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Abstract. Fractal theory is the propelled technique to analyze non-linear systems and complex graphs. The quantification

of complexity in Sierpiński and social network graphs requires the estimation of Generalized Fractal Dimensions (GFD),

where complexity refers to the greater inconsistency and uncertain nature of the systems. This study introduces the fuzzy

version of GFD and compares the Fuzzy GFD (FGFD) with the usual GFD for extended Sierpiński and social network

graphs. The computational results indicate that the complexity of the graphical structure increases with the number

of iterations due to self-similarity, as fractal-based measure values increase with iterations for generalized Sierpiński

graphs. The FGFD values are consistently higher than the usual GFD, demonstrating its ability to capture more structural

information. Thus, FGFD provides a more effective method for estimating non-linearity and analyzing Sierpiński and

real-time graphical networks. The proposed fuzzy-based multifractal measures better quantify complexity levels

compared to traditional multifractal measures.

1. Introduction

The classical Euclidean geometry in mathematics concerns sets with integer type measurements,

while the fractal geometry deals with entities having non-integer type measurements [1]. A

fractal is typically an asymmetrical or fragmented geometric form that can be divided into parts,

each of which is (at least approximately) a scaled-down replica of the entire shape, exhibiting a

characteristic known as self-similarity [2]. The term “fractal” was coined by Benoit Mandelbrot, a

Professor Emeritus, in his seminal work. It is derived from Latin name “fractus” with the meaning

broken, cracked, or fractured. This term was used to describe sets that were too irregular to fit into

a conventional geometric shape. In his original paper, Mandelbrot formally defined a fractal as a

set whose Hausdorff dimensions is strictly greater than its topological dimension [3].
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In general, a fractal set exhibits more complexity, compared to the sets studied in the

classical geometry [4]. Karl Weierstrass introduced a function, termed the Weierstrass Function,

which possesses the paradoxical characteristic of being continuous at all points but lacking

differentiability entirely. The graph of this function, if considered today, would be recognized

as a fractal [5]. The complexity and irregularity observed in various generalized Sierpiński and

Social network graphs with nonlinear structures and examined and quantified through fractal

techniques using the non-integer or fractional measure known as Fractal Dimension [6].

The intricacy of the non-linearity measure has been examined in various contexts using the

multifractal measure known as Generalized Fractal Dimensions (GFD). Subsequently, GFD have

been estimated to assess the degree of complexity of realistic images, signals, networks or any

systems with irregularity [7]. Multifractal dimensional theory has applied in various fields,

including signal and image analysis, biomedical signals, medical imaging, and even financial

time series, by allowing for a more nuanced understanding of complex and irregular structures

and patterns that traditional fractal dimensions might miss [8]. Moreover, the extension of FGFD

from the conventional GFD has enabled the assessment of chaotic traits in mathematical waveforms

generated by Weierstrass Functions [9]. The Sierpiński type graphical structure appears naturally

in many different areas of mathematics and scientific fields Sierpiński gasket graph is one of the

most important families of such graphs [10].

The Fuzzy Generalized Fractal Dimensions (FGFD) offers a unique approach to graph

complexity by integrating fuzzy set theory with fractal analysis, making it distinct from traditional

complexity measures [9]. Graph Entropy quantifies randomness but does not capture fractal

properties or hierarchical structures. The fractal dimension measures self-similarity but lacks the

ability to handle uncertainty in complex networks. Topological Indices focus on connectivity but

do not incorporate fractal or fuzzy characteristics. FGFD bridges these gaps by accounting for

uncertainty, self-similarity, and hierarchical complexity, making it more suitable for analyzing

real-world networks with irregular and uncertain structures, such as biological networks, social

networks, and image processing applications [11]. Scorer et al. studied the Sierpiński gasket graph

and applied them to dynamical systems psychology [12].

The investigation into the capacity of wireless networks has garnered considerable attention

of scientific researchers in recent years. Despite the recent studies mentioned in [13], and the

recognition of the fractal phenomenon as a crucial property in numerous wireless networking

scenarios [14], fractal wireless networks have received little attention.

