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Abstract. This paper utilizes the Caputo fractional derivative and a semigroup of compact and analytic operators to

examine the controllability of fractional Volterra-Fredholm integro-differential equations with state-dependent delay.

Controllability results are formulated using Schauder’s fixed point theorem, addressing the inherent difficulties brought

about by the fractional dynamics together with state-dependent delays. The theoretical findings are validated through

a detailed example and numerical simulations, demonstrating the convergence of solutions. Graphical representations

are provided to better understand solution dynamics and highlight system complexity. Additionally, the applicability

of the proposed system for cryptographic key generation is explored, showing that it can generate secure, unpredictable

keys due to its chaotic behavior, sensitivity to initial conditions, and the interplay between key system parameters.

1. Introduction

The fractional Volterra-Fredholm integro-differential equations (VFIDEs) with a state-dependent

delay (SDD) have become highly prominent in study due to the wide range of applications in

natural sciences and engineering [1–3]. This class of equations is characterized by the fractional

derivative, which better models the nature of these memory-sensitive and hereditary systems. A

crucial source to study fractional differential equations is the work by Zhou, which introduces

readers to a deep insight of the fundamental theory of the said equations along with key ideas

and mathematical representations [4]. Extensive works done by Kilbas, Srivastava, and Trujillo

elaborate more on the theory and application of such differential equations that can be used as the
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cornerstone of study of fractional calculus [5]. In fractional integro-differential equations with SDD,

Agarwal and Andrade explain the different challenges that this system of equations provides. Their

contribution highlights the intricacy of modeling systems where the future behavior is dependent

on the current state as well as the previous states [6]. Similarly, Benchohra and Berhoun’s work

further expands this knowledge by investigating impulsive fractional differential equations with

SDD, which contributes much to the study of dynamic systems with sudden jumps and memory

[7]. Guendouzi and Bousmaha’s work on the approximate controllability of fractional neutral

stochastic functional integro-differential inclusions with infinite delay shows that controllability is

crucial in fractional systems, especially in uncertain systems and time-delayed systems [8]. Liu and

Bin’s work on impulsive Riemann-Liouville fractional differential inclusions provides an essential

perspective on how impulsive effects interact with fractional dynamics, adding complexity to the

solution methods [9].

Balasubramaniam and Tamilalagan’s study on fractional neutral stochastic integro-differential

inclusions contributes to the literature by exploring approximate controllability through Mainardi’s

function, an important tool for addressing delays and stochasticity in fractional systems [10]. Pod-

lubny’s influential book on fractional differential equations presents a detailed treatment of the

theory and applications of fractional calculus, making it an essential reference for understanding

the foundational concepts used throughout this study [11]. Mainardi, Paradisi, and Gorenflo’s

work on probability distributions generated by fractional diffusion equations explores the con-

nection between fractional derivatives and diffusion processes, providing valuable insights into

the behavior of fractional systems [12]. In more recent studies, the existence and controllability

of neutral fractional VFIDE are carried out by Gunasekar et al. while shedding light over the

complexities presented by these kinds of systems to present new results for their solutions and

control [13].

Hamoud’s work on the existence and uniqueness of solutions for fractional neutral VFIDE

provides key results in the theory of such systems, which ultimately guarantees well-posedness

of these equations [15]. The further existence and uniqueness results for VFIDE by Hamoud,

Mohammed, and Ghadle address the essential technical contributions in this field [16]. Gunasekar

and colleagues recent analysis of existence, uniqueness and stability of neutral fractional VFIDE

presents important results that contribute towards the theoretical foundations needed to be able to

understand the stability of such complex systems [17]. Columbu, Frassu, and Viglialoro introduce

refined criteria of boundedness related to chemotaxis systems relevant in the context of fractional

nonlinear dynamics systems studies [18]. Hamoud and Ghadle’s latest results regarding the

uniqueness of solutions for fractional VFIDE bring in new perspectives regarding the structure and

properties of such equations and the extension of understanding solutions to such equations [19].

The work done by Ndiaye and Mansal on the existence and uniqueness of results for VFIDE

through the use of the Caputo fractional derivative has been critically useful in analyzing these

types of equations [20].
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Dahmani’s work on high-dimensional fractional differential systems has introduced new results

on existence and uniqueness that would help understand the more complex systems with fractional

order [21]. HamaRashid et al. investigated the existence of Volterra-Fredholm integral equations of

nonlinear boundary type with new numerical results that expand the understanding of boundary

conditions in fractional systems [22]. This contributes to the impulsive fractional neutral stochastic

integro-differential equation and understands such systems that produce both impulsive effects

and stochastic behavior [23]. Lastly, the work by Hernandez, Prokopczyk, and Ladeira on partial

functional differential equations with SDD gives additional theoretical basis in considering systems

with delay and memory to further analyze important dynamics in those systems [24]. Through

this body of work, this paper will contribute to the growing understanding of fractional VFIDE,

especially with regard to controllability and SDDs. The research presented here extends the

foundation of previous studies and introduces a new approach for solving these systems, opening

new perspectives for future exploration.

