A Novel Study on the Non-Negative Solution of an Eighth-Order BVP

Main Article Content

Zouaoui Bekri, Vedat Suat Erturk, Mohammad Esmael Samei, Dania Santina, Nabil Mlaiki

Abstract

In this article, we investigate the existence of non-negative solutions for a boundary value problem associated with an eighth-order differential equation \(\lambda^{(8)} ( \varpi)  = \psi( \varpi, \lambda(\varpi)\), \(\lambda^{(1)}( \varpi), \cdots, \lambda^{(7)} (\varpi))\) for \(0 < \varpi < 1\), under initial values \(\lambda(0)=\lambda^{'}(0) = \lambda^{''}(0) = \lambda^{'''}(0) =0\) and \(\lambda^{(4)}(1) = \lambda^{(5)}(1) = \lambda^{(6)}(1) = \lambda^{(7)}(1) = 0\), where \(\psi\) is  non-negative continuous function. For this study, we use the nonlinear Leray-Schauder alternative and the Leray-Schauder fixed-point theorem to prove the existence of at least one non-negative solution. As a numerical application, we present an example to confirm the utility of the achieved results.

Article Details

References

  1. T. Abdeljawad, A Lyapunov Type Inequality for Fractional Operators with Nonsingular Mittag-Leffler Kernel, J. Inequal. Appl. 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5.
  2. T. Abdeljawad, D. Baleanu, Discrete Fractional Differences with Nonsingular Discrete Mittag-Leffler Kernels, Adv. Differ. Equ. 2016 (2016), 232. https://doi.org/10.1186/s13662-016-0949-5.
  3. T. Abdeljawad, D. Baleanu, On Fractional Derivatives with Exponential Kernel and Their Discrete Versions, Rep. Math. Phys. 80 (2017), 11–27. https://doi.org/10.1016/s0034-4877(17)30059-9.
  4. F. Jarad, T. Abdeljawad, Z. Hammouch, On a Class of Ordinary Differential Equations in the Frame of Atangana–Baleanu Fractional Derivative, Chaos Solitons Fractals 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006.
  5. T. Gunasekar, S. Manikandan, V. Govindan, P. D, J. Ahmad, et al., Symmetry Analyses of Epidemiological Model for Monkeypox Virus with Atangana–Baleanu Fractional Derivative, Symmetry 15 (2023), 1605. https://doi.org/10.3390/sym15081605.
  6. V.S. Ertürk, A. Ali, K. Shah, P. Kumar, T. Abdeljawad, Existence and Stability Results for Nonlocal Boundary Value Problems of Fractional Order, Bound. Value Probl. 2022 (2022), 25. https://doi.org/10.1186/s13661-022-01606-0.
  7. Z. BEKRI, V.S. ERTÜRK, P. KUMAR, V. GOVİNDARAJ, Some Novel Analysis of Two Different Caputo-Type Fractional-Order Boundary Value Problems, Results Nonlinear Anal. 5 (2022), 299–311. https://doi.org/10.53006/rna.1114063.
  8. Y. Adjabi, M.E. Samei, M.M. Matar, J. Alzabut, Langevin Differential Equation in Frame of Ordinary and Hadamard Fractional Derivatives Under Three Point Boundary Conditions, AIMS Math. 6 (2021), 2796–2843. https://doi.org/10.3934/math.2021171.
  9. Z. Bekri, V.S. Erturk, P. Kumar, On the Existence and Uniqueness of a Nonlinear q-Difference Boundary Value Problem of Fractional Order, Int. J. Model. Simul. Sci. Comput. 13 (2021), 2250011. https://doi.org/10.1142/s1793962322500118.
  10. S.N. Hajiseyedazizi, M.E. Samei, J. Alzabut, Y. Chu, On Multi-Step Methods for Singular Fractional q-Integro-Differential Equations, Open Math. 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093.