Fuzzy concepts in fractal theory help analyze uncertainty and imprecise structures in

generalized Sierpiński graphs and social network graphs. It enhances the study of self-similarity,

hierarchical patterns, and structural complexity. In Sierpiński graphs, it refines fractal properties

under uncertainty, while in social networks, it improves modelling of dynamic and uncertain

relationships. This approach aids in better understanding connectivity, influence, and information

flow in complex systems.
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This study introduces a Fuzzified Generalized Fractal Dimensions (FGFD) to enhance the

analysis of generalized Sierpiński and social network graphs, addressing limitations in traditional

fractal measures.

The research provides a detailed comparison between FGFD and classical GFD, demonstrating

how FGFD captures finer structural variations and better quantifies graph complexity.

The study incorporates a Gaussian fuzzy membership function to differentiate representative

graphs, improving the measurement of non-linearity, uncertainty, and hierarchical structures in

real-world networks.

The paper’s structure is as follows: Section 2 depicts the Renyi entropy measure and GFD

measure for generalized Sierpiński graphs and Social networks. Additionally, it proposed with

the Fuzzy Renyi entropy measure and FGFD measure for Sierpiński graphs and Social networks.

In Section 3, the generalized Sierpiński graph and the Social network graph are described.

The computational results obtained are subsequently scrutinized in detail in Section 4. Finally,

concluding comments are presented in Section 5.

2. MathematicalMethods

This section examines the fundamental concepts and the proposed non-linear measures required

for this research work in detail.

2.1. Renyi Entropy. Renyi entropy, initially proposed by Alfred Renyi [15], stands as a crucial

concept in the information theory. It serves as a generalization of Shannon entropy, forming one

of the functional groups employed to evaluate the diversity, uncertainty, or randomness within a

given system. Renyi entropy, also referred to as the generalized entropy of a specific probability

measure, quantifies the information content of a probability distribution. It is defined by the

expression:

Rq =
1

1− q
log2

 N∑
i=1

pq
i

 ,

where q ≥ 0 & q , 1, and pi represents the probability values assigned to each xi for i = 1, 2, . . . , N,

taken by the random variable.

2.2. Fuzzy Renyi Entropy. Fuzzy Renyi Entropy quantifies uncertainty in a fuzzy system by

incorporating the fuzzification process, which assigns membership values between 0 and 1 instead

of using crisp classifications. The expression for the Fuzzy Renyi Entropy of order q on a given set

V, where q ≥ 0 & q , 1, is given below [9].

FRq =
1

1− q
log2

 N∑
i=1

∑
x∈Vi

µ(x)


q .

Here, the function µ : V → [0, 1] denotes the fuzzy membership function defined over the

underlying space V, which comprises of N subsets denoted as V1, V2, . . . ,VN.
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Fuzzy Renyi entropy helps measure uncertainty and complexity in generalized Sierpiński graphs

and social network graphs. It provides a flexible way to analyze information flow, structural

irregularities, and robustness in networks. In Sierpiński graphs, it aids in studying self-similarity

and hierarchical structures. In social network graphs, it helps evaluate connectivity, influence

dynamics, and information diffusion under uncertainty.

2.3. Multifractal Analysis for Graphs. The Renyi entropies are pivotal in non-linear and statistical

analyzes due to their association with irregularity and unpredictability. These entropies give rise to

a set of fractal measure indices known as Generalized Fractal Dimensions (GFD). The development

of Multifractal theory in 1983 was based on the GFD measure [16, 17]. Beyond the conventional

fractal dimension, GFD is essential for comprehending and measuring the intricacy of irregular

structures in biomedical signals and images along with wavelet theory [18]. This section explores

the procedure to compute GFD measure for fractal like graphs.