Raghavendran et al. [25] deals with the existence, uniqueness, and stability of fractional neutral

VFIDEs with state-dependent delays. The paper brings to the reader a few significant mathemati-

cal results on the types of systems discussed above as well as an insight into the behavior of these

systems under particular conditions of state-dependent delays. These are critical to understand

in systems governed by equivalent fractional equations when taken along with the control theory

perspective. In this paper, we extend their findings by focusing on the controllability of systems

described by such equations. More specifically, we investigate how state-dependent delays affect

the ability to reach desired states when applying certain control strategies, utilizing the mathemat-

ical framework developed by Raghavendran et al. [25] to derive conditions for the controllability

of the fractional systems under study.

In this study, we explore the controllability outcomes of mild solutions for a class of fractional

neutral VFIDE with SDD, represented by the following system:

cDη(%(ε) − g1(ε, %ρ(ε,%ε))) = A%(ε) + g2(ε, %ρ(ε,%ε)) +
∫ ε

ε0

Z1(ε, ξ, %ρ(ξ,%s)) dξ

+

∫ b

ε0

Z2(ε, ξ, %ρ(ξ,%s)) dξ+ Bu(ε), ε ∈ J = [ε0, b], 0 < η < 1, (1.1)

%(ε0) = %0 = ϕ(ε) ∈ B, ε ∈ (−∞, 0]. (1.2)

The function %(·) is an unknown function that maps values into a Banach space X, equipped

with the norm ‖ · ‖. The Caputo fractional derivative cDη, of order 0 < η < 1, is applied in the

system. The operator A serves as the infinitesimal generator of a compact, analytic semigroup

{T(ε) : ε ≥ 0}, consisting of uniformly bounded linear operators acting on X. Let J represent the

time interval, and define D = {(ε, ξ) ∈ J × J : ε0 ≤ ξ ≤ ε ≤ b}.
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The functions gi : J ×B → X and Zi : D ×B → X (for i = 1, 2) are defined appropriately, while

the function ρ : J ×B → (−∞, b] is also suitably specified. The initial condition ϕ(0) = 0 holds,

where ϕ ∈ B, and B is the phase space, as defined in the preliminary section.

The control function u(·) is an element of the Banach space L2(J, U), which includes admissible

control functions, with U being another Banach space. The bounded linear operator B : U → X
maps these control functions into the Banach space X. For any continuous function % defined on

(−∞, b] and any ε ≥ 0, the element %ε in B is defined by %ε(θ) = %(ε+ θ) for θ ≤ 0, representing

the state history from time θ ∈ (−∞, 0] up to the current time ε.

2. Preliminaries

In this section, we focus on the commonly used definitions in fractional calculus, including

the Riemann-Liouville fractional derivative and the Caputo derivative, as discussed in various

academic studies [8, 14, 17, 24]. The Banach space C(J, X), where J = [ε0, b], is endowed with the

supremum norm. For any % ∈ C(J, X), this norm is expressed as ‖%‖∞ = sup{|%(x)| : x ∈ J}.

Definition 2.1. [17, 24] Let η > 0 denote the order of integration, and let ϕ be a given function.

The fractional integral of ϕ based on the Riemann-Liouville definition is expressed as

Jηϕ(τ) =
1

Γ(η)

∫ τ

0
(τ− ε)η−1ϕ(ε) dt, for τ > 0 and η ∈ R+,

where Γ(·) denotes the Gamma function, and R+ represents the set of positive real numbers. By

convention, J0ϕ(τ) = ϕ(τ).

Definition 2.2. [17, 24] The Caputo derivative of a function ϕ : [0, 1) → R, of order η within

0 < η < 1, is defined as:

Dηϕ(τ) =
1

Γ(1− η)

∫ τ

0

ϕ(0)(ε)

(τ− ε)η
dt, τ > 0.

Here, Γ(1 − η) denotes the Gamma function evaluated at 1 − η, and ϕ(0)(ε) refers to the zeroth

derivative (or the function ϕ itself).

Definition 2.3. [17, 24] For a function ϕ(τ), the Caputo fractional derivative is specified for an

order η between n− 1 and n, where n ∈N. It is given by:

cDηϕ(τ) =
1

Γ(n− η)

∫ τ

0
(τ− ε)n−η−1 dnϕ(ε)

dtn dt, n− 1 < η < n.

When η = n, the fractional derivative reduces to the standard n-th order derivative:

cDηϕ(τ) =
dnϕ(τ)

dτn .

The order η in this context can be real or even complex, representing the derivative’s fractional

order.
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Theorem 2.1. (Schauder Fixed Point Theorem, see [13]) If a continuous mapping N : B → B has

a relatively compact image in the Banach space E, then there exists at least one fixed point in the

closed and convex subset B.

Theorem 2.2. (Arzelà-Ascoli Theorem, see [17]) On a closed and bounded interval [a, b], any

sequence of functions that is equicontinuous and bounded must possess a subsequence that con-

verges uniformly.

