Application of Cryptography for Controllability Results of Fractional Neutral Volterra-Fredholm Integro-Differential Equations with State-Dependent Delay

Main Article Content

Prabakaran Raghavendran, Tharmalingam Gunasekar, Ahmad Aloqaily, Nabil Mlaiki

Abstract

This paper utilizes the Caputo fractional derivative and a semigroup of compact and analytic operators to examine the controllability of fractional Volterra-Fredholm integro-differential equations with state-dependent delay. Controllability results are formulated using Schauder’s fixed point theorem, addressing the inherent difficulties brought about by the fractional dynamics together with state-dependent delays. The theoretical findings are validated through a detailed example and numerical simulations, demonstrating the convergence of solutions. Graphical representations are provided to better understand solution dynamics and highlight system complexity. Additionally, the applicability of the proposed system for cryptographic key generation is explored, showing that it can generate secure, unpredictable keys due to its chaotic behavior, sensitivity to initial conditions, and the interplay between key system parameters.

Article Details

References

  1. T. Abdeljawad, A Lyapunov Type Inequality for Fractional Operators with Nonsingular Mittag-Leffler Kernel, J. Inequal. Appl. 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5.
  2. T. Abdeljawad, D. Baleanu, Discrete Fractional Differences with Nonsingular Discrete Mittag-Leffler Kernels, Adv. Differ. Equ. 2016 (2016), 232. https://doi.org/10.1186/s13662-016-0949-5.
  3. T. Abdeljawad, D. Baleanu, On Fractional Derivatives with Exponential Kernel and Their Discrete Versions, Rep. Math. Phys. 80 (2017), 11–27. https://doi.org/10.1016/s0034-4877(17)30059-9.
  4. Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. https://doi.org/10.1142/13289.
  5. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5.
  6. R.P. Agarwal, B. de Andrade, G. Siracusa, On Fractional Integro-Differential Equations with State-Dependent Delay, Comput. Math. Appl. 62 (2011), 1143–1149. https://doi.org/10.1016/j.camwa.2011.02.033.
  7. M. Benchohra, F. Berhoun, Impulsive Fractional Differential Equations With State-Dependent Delay, Commun. Appl. Anal. 14 (2010), 213–224.
  8. T. Guendouzi, L. Bousmaha, Approximate Controllability of Fractional Neutral Stochastic Functional IntegroDifferential Inclusions with Infinite Delay, Qual. Theory Dyn. Syst. 13 (2014), 89–119. https://doi.org/10.1007/s12346-014-0107-y.
  9. Z. Liu, M. Bin, Approximate Controllability for Impulsive Riemann-Liouville Fractional Differential Inclusions, Abstr. Appl. Anal. 2013 (2013), 639492. https://doi.org/10.1155/2013/639492.
  10. P. Balasubramaniam, P. Tamilalagan, Approximate Controllability of a Class of Fractional Neutral Stochastic Integro-Differential Inclusions with Infinite Delay by Using Mainardi’s Function, Appl. Math. Comput. 256 (2015), 232–246. https://doi.org/10.1016/j.amc.2015.01.035.
  11. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  12. F. Mainardi, P. Paradisi, R. Gorenflo, Probability Distributions Generated by Fractional Diffusion Equations, in: J. Kertesz, I. Kondor (Eds.), Econo-physics: An Emerging Science, Kluwer Academic, Dordrecht, 2000.
  13. T. Gunasekar, P. Raghavendran, S.S. Santra, M. Sajid, Existence and Controllability Results for Neutral Fractional Volterra-Fredholm Integro-Differential Equations, J. Math. Comput. Sci. 34 (2024), 361–380. https://doi.org/10.22436/jmcs.034.04.04.
  14. P. Raghavendran, T. Gunasekar, S.S. Santra, D. Baleanu, D. Majumder, Analytical Study of Existence, Uniqueness, and Stability in Impulsive Neutral Fractional Volterra-Fredholm Equations, J. Math. Comput. Sci. 38 (2024), 313–329. https://doi.org/10.22436/jmcs.038.03.03.
  15. A. Hamoud, Existence and Uniqueness of Solutions for Fractional Neutral Volterra-Fredholm Integro Differential Equations, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 321–331. https://doi.org/10.31197/atnaa.799854.
  16. A. Hamoud, N. Mohammed, K. Ghadle, Existence and Uniqueness Results for Volterra-Fredholm Integro Differential Equations, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 361–372. https://doi.org/10.31197/atnaa.703984.
  17. P. Raghavendran, T. Gunasekar, D. Baleanu, S.S. Santra, D. Majumder, Neural Network Framework for Controllability of Fractional Volterra Fredholm Integro-Differential Equations with State-Dependent Delay, J. Math. Comput. Sci. 40 (2025), 292–309. https://doi.org/10.22436/jmcs.040.03.01.
  18. A. Columbu, S. Frassu, G. Viglialoro, Refined Criteria Toward Boundedness in an Attraction–repulsion Chemotaxis System with Nonlinear Productions, Appl. Anal. 103 (2023), 415–431. https://doi.org/10.1080/00036811.2023.2187789.
  19. A. Hamoud, K. Ghadle, Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm IntegroDifferential Equations, Iran. J. Math. Sci. Inform. 17 (2022), 135–144. https://doi.org/10.52547/ijmsi.17.1.135.
  20. A. Ndiaye, F. Mansal, Existence and Uniqueness Results of Volterra–Fredholm Integro-Differential Equations via Caputo Fractional Derivative, J. Math. 2021 (2021), 5623388. https://doi.org/10.1155/2021/5623388.
  21. Z. Dahmani, New Existence and Uniqueness Results for High Dimensional Fractional Differential Systems, Facta Univ. Ser.: Math. Inform. 30 (2015), 281–293.
  22. H. HamaRashid, H.M. Srivastava, M. Hama, P.O. Mohammed, E. Al-Sarairah, M.Y. Almusawa, New Numerical Results on Existence of Volterra–Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type, Symmetry 15 (2023), 1144. https://doi.org/10.3390/sym15061144.
  23. P. Kalamani, D. Baleanu, S. Selvarasu, M. Mallika Arjunan, On Existence Results for Impulsive Fractional Neutral Stochastic Integro-Differential Equations with Nonlocal and State-Dependent Delay Conditions, Adv. Differ. Equ. 2016 (2016), 163. https://doi.org/10.1186/s13662-016-0885-4.
  24. E. Hernández, A. Prokopczyk, L. Ladeira, A Note on Partial Functional Differential Equations with State-Dependent Delay, Nonlinear Anal.: Real World Appl. 7 (2006), 510–519. https://doi.org/10.1016/j.nonrwa.2005.03.014.
  25. P. Raghavendran, T. Gunasekar, J. Ahmad, W. Emam, A Study on the Existence, Uniqueness, and Stability of Fractional Neutral Volterra-Fredholm Integro-Differential Equations with State-Dependent Delay, Fractal Fract. 9 (2024), 20. https://doi.org/10.3390/fractalfract9010020.