method, J. Electroanal. Chem. 956 (2024), 118077. https://doi.org/10.1016/j.jelechem.2024.118077.
- P. Jeyabarathi, L. Rajendran, M.E.G. Lyons, M. Abukhaled, Theoretical Analysis of Mass Transfer Behavior in Fixed-Bed Electrochemical Reactors: Akbari-Ganji’s Method, Electrochem 3 (2022), 699–712. https://doi.org/10.3390/electrochem3040046.
- P. Katzarova, V. Rangelova, S. Kuneva, Two Parameters Diagnostic of Biosensor Transducers, Biotechnol. Biotechnol. Equip. 20 (2006), 190–194. https://doi.org/10.1080/13102818.2006.10817331.
- K.P.T. Preethi, V. Meena, R. Poovazhaki, Reliable Method for Steady-State Concentrations and Current Over the Diagnostic Biosensor Transducers, Am. J. Anal. Chem. 08 (2017), 493–513. https://doi.org/10.4236/ajac.2017.87036.
- A. Reena, S. Karpagavalli, R. Swaminathan, Mathematical Analysis of Urea Amperometric Biosensor with Non-Competitive Inhibition for Non-Linear Reaction-Diffusion Equations with Michaelis-Menten Kinetics, Results Chem. 7 (2024), 101320. https://doi.org/10.1016/j.rechem.2024.101320.
- A.D. Cathrine, R. Raja, R. Swaminathan, Mathematical Analysis of Nonlinear Differential Equations in Polymer Coated Microelectrodes, Contemp. Math. 5 (2024), 2569–2582. https://doi.org/10.37256/cm.5220244426.
- R. Swaminathan, B. Manimegalai, K. Venugopal, L. Rajendran, Homotopy Perturbation Method and Variational Iteration Method for Solving the Nonlinear Equations with Variable Coefficients in Applied Sciences, AIP Conf. Proc. 2516 (2022), 130001. https://doi.org/10.1063/5.0108642.
- A. Uma, R. Raja, R. Swaminathan, Analytical Solution of Concentrated Mixtures of Hydrogen Sulfide and Methanol in Steady State in Biofilm Model, Contemp. Math. 5 (2024), 2632–2645. https://doi.org/10.37256/cm.5320244394.
- A. Nebiyal, R. Swaminathan, S. Karpagavalli, Reaction Kinetics of Amperometric Enzyme Electrode in Various Geometries Using the Akbari-Ganji Method, Int. J. Electrochem. Sci. 18 (2023), 100240. https://doi.org/10.1016/j.ijoes.2023.100240.
- A. Reena, S. Karpagavalli, L. Rajendran, B. Manimegalai, R. Swaminathan, Theoretical Analysis of Putrescine Enzymatic Biosensor with Optical Oxygen Transducer in Sensitive Layer Using Akbari-Ganji Method, Int. J. Electrochem. Sci. 18 (2023), 100113. https://doi.org/10.1016/j.ijoes.2023.100113.
- R. Saravanakumar, P. Pirabaharan, R. Swaminathan, Analysis of Nonlinear Vibrations of Double-Walled Carbon Nanotubes Using the Variational Iteration Method, Int. J. Res. 7 (2018), 342–348.
- R.V. Raju, S. Karpagavalli, R. Swaminathan, Nonlinear Steady-State VOC and Oxygen Modeling in Biofiltration, Int. J. Anal. Appl. 22 (2024), 155. https://doi.org/10.28924/2291-8639-22-2024-155.
- K. Dharmalingam, N. Jeeva, N. Alessa, Application of Chebyshev Polynomial-Exponential Method and Tamimi-Ansari Method in Dengue Transmission Dynamics: A Comparative Study, Int. J. Anal. Appl. 22 (2024), 219. https://doi.org/10.28924/2291-8639-22-2024-219.
- S.E. Fadugba, M.C. Kekana, N. Jeeva, I. Ibrahim, Development and Implementation of Innovative Higher Order Inverse Polynomial Method for Tackling Physical Models in Epidemiology, J. Math. Comput. Sci. 36 (2025), 444–454. https://doi.org/10.22436/jmcs.036.04.07.
- N. Jeeva, K.M. Dharmalingam, Numerical Analysis and Artificial Neural Networks for Solving Nonlinear Tuberculosis Model in SEITR Framework, Adv. Theory Simulations 8 (2025), 2401287. https://doi.org/10.1002/adts.202401287.
- K.M. Dharmalingam, N. Jeeva, N. Ali, R.K. Al-Hamido, S.E. Fadugba, et al. Mathematical Analysis of Zika Virus Transmission: Exploring Semi-Analytical Solutions and Effective Controls, Commun. Math. Biol. Neurosci. 2024 (2024), 112. https://doi.org/10.28919/cmbn/8719.
- N. Jeeva, K.M. Dharmalingam, S.E. Fadugba, M.C. Kekana, A.A. Adeniji, Implementation of Laplace Adomian Decomposition and Differential Transform Methods for SARS-CoV-2 Model, J. Appl. Math. Inform. 42 (2024), 945–968. https://doi.org/10.14317/JAMI.2024.945.
- N. Jeeva, K.M. Dharmalingam, Numerical Analysis of Skin Cancer Model Induced by Ultraviolet Radiation, Int. J. Biomath. 2024 (2024), 2450137. https://doi.org/10.1142/s1793524524501377.
- N. Jeeva, K.M. Dharmalingam, Sensitivity Analysis and Semi-Analytical Solution for Analyzing the Dynamics of Coffee Berry Disease, Comput. Res. Model. 16 (2024), 731–753. https://doi.org/10.20537/2076-7633-2024-16-3-731-753.
- S.E. Fadugba, N. Jeeva, A.E. Fdadugba, O. Faweya, A. Aloqaily, et al., Mathematical Modeling for the Analysis and Optimization of Nutrient Dynamics in Edible Mushrooms, Eur. J. Pure Appl. Math. 18 (2025), 7190. https://doi.org/10.29020/nybg.ejpam.v18i4.7190.
- G. Rahman, C. Yildiz, M. Samraiz, S.S. Aiadi, N. Mlaiki, A Note on the Generalization of Minkowski's and Some Other Types of Integral Inequalities via Modified AB-Fractional Operator, J. Math. Comput. Sci. 40 (2025), 38–48. https://doi.org/10.22436/jmcs.040.01.03.
- G. Mani, P. Ganesh, A. Aloqaily, A. Arulsamy, N. Mlaiki, Solving a Fractional Differential Equation via Extended Fuzzy Bipolar Metric Space, Int. J. Anal. Appl. 23 (2025), 265. https://doi.org/10.28924/2291-8639-23-2025-265.