Fuzzy Generalized Fractal Dimensions on Sierpiński and Social Network Graphs

Main Article Content

J. Bhuvaneswari, D. Easwaramoorthy

Abstract

Fractal theory is the propelled technique to analyze non-linear systems and complex graphs. The quantification of complexity in Sierpiński and social network graphs requires the estimation of Generalized Fractal Dimensions (GFD), where complexity refers to the greater inconsistency and uncertain nature of the systems. This study introduces the fuzzy version of GFD and compares the Fuzzy GFD (FGFD) with the usual GFD for extended Sierpiński and social network graphs. The computational results indicate that the complexity of the graphical structure increases with the number of iterations due to self-similarity, as fractal-based measure values increase with iterations for generalized Sierpiński graphs. The FGFD values are consistently higher than the usual GFD, demonstrating its ability to capture more structural information. Thus, FGFD provides a more effective method for estimating non-linearity and analyzing Sierpiński and real-time graphical networks. The proposed fuzzy-based multifractal measures better quantify complexity levels compared to traditional multifractal measures.

Article Details

References

  1. P.S. Addison, Fractals and Chaos: An Illustrated Course, CRC Press, 1997.
  2. G.A. Edgar, Measure, Topology, and Fractal Geometry, Springer, 2008.
  3. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, 1982.
  4. M.F. Barnsley, Fractals Everywhere, Academic Press, 1993.
  5. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, 2003.
  6. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions and Signal Analysis, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-62672-3.
  7. D. Easwaramoorthy, R. Uthayakumar, Improved Generalized Fractal Dimensions in the Discrimination Between Healthy and Epileptic EEG Signals, J. Comput. Sci. 2 (2011), 31–38. https://doi.org/10.1016/j.jocs.2011.01.001.
  8. R. Uthayakumar, D. Easwaramoorthy, Multifractal-wavelet Based Denoising in the Classification of Healthy and Epileptic Eeg Signals, Fluct. Noise Lett. 11 (2012), 1250034. https://doi.org/10.1142/s0219477512500344.
  9. R. Uthayakumar, D. Easwaramoorthy, Fuzzy Generalized Fractal Dimensions for Chaotic Waveforms, Springer, Dordrecht, 2013. https://doi.org/10.1007/978-94-007-7362-2_48.
  10. R. Kaiser, E. Sava-Huss, Random Rotor Walks and I.i.d. Sandpiles on Sierpiński Graphs, Stat. Probab. Lett. 209 (2024), 110090. https://doi.org/10.1016/j.spl.2024.110090.
  11. H. González-Díaz, Y. González-Díaz, L. Santana, F.M. Ubeira, E. Uriarte, Proteomics, Networks and Connectivity Indices, Proteomics 8 (2008), 750–778. https://doi.org/10.1002/pmic.200700638.
  12. R.S. Scorer, P.M. Grundy, C.A.B. Smith, Some Binary Games, Math. Gaz. 28 (1944), 96–103. https://doi.org/10.2307/3606393.
  13. Y. Chen, R. Li, Z. Zhao, H. Zhang, On the Capacity of Fractal Wireless Networks with Direct Social Interactions, arXiv:1705.09751 (2017). http://arxiv.org/abs/1705.09751v1. https://doi.org/10.48550/arXiv.1705.09751.
  14. C. Yuan, Z. Zhao, R. Li, M. Li, H. Zhang, The Emergence of Scaling Law, Fractal Patterns and Small-World in Wireless Networks, IEEE Access 5 (2017), 3121–3130. https://doi.org/10.1109/access.2017.2674021.
  15. A. Rényi, On a New Axiomatic Theory of Probability, Acta Math. Acad. Sci. Hung. 6 (1955), 285–335. https://doi.org/10.1007/bf02024393.
  16. P. Grassberger, Generalized Dimensions of Strange Attractors, Phys. Lett. 97 (1983), 227–230. https://doi.org/10.1016/0375-9601(83)90753-3.
  17. H. Hentschel, I. Procaccia, The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors, Phys. D: Nonlinear Phenom. 8 (1983), 435–444. https://doi.org/10.1016/0167-2789(83)90235-x.
  18. R. Uthayakumar, D. Easwaramoorthy, Epileptic Seizure Detection in Eeg Signals Using Multifractal Analysis and Wavelet Transform, Fractals 21 (2013), 1350011. https://doi.org/10.1142/s0218348x13500114.
  19. A. Estrada-Moreno, E. Rodríguez-Bazan, J. Rodríguez-Velázquez, On Distances in Generalized Sierpiński Graphs, Appl. Anal. Discret. Math. 12 (2018), 49–69. https://doi.org/10.2298/aadm160802001e.
  20. R. Rogers, Deplatforming: Following Extreme Internet Celebrities to Telegram and Alternative Social Media, Eur. J. Commun. 35 (2020), 213–229. https://doi.org/10.1177/0267323120922066.