This work incorporates an axiomatic definition for the phase spaceB, similar to the frameworks

described in [4]. The phase space B is defined as a linear space consisting of all mappings from

(−∞, 0] to X. It is equipped with a seminorm ‖ · ‖B, satisfying the following axioms:

(A1) Let % : (−∞, a]→ X be a function, where a > 0, continuous on J, and %0 ∈ B. For every ε ∈ J,
the following properties hold:

(i) The function %ε belongs to B,

(ii) ‖%(ε)‖ ≤ H‖%ε‖B,

(iii) ‖%ε‖B ≤ K(ε) sup{‖%(ξ)‖ : 0 ≤ ξ ≤ ε}+ M(ε)‖%0‖B,

where H > 0 is a constant, K : [0,∞)→ [1,∞) is a continuous function, M : [0,∞)→ [1,∞)

is locally bounded, and the parameters H, K, and M are independent of %(·).

(A2) For %(·) defined in (A1), the function %ε is continuous and takes values in B on J.
(A3) The space B is complete.

3. Controllability Results for Fractional Neutral VFIDE with SDD

In this section, we analyze the controllability of mild solutions for fractional neutral VFIDE

with SDD described by equations (1.1)-(1.2). Building upon the earlier discussion, we define the

concept of a mild solution for these equations.

Definition 3.1. A function % : (−∞, b] → X is considered a mild solution of equations (1.1)-(1.2) if

%0 : ϕ ∈ B, and for each ξ, ε ∈ J, it satisfies the following equation:

%(ε) = Sη(ε)(%0 − g1(ε0, %0)) + g1(ε, %ρ(ε,%ε)) +
∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1g2(ξ, %ρ(ε,%s)) dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ ε

ξ
Z1(τ, ξ, %ρ(ε,%s)) dτ dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ b

ξ
Z2(τ, ξ, %ρ(ε,%s)) dτ dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1B(ξ)u(ξ)dξ,

(3.1)
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where

Sη(ε) =
∫
∞

0
φη(θ)T(εηθ) dθ, Tη(ε) = η

∫
∞

0
θφη(θ)T(εηθ) dθ,

φη(θ) =
1
η
θ−1− 1

ηψη(θ
−

1
η ), ψη(θ) =

1
π

∞∑
n=1

(−1)n−1θ−ηn−1 Γ(nη+ 1)
n!

sin(nπη), θ ∈ (0,∞),

and φη is a probability density function defined on (0,∞), satisfying

φη(θ) ≥ 0, θ ∈ (0,∞), and
∫
∞

0
φη(θ) dθ = 1.

Lemma 3.1. [25] The operators Sη(ε) and Tη(ε) exhibit the following properties for any ε ≥ 0:

(a) The operators Sη and Tη are linear and bounded for every fixed ε ≥ 0. Specifically, for any

% ∈ X, the following bounds apply:

‖Sη(ε)%‖ ≤M‖%‖, ‖Tη(ε)%‖ ≤
ηM

Γ(1 + η)
‖%‖.

(b) Both families {Sη(ε) : ε ≥ 0} and {Tη(ε) : ε ≥ 0} are strongly continuous.

(c) For any ε > 0, the operators Sη(ε) and Tη(ε) are compact.

Definition 3.2. For any initial states %0 and %1 in the Banach space X, the system defined by

equations (1.1)-(1.2) is considered controllable over the interval J if a control function δ(ε) can

be found within the space L2(J, U). The mild solution %(ε) is ensured to satisfy the conditions

%(ε0) = %0 and %(b) = %1 by this control function.

To derive our results, we assume the following conditions for the continuous functionρ : J×B →
(−∞, b]:

(H1) For each ε > 0, the semigroup T(ε) is compact.

(H2) The mappings gi : J×B → X are continuous for i = 1, 2, and the following conditions hold:

For each ε ∈ J and any pair (ϑ,ϑ1) ∈ B
2, the following inequalities are satisfied:

‖g1(ε,ϑ) − g1(ε,ϑ1)‖X ≤ Lg1‖ϑ− ϑ1‖B,

‖g2(ε,ϑ) − g2(ε,ϑ1)‖X ≤ Lg2‖ϑ− ϑ1‖B.

There exist constants L∗g1
and L∗g2

such that

L∗g1
= max

ε∈J
‖g1(ε, 0)‖X, L∗g2

= max
ε∈J
‖g2(ε, 0)‖X.

(H3) The functions Zi : D ×B → X (for i = 1, 2) satisfy the following conditions: Continuity is

ensured for (ε, ξ) ∈ D and (ϑ,ϑ1) ∈ B
2, with the following inequalities holding:

‖Z1(ε, ξ,ϑ) −Z1(ε, ξ,ϑ1)‖X ≤ LZ1‖ϑ− ϑ1‖B,

‖Z2(ε, ξ,ϑ) −Z2(ε, ξ,ϑ1)‖X ≤ LZ2‖ϑ− ϑ1‖B.

There exist constants L∗Z1
and L∗Z2

such that:

L∗Z1
= max

ε,ξ∈D
‖Z1(ε, ξ, 0)‖X, L∗Z2

= max
ε,ξ∈D

‖Z2(ε, ξ, 0)‖X.
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(H4) The mapping ε → ϕε is well-defined and continuous from R(ρ−) = {ρ(ξ,ϑ) : (ξ,ϑ) ∈

J × B,ρ(ξ,ϑ) ≤ 0} into B. Additionally, there exists a bounded, continuous function

Jϕ : R(ρ−)→ (0,∞) such that for every ε ∈ R(ρ−),

‖ϕε‖B ≤ Jϕ(ε)‖ϕ‖B.