To define the GFD measure for graphs, we construct the required probability distribution for

a given multifaceted graph as follows. Let G = (V(G), E(G),ϕG) be a graph with the vertex set

V(G), the edge set E(G) and the incidence function ϕG in which the degree of a vertex (d(v)) is

equal to the number of edges incident on v. Most of the properties of the graph are based on the

distribution of degrees of a vertex. Here, the probability distribution of the given graph is defined

as follows:

pi =

∑
v∈Vi

d(v)∑N
j=1 d

(
v j

) , i = 1, 2, . . . , M;

where N is the number of vertices in G, M is the number of vertex subsets (copies) partitioned V(G),

and pi is the probability of ith vertex subset. Then, the Renyi Fractal Dimensions or Generalized

Fractal Dimensions (GFD) for the given probability measures, with an order q ∈ (−∞,∞) & q , 1

and denoted by Dq, is given below

Dq = lim
r→0

1
q− 1

log2

(∑M
i=1 pq

i

)
log2 r

, (2.1)

where M is the number of vertex subsets (copies) of V(G).

Here the Generalized Fractal Dimensional measure is defined by means of generalized Renyi

Entropy.

2.4. Fuzziness of Multifractal Analysis for Graphs. Here, FGFD is proposed in this section and

used to measure the degree of fuzziness.

The definition of FGFD for a given fractal graph is as follows.

Let G = (V(G), E(G),ϕG) be a graph with N vertices. The vertex set V(G) is partitioned into M

vertex subsets(copies) say copy V1, V2, . . . , VM according to the problem proceeded.
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Then the fuzzy membership function of ith vertex subset is defined as

µi =

∑
v∈Vi

µ(v)∑
u∈V(G) µ(u)

, i = 1, 2, . . . , M,

where µ is the fuzzy membership function on the vertex set V(G), (i.e). µ : V(G)→ [0, 1].

A fuzzy membership function on the set Vi divided into V vertices as subset of the

ith copy V1, V2, . . . , Vi is characterized as a function µ : Vi → [0, 1].

The FGFD with the order q ∈ (−∞,∞), q , 1 for the provided fuzzy membership function of the

given graph is denoted and defined as

FDq = lim
r→0

1
q− 1

log2

(∑M
i=1 (µi)

q
)

log2 r
, (2.2)

where M is the number of vertex subsets of V(G), and µi represents the fuzzy membership

function, assigning values in [0, 1]. The parameter r serves as the scale factor, approaching zero

for fine grained analysis, while q is the entropy order, which controls the sensitivity to high or low

membership values, influencing the overall complexity measurement of the graph.

Here, the FGFD is established by utilizing generalized Fuzzy Renyi Entropy, alternatively

referred to as Fuzzy Renyi Fractal Dimensions for the given graph.

2.5. Gaussian Fuzzy Membership Function. The general Gaussian fuzzy membership function,

denoted as g : V→ [0, 1], is a mathematical expression used to determine the membership degree

of an element x in a fuzzy set defined over a set V. The function is parametrized by a mean value

(x̄) and the standard deviation (σ) is defined below.

g(x; x̄, σ) = e
−(x−x̄)2

2σ2 .

3. Experimental Fractal Type Graphs

A fractal is an entity that exhibits self-similarity when viewed at different levels of magnification.

Fractal also possess the irregularity nature some times. Hence, We are experimenting self-similar

fractal graphs and irregular fractal graphs in this paper.

3.1. Generalized Sierpiński Graph. A graph G = (V(G), E(G),ϕG) with an order of N ≥ 2, and

let t be a positive integer. The set of words of length t on the alphabet V is defined as Vt. In

this set, each word u ∈ Vt of length t is represented by its individual letters u1u2 . . . ut [19]. The

generalized Sierpiński graph of G with dimension t represented as S(G, t) is a graph having the

vertex set Vt. An edge (u, v) exists in this graph if and only if there is an index l ∈ {1, . . . , t} such

that:

(i). um = vm if m < l,
(ii). ul , vl and (ul, vl) ∈ E(G),

(iii). um = vl and vm = ul if m > l.
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(a) First iteration

(b) Second iteration (c) Third iteration

Figure 1. Iterations of generalized Sierpiński graph

3.2. Social Network Graph. In the context of a social media platform, where the network is

represented as a graph with 16 platforms (depicted in red) serving as nodes, and the links between

them representing connections forged by internet celebrities (depicted in blue), network graphs

offer a powerful tool to analyze the dynamics of interactions and relationships within this digital

ecosystem. Each edge (connection) between two vertices (platforms or nodes) signifies some form

of interaction, collaboration, or association facilitated by the internet celebrities.

