A Novel Study on the Non-Negative Solution of an Eighth-Order BVP
Main Article Content
Abstract
In this article, we investigate the existence of non-negative solutions for a boundary value problem associated with an eighth-order differential equation \(\lambda^{(8)} ( \varpi) = \psi( \varpi, \lambda(\varpi)\), \(\lambda^{(1)}( \varpi), \cdots, \lambda^{(7)} (\varpi))\) for \(0 < \varpi < 1\), under initial values \(\lambda(0)=\lambda^{'}(0) = \lambda^{''}(0) = \lambda^{'''}(0) =0\) and \(\lambda^{(4)}(1) = \lambda^{(5)}(1) = \lambda^{(6)}(1) = \lambda^{(7)}(1) = 0\), where \(\psi\) is non-negative continuous function. For this study, we use the nonlinear Leray-Schauder alternative and the Leray-Schauder fixed-point theorem to prove the existence of at least one non-negative solution. As a numerical application, we present an example to confirm the utility of the achieved results.
Article Details
References
- T. Abdeljawad, A Lyapunov Type Inequality for Fractional Operators with Nonsingular Mittag-Leffler Kernel, J. Inequal. Appl. 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5.
- T. Abdeljawad, D. Baleanu, Discrete Fractional Differences with Nonsingular Discrete Mittag-Leffler Kernels, Adv. Differ. Equ. 2016 (2016), 232. https://doi.org/10.1186/s13662-016-0949-5.
- T. Abdeljawad, D. Baleanu, On Fractional Derivatives with Exponential Kernel and Their Discrete Versions, Rep. Math. Phys. 80 (2017), 11–27. https://doi.org/10.1016/s0034-4877(17)30059-9.
- F. Jarad, T. Abdeljawad, Z. Hammouch, On a Class of Ordinary Differential Equations in the Frame of Atangana–Baleanu Fractional Derivative, Chaos Solitons Fractals 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006.
- T. Gunasekar, S. Manikandan, V. Govindan, P. D, J. Ahmad, et al., Symmetry Analyses of Epidemiological Model for Monkeypox Virus with Atangana–Baleanu Fractional Derivative, Symmetry 15 (2023), 1605. https://doi.org/10.3390/sym15081605.
- V.S. Ertürk, A. Ali, K. Shah, P. Kumar, T. Abdeljawad, Existence and Stability Results for Nonlocal Boundary Value Problems of Fractional Order, Bound. Value Probl. 2022 (2022), 25. https://doi.org/10.1186/s13661-022-01606-0.
- Z. BEKRI, V.S. ERTÜRK, P. KUMAR, V. GOVİNDARAJ, Some Novel Analysis of Two Different Caputo-Type Fractional-Order Boundary Value Problems, Results Nonlinear Anal. 5 (2022), 299–311. https://doi.org/10.53006/rna.1114063.
- Y. Adjabi, M.E. Samei, M.M. Matar, J. Alzabut, Langevin Differential Equation in Frame of Ordinary and Hadamard Fractional Derivatives Under Three Point Boundary Conditions, AIMS Math. 6 (2021), 2796–2843. https://doi.org/10.3934/math.2021171.
- Z. Bekri, V.S. Erturk, P. Kumar, On the Existence and Uniqueness of a Nonlinear q-Difference Boundary Value Problem of Fractional Order, Int. J. Model. Simul. Sci. Comput. 13 (2021), 2250011. https://doi.org/10.1142/s1793962322500118.
- S.N. Hajiseyedazizi, M.E. Samei, J. Alzabut, Y. Chu, On Multi-Step Methods for Singular Fractional q-Integro-Differential Equations, Open Math. 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093.
- P. Amiri, M.E. Samei, Existence of Urysohn and Atangana–Baleanu Fractional Integral Inclusion Systems Solutions via Common Fixed Point of Multi-Valued Operators, Chaos Solitons Fractals 165 (2022), 112822. https://doi.org/10.1016/j.chaos.2022.112822.
- X. Wang, A. Berhail, N. Tabouche, M.M. Matar, M.E. Samei, et al., A Novel Investigation of Non-Periodic Snap BVP in the G-Caputo Sense, Axioms 11 (2022), 390. https://doi.org/10.3390/axioms11080390.
- S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, New York, 1961.
- W. Jiang, J. Qiu, Y. Guo, Three Positive Solutions for Higher-Order $m$-Point Boundary Value Problems with All Derivatives, Int. J. Innov. Comput. Inf. Control 4 (2008), 1477–1488.
- X. Liu, W. Jiang, Y. Guo, Multi-Point Boundary Value Problems For Higher Order Differential Equations, Appl. Math. E-Note 4 (2004), 106–113.
- J.R. Graef, J. Henderson, B. Yang, Positive Solutions for a Nonlinear Higher-Order Boundary Value Problems, Electron. J. Differ. Equ. 2007 (2007), 45.
- M. Menchih, H. El Asraoui, K. Hilal, A. Kajouni, M.E. Samei, Positive Bounded Solutions for Iterative Bvp with Conformable Fractional Operator of Order in (2,3], J. Appl. Math. Comput. 71 (2025), 323–340. https://doi.org/10.1007/s12190-025-02489-x.
- Y. Guo, X. Liu, J. Qiu, Three Positive Solutions for Higher Order M-Point Boundary Value Problems, J. Math. Anal. Appl. 289 (2004), 545–553. https://doi.org/10.1016/j.jmaa.2003.08.038.
- T. Shanmugam, M. Muthiah, S. Radenović, Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem, Axioms 8 (2019), 129. https://doi.org/10.3390/axioms8040129.
- K.N.S. KasiViswanadham, S. Ballem, Numerical Solution of Eighth Order Boundary Value Problems by Galerkin Method with Quintic B-Splines, Int. J. Comput. Appl. 89 (2014), 7–13. https://doi.org/10.5120/15705-4562.
- A. Napoli, W.M. Abd-Elhameed, Numerical Solution of Eighth-Order Boundary Value Problems by Using Legendre Polynomials, Int. J. Comput. Methods 15 (2017), 1750083. https://doi.org/10.1142/s0219876217500839.
- M.A. Noor, S.T. Mohyud-Din, Variational Iteration Decomposition Method for Solving Eighth‐order Boundary Value Problems, Int. J. Differ. Equ. 2007 (2007), 019529. https://doi.org/10.1155/2007/19529.
- X. Xu, F. Zhou, Numerical Solutions for the Eighth-Order Initial and Boundary Value Problems Using the Second Kind Chebyshev Wavelets, Adv. Math. Phys. 2015 (2015), 964623. https://doi.org/10.1155/2015/964623.
- S.M. Reddy, Numerical Solution of Eighth Order Boundary Value Problems by Petrov-Galerkin Method With Quintic $b$-Splines as Basic Functions and Septic $b$-Splines as Weight Functions, Int. J. Adv. Trends Comput. Sci. Eng. 5 (2016), 17902–17908.
- M.G. Porshokouhi, B. Ghanbari, M. Gholami, M. Rashidi, Numerical Solution of Eighth Order Boundary Value Problems with Variational Iteration Method, Gen. Math. Notes 2 (2011), 128–133.
- S. Ballem, K.K. Viswanadham, Numerical Solution of Eighth Order Boundary Value Problems by Galerkin Method with Septic b-Splines, Procedia Eng. 127 (2015), 1370–1377. https://doi.org/10.1016/j.proeng.2015.11.496.
- K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
- G. Isac, Leray–schauder Type Alternatives, Complementarity Problems and Variational Inequalities, Springer, 2006.