(H5) The bounded linear operator W : L2(J, U)→ X is defined as

Wx =
1

Γ(η)

∫ b

ε0

(b− ε)η−1Bu(ε) dt,

where B satisfies |B| ≤M1. Additionally, the operator W has an induced inverse W−1 acting

within L2(J,U)
ker W , with a constant M2 > 0 such that |W−1

| ≤M2.

Theorem 3.1. Let the assumptions (H1)-(H5) hold. Then, the system represented by equations

(1.1) and (1.2) is controllable on the interval [ε0, b].

Proof. Consider the collection of functions $l, defined as the set of all continuous functions %

mapping the interval J to the real numbers, such that ‖%‖∞ ≤ l. Utilizing the assumptions stated

in hypothesis (H5), a control can be derived by leveraging the properties of an arbitrary function

%(·), given as follows:

µ(ε) = W−1

%1 − Sη(ε)
(
%0 − g1(ε0, %0)

)
− g1(ε, %ρ(ε,%ε))

−

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
[
g2(ξ, %ρ(ε,%s)) +

∫ ε

ξ
Z1(τ, ξ, %ρ(ε,%s)) dτ

+

∫ b

ξ
Z2(τ, ξ, %ρ(ε,%s)) dτ

]
dξ

(ε).
(3.2)

Using the defined control, we will demonstrate that the operator Φ, which maps the set$l to itself,

is given by:

Φ(%)(ε) = Sη(ε)
(
%0 − g1(ε0, %0)

)
+ g1(ε, %ρ(ε,%ε)) +

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1g2(ξ, %ρ(ε,%s)) dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ ε

ξ
Z1(τ, ξ, %ρ(ε,%s)) dτ dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ b

ξ
Z2(τ, ξ, %ρ(ε,%s)) dτ dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1Bµ(ξ) dξ.

(3.3)

We can deduce that a fixed point exists for the operator Φ, where µ(ε) is defined as per equation

(3.3). This fixed point corresponds to the mild solution of the control problem described by

equations (1.1) and (1.2). Specifically, it is evident that Φ %(b) = %1, which indicates that the system

represented by equations (1.1) and (1.2) is controllable over the interval [ε0, b].
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Since all the functions involved in the definition of the operator are continuous, we can conclude

that the operator Φ is continuous. Expanding upon equation (3.1), for any function % ∈ $l and for

all values of ε within the interval [ε0, b], the following relationship holds:

µ(ε) ≤ ‖W−1
‖

‖%1‖ − ‖Sη(ε)‖‖%0‖‖ − g1(ε0, %0)‖+ ‖g1(ε, %ρ(ε,%ε))‖

−

∫ ε

ε0

Tη(ε− ξ) (ε− ξ)η−1
[
‖g2(ξ, %ρ(ε,%s))‖+

∫ ε

ξ
‖Z1(τ, ξ, %ρ(ε,%s))‖ dτ

+

∫ b

ξ
‖Z2(τ, ξ, %ρ(ε,%s))‖ dτ

]
dξ


≤M2

‖%1‖+ M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ ‖g1(ε, %ρ(ε,%ε))‖

+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
‖g2(ξ, %ρ(ε,%s))‖ dξ

+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
∫ ε

ξ
‖Z1(τ, ξ, %ρ(ε,%s))‖ dτ dξ

+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
∫ b

ξ
‖Z2(τ, ξ, %ρ(ε,%s))‖ dτ dξ


≤M2

‖%1‖+ M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1‖%ρ(ξ,%̄s)‖B + L∗g1

+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
[
Lg2‖%ρ(ξ,%̄s)‖B + L∗g2

+

∫ ε

ξ
(LZ1‖%ρ(ξ,%̄s)‖B + L∗Z1

)dτ

+

∫ b

ξ
(LZ2‖%ρ(ξ,%̄s)‖B + L∗Z2

)dτ
]
dξ


≤M2

‖%1‖+ M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1r∗ + L∗g1
+

Meη

Γ(1 + η)
(Lg2r∗ + L∗g2

)

+
Meη+1

(η+ 1)Γ(η)
(LZ1r∗ + L∗Z1

) +
Meη+1

(η+ 1)Γ(η)
(LZ2r∗ + L∗Z2

)


≤M2

‖%1‖+ M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1r∗ + L∗g1
+ Meη

[
Lg2

Γ(η+ 1)
+

e(LZ1 + LZ2)

(η+ 1)Γ(η)

]
r∗

+ Meη
[ L∗g2

Γ(η+ 1)
+

e(L∗Z1
+ L∗Z2

)

(η+ 1)Γ(η)

].
Applying the equations (3.2) and (3.3), we can derive the following result:

‖Φ(%)(ε)‖ ≤ M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ ‖g1(ε, %ρ(ε,%ε))‖+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
‖g2(ξ, %ρ(ε,%s))‖ dξ
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+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1