A notable aspect of this network is the presence of extreme, anti-establishment actors who, at

one point, were propelled into the spotlight as internet celebrities through the very same social

media platforms. However, these individuals and sometimes groups are now being characterized

as dangerous individuals by the leading social media companies, including Facebook, Instagram,

Twitter, and YouTube. This characterization has led to a phenomenon known as de-platforming,

where in these individuals are removed from or denied access to these major social media platforms

due to offenses such as organized hate.
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The act of de-platforming has ignited a significant debate, raising questions about the role

of liberal big tech in potentially stifling free speech. The controversy revolves around whether

these major technology companies are assuming editorial roles by deciding who can or cannot

participate in the digital public sphere. Furthermore, the discussions have emerged regarding the

effectiveness of de-platforming as a strategy to address issues such as organized hate and whether

it achieves its intended goals [20].

Figure 2. Social network graph

4. Results and Discussion

The effectiveness of the developed fuzzy multifractal measure is evaluated by conducting

simulations using the representative generalized Sierpiński and Social network graphs described

through the MATLAB software.

The probability distributions for each vertex of the generalized Sierpiński graph were acquired,

along with the corresponding GFD values. Additionally, the fuzzy membership function values for

each vertex were determined using the Gaussian fuzzy membership function (g). Subsequently, the

FGFD for the entire representative generalized Sierpiński graph was derived from the computed

Gaussian membership values.
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Table 1. GFD values for three iterations of generalized Sierpiński graph

q Iteration

1

Iteration

2

Iteration

3

2 7.0255 70.983 515.97

4 4.6837 47.322 343.98

6 4.2153 42.590 309.58

8 4.0146 40.562 294.84

10 3.9031 39.435 286.65

12 3.8321 38.718 281.44

14 3.7830 38.222 277.83

16 3.7470 37.858 275.18

18 3.7194 37.579 273.16

20 3.6977 37.579 271.56

22 3.6800 37.182 270.27

24 3.6655 37.035 269.20

26 3.6533 36.911 268.30

28 3.6429 36.806 267.54

30 3.6339 36.715 266.88

32 3.6261 36.636 266.31

34 3.6192 36.567 265.80

36 3.6131 36.506 265.35

38 3.6077 36.451 264.96

40 3.6028 36.402 264.60

42 3.5985 36.357 264.28

44 3.5945 36.317 263.98

46 3.5908 36.280 263.72

48 3.5875 36.247 263.47

50 3.5845 36.216 263.25

Table 1 appears to represent the results of an iterative process over different values of q for

multiple iterations. The GFD values have been calculated for q values ranges from 2 to 50 for

three iteration. The results suggest that as q increases, the GFD values in Table 1 decrease over

successive iterations.

The decreasing trend seems to stabilize as q increases, indicating that the iterative process

converges to a certain value for each q in the later iterations. The values seem to be decreasing at

a diminishing rate, and as q approaches higher values, the rate of decrease slows down.
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(a) First iteration (b) Second iteration

(c) Third iteration

Figure 3. Graphical representation of GFD for three iterations of generalized

Sierpiński graph

In Figure 3 the increasing GFD values with successive iterations indicate that the self-similar

structure undergoes a significant transformation as it evolves. This suggests that with each

iteration, the geometric framework becomes more refined, either by attaining a higher level of order

or by developing greater complexity. The growth in GFD values signifies that additional structural

details emerge at finer scales, enhancing the overall intricacy of the pattern. This evolution follows

the principles of fractal geometry, where self-replicating patterns create increasingly elaborate

formations. Depending on the nature of the iterative process, the structure may become more

systematically organized, reinforcing its inherent self-similarity, or it may exhibit heightened

complexity through the introduction of new geometric variations. In either case, the increase in