  11. P. Amiri, M.E. Samei, Existence of Urysohn and Atangana–Baleanu Fractional Integral Inclusion Systems Solutions via Common Fixed Point of Multi-Valued Operators, Chaos Solitons Fractals 165 (2022), 112822. https://doi.org/10.1016/j.chaos.2022.112822.
  12. X. Wang, A. Berhail, N. Tabouche, M.M. Matar, M.E. Samei, et al., A Novel Investigation of Non-Periodic Snap BVP in the G-Caputo Sense, Axioms 11 (2022), 390. https://doi.org/10.3390/axioms11080390.
  13. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, New York, 1961.
  14. W. Jiang, J. Qiu, Y. Guo, Three Positive Solutions for Higher-Order $m$-Point Boundary Value Problems with All Derivatives, Int. J. Innov. Comput. Inf. Control 4 (2008), 1477–1488.
  15. X. Liu, W. Jiang, Y. Guo, Multi-Point Boundary Value Problems For Higher Order Differential Equations, Appl. Math. E-Note 4 (2004), 106–113.
  16. J.R. Graef, J. Henderson, B. Yang, Positive Solutions for a Nonlinear Higher-Order Boundary Value Problems, Electron. J. Differ. Equ. 2007 (2007), 45.
  17. M. Menchih, H. El Asraoui, K. Hilal, A. Kajouni, M.E. Samei, Positive Bounded Solutions for Iterative Bvp with Conformable Fractional Operator of Order in (2,3], J. Appl. Math. Comput. 71 (2025), 323–340. https://doi.org/10.1007/s12190-025-02489-x.
  18. Y. Guo, X. Liu, J. Qiu, Three Positive Solutions for Higher Order M-Point Boundary Value Problems, J. Math. Anal. Appl. 289 (2004), 545–553. https://doi.org/10.1016/j.jmaa.2003.08.038.
  19. T. Shanmugam, M. Muthiah, S. Radenović, Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem, Axioms 8 (2019), 129. https://doi.org/10.3390/axioms8040129.
  20. K.N.S. KasiViswanadham, S. Ballem, Numerical Solution of Eighth Order Boundary Value Problems by Galerkin Method with Quintic B-Splines, Int. J. Comput. Appl. 89 (2014), 7–13. https://doi.org/10.5120/15705-4562.
  21. A. Napoli, W.M. Abd-Elhameed, Numerical Solution of Eighth-Order Boundary Value Problems by Using Legendre Polynomials, Int. J. Comput. Methods 15 (2017), 1750083. https://doi.org/10.1142/s0219876217500839.
  22. M.A. Noor, S.T. Mohyud-Din, Variational Iteration Decomposition Method for Solving Eighth‐order Boundary Value Problems, Int. J. Differ. Equ. 2007 (2007), 019529. https://doi.org/10.1155/2007/19529.
  23. X. Xu, F. Zhou, Numerical Solutions for the Eighth-Order Initial and Boundary Value Problems Using the Second Kind Chebyshev Wavelets, Adv. Math. Phys. 2015 (2015), 964623. https://doi.org/10.1155/2015/964623.
  24. S.M. Reddy, Numerical Solution of Eighth Order Boundary Value Problems by Petrov-Galerkin Method With Quintic $b$-Splines as Basic Functions and Septic $b$-Splines as Weight Functions, Int. J. Adv. Trends Comput. Sci. Eng. 5 (2016), 17902–17908.
  25. M.G. Porshokouhi, B. Ghanbari, M. Gholami, M. Rashidi, Numerical Solution of Eighth Order Boundary Value Problems with Variational Iteration Method, Gen. Math. Notes 2 (2011), 128–133.
  26. S. Ballem, K.K. Viswanadham, Numerical Solution of Eighth Order Boundary Value Problems by Galerkin Method with Septic b-Splines, Procedia Eng. 127 (2015), 1370–1377. https://doi.org/10.1016/j.proeng.2015.11.496.
  27. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
  28. G. Isac, Leray–schauder Type Alternatives, Complementarity Problems and Variational Inequalities, Springer, 2006.