∫ ε

ξ
‖Z1(τ, ξ, %ρ(ε,%s))‖ dτ dξ+

ηM
Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
∫ b

ξ
‖Z2(τ, ξ, %ρ(ε,%s))‖ dτ dξ

+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
‖B‖‖µ(ε)‖

≤M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1‖%ρ(ξ,%̄s)‖B + L∗g1

+
ηM

Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1
[
Lg2‖%ρ(ξ,%̄s)‖B + L∗g2

+

∫ ε

ξ
(LZ1‖%ρ(ξ,%̄s)‖B + L∗Z1

)dτ

+

∫ b

ξ
(LZ2‖%ρ(ξ,%̄s)‖B + L∗Z2

)dτ
]
dξ+

ηM
Γ(1 + η)

∫ ε

ε0

(ε− ξ)η−1M1‖µ(ε)‖

≤M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1r∗ + L∗g1

+
Meη

Γ(1 + η)
(Lg2r∗ + L∗g2

) +
Meη+1

(η+ 1)Γ(η)
(LZ1r∗ + L∗Z1

)

+
Meη+1

(η+ 1)Γ(η)
(LZ2r∗ + L∗Z2

) +
Meη

Γ(1 + η)
M1M2

‖%1‖ −M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖

+Lg1r∗ + L∗g1
+

Meη

Γ(1 + η)
(Lg2r∗ + L∗g2

) +
Meη+1

(η+ 1)Γ(η)
(LZ1r∗

+L∗Z1
) +

Meη+1

(η+ 1)Γ(η)
(LZ2r∗ + L∗Z2

)


≤M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1r∗ + L∗g1

+Meη
[

Lg2

Γ(η+ 1)
+

e(LZ1 + LZ2)

(η+ 1)Γ(η)

]
r∗ + Meη

[ L∗g2

Γ(η+ 1)
+

e(L∗Z1
+ L∗Z2

)

(η+ 1)Γ(η)

]
+

Meη

Γ(1 + η)
M1M2

‖%1‖+ M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1r∗ + L∗g1

+Meη
[

Lg2

Γ(η+ 1)
+

e(LZ1 + LZ2)

(η+ 1)Γ(η)

]
r∗ + Meη

[ L∗g2

Γ(η+ 1)
+

e(L∗Z1
+ L∗Z2

)

(η+ 1)Γ(η)

]
≤

Meη

Γ(1 + η)
M1M2‖%1‖+

(
1 +

Meη

Γ(1 + η)
M1M2

)M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖

+Lg1r∗ + L∗g1
+ Meη

[
Lg2

Γ(η+ 1)
+

e(LZ1 + LZ2)

(η+ 1)Γ(η)

]
r∗ + Meη

[ L∗g2

Γ(η+ 1)
+

e(L∗Z1
+ L∗Z2

)

(η+ 1)Γ(η)

].
Thus,

‖Φ(%)‖∞ ≤
Meη

Γ(1 + η)
M1M2‖%1‖+

(
1 +

Meη

Γ(1 + η)
M1M2

)M‖%0‖+ ‖g1(ε, %ρ(ε,%ε))‖+ Lg1r∗ + L∗g1
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+Meη
[

Lg2

Γ(η+ 1)
+

e(LZ1 + LZ2)

(η+ 1)Γ(η)

]
r∗ + Meη

[ L∗g2

Γ(η+ 1)
+

e(L∗Z1
+ L∗Z2

)

(η+ 1)Γ(η)

] := l.

We conclude that ‖Φ%‖ ≤ l, which implies that Φ% ∈ $l. Therefore, it follows that Φ$l ⊂ $l. This

establishes that the operator Φ maps the set $l = {% ∈ C(J, X) : ‖%‖∞ ≤ l} onto itself. Next, we will

demonstrate that the operator Φ : $l → $l satisfies all the conditions of (2.1). The proof will be

carried out in several steps.

Step 1: The operator Φ is continuous. Let {%n} be a sequence such that %n → % in $l,

‖Φ%n(ε) −Φ%(ε)‖ ≤ ‖g1(ξ, %nρ(ε,%s)) − g1(ξ, %ρ(ε,%s))‖

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
‖g2(ξ, %nρ(ε,%s)) − g2(ξ, %ρ(ε,%s))‖ dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ ε

ξ
‖Z1(τ, ξ, %nρ(ε,%s)) −Z1(τ, ξ, %ρ(ε,%s))‖ dτ dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ b

ξ
‖Z2(τ, ξ, %nρ(ε,%s)) −Z2(τ, ξ, %ρ(ε,%s))‖ dτ dξ

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1BW−1

‖g1(ξ, %nρ(ε,%s)) − g1(ξ, %ρ(ε,%s))‖

+

∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
‖g2(ξ, %nρ(ε,%s))

− g2(ξ, %ρ(ε,%s))‖ dξ+
∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ ε

ξ
‖Z1(τ, ξ, %nρ(ε,%s))

−Z1(τ, ξ, %ρ(ε,%s))‖ dτ dξ+
∫ ε

ε0

Tη(ε− ξ)(ε− ξ)η−1
∫ b

ξ
‖Z2(τ, ξ, %nρ(ε,%s))

−Z2(τ, ξ, %ρ(ε,%s))‖ dτ dξ

dξ
Due to the continuity of g, Z1, and Z2, it follows that ‖Φ%n(ε) −Φ%(ε)‖ → 0 as n→ ∞. Hence, the

operator Φ is continuous on the set $l.