GFD values serves as a quantitative measure of the structure’s evolving characteristics, providing

insight into the interplay between order and complexity in self-similar formations.
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Table 2. FGFD values for three iterations of generalized Sierpiński graph

q Iteration

1

Iteration

2

Iteration

3

2 13.368 150.95 1096.9

4 8.9118 100.63 731.29

6 8.0206 90.569 658.16

8 7.6387 86.256 626.82

10 7.4265 83.860 609.41

12 7.2915 82.336 598.33

14 7.1980 81.280 590.66

16 7.1295 80.506 585.04

18 7.0770 79.914 580.73

20 7.0356 79.447 577.34

22 7.0021 79.068 574.59

24 6.9745 78.756 572.32

26 6.9512 78.493 570.41

28 6.9314 78.270 568.78

30 6.9143 78.077 567.38

32 6.8995 77.909 566.16

34 6.8864 77.761 565.09

36 6.8748 77.631 564.14

38 6.8645 77.514 563.29

40 6.8552 77.410 562.53

42 6.8469 77.315 561.85

44 6.8393 77.230 561.23

46 6.8324 77.152 560.66

48 6.8261 77.080 560.14

50 6.8203 77.015 559.66

Table 2 represents the values of the FGFD for different q values across multiple iterations. The

FGFD values in Table 2 seem to represent a fuzzified a measure of the generalized Sierpiński graph.

The multi level fractal dimensions often quantify the complexity or self-similarity of geometric

patterns. In Table 2 there is a consistent decreasing trend in the FGFD values as q increases for

each iteration. The FGFD values appear to converge as q increases, and the rate of decrease slows

down in later iterations. It is suggested that the FGFD stabilizes for higher values of q.



Int. J. Anal. Appl. (2025), 23:199 11

Generally, a higher fractal dimension is often associated with more complex and intricate

patterns. The increasing FGFD values might indicate a tendency toward more similarities and

complex patterns as the number of iterations increases.

(a) First iteration (b) Second iteration

(c) Third iteration

Figure 4. Graphical representation of FGFD for three iterations of generalized

Sierpiński Graph

Then the values of the FGFD are plotted against the corresponding q values from 2 to 50 for the

generalized Sierpiński graph. The graphs for the FGFD method are depicted in Figure 4 for three

iterations. It is also noticed from Tables 1 - 2 and Figures 3 - 4 GFD and FGFD values are differed

significantly for each iteration.

When comparing the FGFD to the GFD, FGFD values are consistently higher, suggesting that

the FGFD methodology provides a more comprehensive evaluation of complexity and similarity

patterns, particularly in the presence of uncertainties and variations. This indicates that FGFD

is more effective than classical GFD in capturing the intricate structural details of self-similar

formations. By incorporating fuzziness into its computational framework, FGFD allows for a



12 Int. J. Anal. Appl. (2025), 23:199

more flexible assessment of patterns, making it better suited for analyzing structures where

deterministic methods may fail to account for subtle variations. Unlike GFD, which relies on

precise and rigid measurements of geometric similarity, FGFD introduces a degree of adaptability

that enhances its ability to detect complex levels of self-similarity. This suggests that FGFD not only

refines the measurement process but also provides a more nuanced representation of structural

complexity, making it a valuable tool in analyzing patterns that exhibit both ordered and uncertain

characteristics.

Table 3. GFD and FGFD values for social network graph

q GFD

(Dq)

FGFD

(FDq)

2 28.572 4.2574

4 19.048 2.8383

6 17.143 2.5545

8 16.327 2.4328

10 15.873 2.3652

12 15.585 2.3222

14 15.385 2.2925

16 15.238 2.2706

18 15.126 2.2539

20 15.038 2.2408

22 14.966 2.2301

24 14.966 2.2213

26 14.857 2.2139

28 14.815 2.2076

30 14.779 2.2021

32 14.747 2.1974

34 14.719 2.1932

36 14.694 2.1895

38 14.672 2.1863

40 14.652 2.1833

42 14.634 2.1806

44 14.618 2.1782

46 14.603 2.1760

48 14.590 2.1740

50 14.578 2.1722
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In Table 3, the GFD values are notably higher compared to the FGFD values indicating a

substantial scale differences between the two measures. The GFD and FGFD Values of the given

Social network are calculated for the order q ranges from 2 to 50 as shown in Table 3. Both GFD and

FGFD exhibit decreasing trends as q increases. This quantitative contrast highlights the different

magnitudes of multi level fractal dimensions captured by the two methods.