Step 2: The set Φ($l) is uniformly bounded. This is clear because Φ($l) ⊂ $l, implying that

Φ($l) is bounded.

Step 3: We now demonstrate that Φ($l) is equicontinuous.

Consider ε1 and ε2 in the bounded set [ε0, b] ⊂ C(J, X), as described in Step 2, along with % ∈ $l

and ε1 < ε2. In this context, we have:

‖(Φ%)(ε2) − (Φ%)(ε1)‖

=

∥∥∥∥∥∥∥Sη(ε2) (%0 − g1(ε0, %0)) + g1(ε, %ρ(ε,%ε))

+

∫ ε2

ε0

Tη(ε2 − ξ)(ε2 − ξ)
η−1g2(ξ, %ρ(ξ,%s)) dξ
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+

∫ ε2

ε0

(ε2 − ξ)
η−1Tη(ε2 − ξ)

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε2

ε0

(ε2 − ξ)
η−1Tη(ε2 − ξ)

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε2

ε0

(ε2 − ξ)
η−1Tη(ε2 − ξ)BW−1

%1 − Sη(ε2) (%0 − g1(ε0, %0)) + g1(ε, %ρ(ε,%ε))

−

∫ ε2

ε0

Tη(ε2 − ξ) (ε2 − ξ)
η−1

[
g2(ξ, %ρ(ξ,%s))

+

∫ ε2

ξ
Z1(τ, ξ, %ρ(ε2,%s)) dτ+

∫ b

ξ
Z2(τ, ξ, %ρ(ε2,%s)) dτ

]
dξ


−Sη(ε1) (%0 − g1(ε0, %0)) + g1(ε, %ρ(ε,%ε))

−

∫ ε1

ε0

Tη(ε1 − ξ)(ε1 − ξ)
η−1g2(ξ, %ρ(ξ,%s)) dξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1Tη(ε1 − ξ)

∫ ε1

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1Tη(ε1 − ξ)

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1Tη(ε1 − ξ)BW−1

%1 − Sη(ε1) (%0 − g1(ε0, %0)) + g1(ε, %ρ(ε,%ε))

−

∫ ε1

ε0

Tη(ε1 − ξ) (ε1 − ξ)
η−1

[
g2(ξ, %ρ(ξ,%s))

+

∫ ε1

ξ
Z1(τ, ξ, %ρ(ε1,%s)) dτ+

∫ b

ξ
Z2(τ, ξ, %ρ(ε1,%s)) dτ

]
dξ


∥∥∥∥∥∥∥

≤
Mη

Γ(1 + η)

∥∥∥∥∥∥∥g1(ε, %ρ(ε,%ε)) +
∫ ε2

ε1

(ε2 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ

+

∫ ε2

ε1

(ε2 − ξ)
η−1

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε2

ε1

(ε2 − ξ)
η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1

∫ ε1

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε1

ε0

(ε2 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ
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+

∫ ε1

ε0

(ε2 − ξ)
η−1

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε1

ε0

(ε2 − ξ)
η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ

+BW−1

g1(ε, %ρ(ε,%ε)) +
∫ ε2

ε1

(ε2 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ

+

∫ ε2

ε1

(ε2 − ξ)
η−1

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε2

ε1

(ε2 − ξ)
η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1

∫ ε1

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε1

ε0

(ε2 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ

+

∫ ε1

ε0

(ε2 − ξ)
η−1

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτdξ

+

∫ ε1

ε0

(ε2 − ξ)
η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτdξ


∥∥∥∥∥∥∥

≤
Mη

Γ(1 + η)

∥∥∥∥g1(ε, %ρ(ε,%ε)) +
∫ ε2

ε1

(ε2 − ξ)
η−1

[
g2(ξ, %ρ(ξ,%s)) +

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτ

+

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτ

]
dξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ+

∫ ε1

ε0

(ε2 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ

−

∫ ε1

ε0

[
(ε1 − ξ)

η−1
∫ ε1

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτ

−(ε2 − ξ)
η−1

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτ

]
dξ−

∫ ε1

ε0

[
(ε1 − ξ)

η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτ− (ε2 − ξ)

η−1
∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτ

]
dξ

+BW−1

g1(ε, %ρ(ε,%ε)) +
∫ ε2

ε1

(ε2 − ξ)
η−1

[
g2(ξ, %ρ(ξ,%s)) +

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτ
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+

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτ

]
dξ

−

∫ ε1

ε0

(ε1 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ+

∫ ε1

ε0

(ε2 − ξ)
η−1g2(ξ, %ρ(ξ,%s))dξ

−

∫ ε1

ε0

[
(ε1 − ξ)

η−1
∫ ε1

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτ

−(ε2 − ξ)
η−1

∫ ε2

ξ
Z1(τ, ξ, %ρ(ξ,%s))dτ

]
dξ−

∫ ε1

ε0

[
(ε1 − ξ)

η−1

∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτ− (ε2 − ξ)

η−1
∫ b

ξ
Z2(τ, ξ, %ρ(ξ,%s))dτ

]
dξ

∥∥∥∥
As ε2 − ε1 → 0, the right-hand side tends to zero. Since Tη(ε) forms a strongly continuous

semigroup for ε ≥ 0 and is compact for ε > 0, it follows that Tη(ε) is continuous in the uniform

operator topology for ε > 0. Consequently, the equicontinuity for the other cases, such as ε1 < ε2 ≤

0 or ε1 ≤ 0 ≤ ε2 ≤ b, can be deduced without difficulty.