Figure 5. GFD for social network graph

Figure 6. FGFD for Social network graph

The GFD and FGFD values are plotted graphically of the network graph and illustrated in

Figures 5–6. Figures 5–6 reveal a difference in specific manner, in the curves plotted for GFD and

FGFD, as q increases. Table 3 and Figures 5–6 demonstrate that the GFD values are consistently

higher than the FGFD values, suggesting a fundamental difference in how these two methodologies

interpret self-similar structures.

Sierpiński graphs, a self-similar fractal structure, which have deterministic self-similarity at each

iteration, whereas social network graphs, which have community-based small-world properties,



14 Int. J. Anal. Appl. (2025), 23:199

possess more irregularity rather than self-similarity. Specifically, this implies that the level of self-

similarity in the social network graph is generally lower than that of the generalized Sierpiński

graph. The lower FGFD values, compared to GFD, indicate that the fuzziness incorporated in FGFD

captures subtle uncertainties and variations that are not accounted for in the more deterministic

GFD approach. This suggests that FGFD, by integrating fuzzy logic, provides a more flexible

and adaptive assessment of self-similarity, especially in complex structures where variations and

irregularities are present. Unlike GFD, which strictly adheres to precise geometric similarity,

FGFD can recognize nuanced patterns within self-similar structures, making it more effective in

evaluating systems characterized by inherent vagueness. Consequently, the difference in values

highlights the advantages of FGFD in detecting deeper and more complex self-similarity levels,

particularly in networks and structures that exhibit non-uniform or evolving patterns.

The higher FGFD values compared to GFD arise because FGFD accounts for uncertainty in

graph topology, effectively capturing the complexity of structural variations. Unlike GFD, which

assumes a fixed structure, FGFD incorporates fuzzy logic, making it more sensitive to irregularities

and dynamic changes within the network. In discussions on de-platforming, the dynamic

behaviour and morphological properties of the social network has been investigated and estimated

evidently by the mathematical analysis using fractal and multifractal measures. Explicitly linking

fractal measures to real-world network behaviors such as resilience, fragmentation, and influence

diffusion helps readers better to understand how structural complexity affects social interactions

and information flow.

In this context, the Fuzzy GFD is compared with the traditional GFD for self-similar and social

networks and concluded that the Fuzzy GFD is numerically higher than the GFD at each level

of q. Beyond the GFD, the Fuzzy based GFD can be compared further with fuzzified nonlinear

measures and entropies for the real time graphical structures.

5. Conclusion

In this study, generalized Sierpiński and social network graphs were analyzed using Fuzzy

Multifractal Theory. The Fuzzy Generalized Fractal Dimensions (FGFD), incorporating the

Gaussian fuzzy membership function, was introduced and applied to these graphical structures.

Simulation results demonstrated the advantages of fuzzy multifractal analysis over traditional

multifractal analysis, particularly in the context of Sierpiński graphs and social networks. The key

findings of this proposed research work indicate that self-similar structures, such as the generalized

Sierpiński graph, exhibit higher FGFD values than GFD, whereas social network graphs, which lack

strong self-similarity, display higher GFD values than FGFD. This suggests that fuzzy multifractal

dimensions provide a more effective measure of complexity for self-similar graphs while offering

valuable insights into the structural intricacies of social networks. In future, this framework can

be extended to analyze dynamic social networks, real-time chemical structures, and large-scale

network models, enhancing its applicability. Additionally, FGFD can be applied to other types of
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graphs, such as biological networks, transportation systems, and financial networks, broadening

its scope. Furthermore, exploring machine learning applications in graph classification using

FGFD could open new possibilities for automated network analysis. These extensions will further

demonstrate the versatility and robustness of the proposed fuzzy multifractal approach in diverse

scientific and technological domains.
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