By combining the results of Steps 1-3 and applying Theorem (2.2), we establish that the operator

Φ is both continuous and compact. Therefore, utilizing Theorem (2.1), we conclude that a fixed

point % exists, which serves as a solution to the problem defined by equations (1.1) and (1.2). Hence,

the system described by these equations is controllable on the interval J = [ε0, b]. This completes

the proof of the theorem. �

4. Example

As an illustrative example, we examine a control system described by the fractional neutral

VFIDE with SDD as follows:

cDη

[
x(ε) −

∫ ε

−∞

e2(ξ−ε)x(ξ− ρ1(ξ)ρ2(‖x(ξ)‖))
25

dξ
]
=

∂2

∂%2

[
x(ε) + µ(ε)

+

∫ ε

−∞

e2(ξ−ε)x(ξ− ρ1(ξ)ρ2(‖x(ξ)‖))
64

dξ

+

∫ ε

−∞

e2(τ−ξ)x(τ− ρ1(τ)ρ2(‖x(τ)‖))
16

dτ dξ

+

∫ ε

0
sin(ε− ξ)

∫ ξ

−∞

e2(τ−ξ)x(τ− ρ1(τ)ρ2(‖x(τ)‖))
36

dτ dξ

+

∫ ε

0
sin(ε− ξ)

∫ ξ

−∞

e2(τ−ξ)x(τ− ρ1(τ)ρ2(‖x(τ)‖))
36

dτ dξ,
]

(4.1)

with boundary conditions

x(ε, 0) = 0 = x(ε,π), ε ∈ [0, b], (4.2)

and initial condition

x(ε) = ϕ(ε), ε ≤ 0, % ∈ [0,π]. (4.3)
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Consider the operator A : D(A) ⊂ X → X, where X = L2[0,π] with the L2-norm ‖ · ‖L2 , and let
cDη

ε represent the Caputo fractional derivative of order η ∈ (0, 1). Suppose ϕ ∈ B. The action of

the operator A is defined as Aσ = σ′′, where the domain D(A) consists of functions σ ∈ X such

that σ and σ′ are absolutely continuous, σ′′ ∈ X, and the boundary conditions σ(0) = σ(π) = 0 are

satisfied.

We can expressAσ as:

Aσ =
∞∑

n=1

n2
〈σ, σn〉σn, for σ ∈ D(A),

where the functions σn(ξ) =
√

2
π sin(ns) for n = 1, 2, . . . form an orthogonal set of eigenvectors

for the operator A. It is well-established that A generates an analytic semigroup {T(ε)}ε≥0 in the

space X, which is expressed as:

T(ε)σ =
∞∑

n=1

e−n2ε
〈σ, σn〉σn, for every σ ∈ X and ε > 0.

Since the semigroup {T(ε)}ε≥0 is analytic and compact, there exists a constant M > 0 such that

‖T(ε)‖L(X) ≤ M. For the phase space, we select x = e2s for ξ < 0, which yields l =
∫ 0
−∞

x(ξ) dξ =
1
2 < ∞ for ε ≤ 0. Additionally, we define the norm:

‖σ‖B =

∫ 0

−∞

x(ξ) sup
θ∈[ξ,0]

‖σ(θ)‖L2 dξ.

Thus, for (ε,ϕ) ∈ [0, b]×B, whereϕ(θ)(%) = ϕ(θ) for (θ) ∈ (−∞, 0]× [0,π], we define x(ε)(%) =
x(ε) and ρ(ε,ϕ) = ρ1(ε)ρ2(‖ϕ(0)‖). Consequently, we have:

g1(ε,ϕ)(%) =
∫ 0

−∞

e2(ξ) ϕ

25
dξ

g2(ε,ϕ)(%) =
∫ 0

−∞

e2(ξ) ϕ

64
dξ∫ ε

0
Z1(ε, ξ,ϕ)(%)dξ =

∫ ε

0
sin(ε− ξ)

∫ 0

−∞

e2(ξ) ϕ

36
dξ∫ ε

0
Z2(ε, ξ,ϕ)(%)dξ =

∫ ε

0
sin(ε− ξ)

∫ 0

−∞

e2(ξ) ϕ

36
dξ

To analyze the system defined in equations (4.1)-(4.3), we assume that the functions ρi : [0,∞) →

[0,∞), for i = 1, 2, are continuous. By applying these configurations, the system can then be

rewritten in the theoretical form of the design given by equations (1.1)-(1.2). As a result, for

ε ∈ [0, T] and ϕ, ϕ̄ ∈ B, we obtain the following:

‖g1(ε,ϕ) − g1(ε, ϕ̄)‖X ≤

( ∫ π

0

( ∫ 0

−∞

e2(ξ)
∥∥∥∥ ϕ25
−
ϕ̄

25

∥∥∥∥dξ
)2) 1

2

≤

( ∫ π

0

(
1

25

∫ 0

−∞

e2(ξ) sup ‖ϕ− ϕ̄‖dξ
)2) 1

2
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≤

√
π

25
‖ϕ− ϕ̄‖B

≤ Lg‖ϕ− ϕ̄‖B,

‖g2(ε,ϕ) − g2(ε, ϕ̄)‖X ≤
( ∫ π

0

( ∫ 0

−∞

e2(ξ)
∥∥∥∥ ϕ16
−
ϕ̄

16

∥∥∥∥dξ
)2) 1

2

≤

( ∫ π

0

(
1
16

∫ 0

−∞

e2(ξ) sup ‖ϕ− ϕ̄‖dξ
)2) 1

2

≤

√
π

16
‖ϕ− ϕ̄‖B

≤ Lg‖ϕ− ϕ̄‖B,

‖Z1(ε, ξ,ϕ) −Z1(ε, ξ, ϕ̄)‖X ≤
( ∫ π

0

( ∫ 0

−∞

e2(ξ)
∥∥∥∥ ϕ36
−
ϕ̄

36

∥∥∥∥dξ
)2) 1

2

≤

( ∫ π

0

(
1
36

∫ 0

−∞

e2(ξ) sup ‖ϕ− ϕ̄‖dξ
)2) 1

2

≤

√
π

36
‖ϕ− ϕ̄‖B

≤ LZ1‖ϕ− ϕ̄‖B.

Similarly, we can deduce that

‖Z2(ε, ξ,ϕ) −Z2(ε, ξ, ϕ̄)‖X ≤
( ∫ π

0

( ∫ 0

−∞

e2(ξ)
∥∥∥∥ ϕ36
−
ϕ̄

36

∥∥∥∥dξ
)2) 1

2

≤

( ∫ π

0

(
1
36

∫ 0

−∞

e2(ξ) sup ‖ϕ− ϕ̄‖dξ
)2) 1

2

≤

√
π

36
‖ϕ− ϕ̄‖B

≤ LZ2‖ϕ− ϕ̄‖B.

Let B : U → X be defined by Bu(ε) = µ(ε, %), for 0 ≤ % ≤ π, where µ : [0, T] × [0,π] → X is a

continuous function.

Thus, the conditions (H1)-(H5) are satisfied. Furthermore, suppose the following values are

assumed: M = 1, e = 1, r∗ = 1
2 , L∗g1

, L∗g2
, L∗Z1

, L∗Z2
= 0.3, and η = 1

2 . In this case, we have the

following calculation:

Meη
[
Lg1 +

Lg2

Γ(η+ 1)
+

e(LZ1 + LZ2)

(η+ 1)Γ(η)

]
r∗ = 0.04 +

1
2

(
0.6611
0.8655

+
2(0.053 + 0.22)

3

)
+

( 0.5
0.8655

+
2
3

)

= 0.04 +
1
2
(0.3154 + 0.2110) + 0.6458 + 0.6888 = 0.7984 < 1.

Thus, by Theorem (3.1), we conclude that the system defined by equations (4.1)-(4.3) has a mild

solution on the interval [0, 1].
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Figure 1. 2D Line Plot of x(ε, %) over ε with % = π
2 and control parameter control = 0.5

A 2D line plot in Figure 1 for the function x(ε, %) describes the behavior of the object for a

fixed parameter % = π
2 in the time interval of ε ∈ [0, 1]. The function is defined as x(ε, %) =

e−control·ε sin(π%) cos(2πε), with the control parameter causing damping. In this example, the

control parameter is set to control = 0.5; this determines the rate at which the oscillatory amplitude

decays with time. The plot is periodic because of the cos(2πε) term, which has a period of 1 unit.

The oscillations are damped by the exponential decay factor e−control·ε and thus decay progressively

as ε increases. When % = π
2 , the sin(π%) term peaks at its maximum of 1, causing the oscillatory

part to have the largest possible initial amplitude. There are also many zero crossings where

the function changes sign; since the argument to the cosine function is periodic, these are also

periodic. The control parameter would determine the damping rate; for a higher value, the decay

of amplitude is faster, whereas for a smaller value, the oscillations could persist for longer. This

animation depicts the effect of periodic oscillations and exponential damping together to provide

insight into the behavior of damped oscillatory systems, like those found in mechanical vibrations,

electrical circuits, and wave dynamics. The controlled decay ensures that the oscillations are

gradually reduced, reflecting realistic scenarios where energy dissipation occurs over time.
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Figure 2. 3D Surface Plot of x(ε, %) showing the variation of the function over

ε ∈ [0, 2] and % ∈ [0,π].

Figure 3. Contour Plot of x(ε, %) over ε ∈ [0, 2] and % ∈ [0,π].
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The graphical representations in Figures 2 and 3 provide a detailed visualization of the function

x(ε, %) over the parameter space defined by time ε and the oscillatory parameter %. Figure 2 displays

the 3D surface plot of the function x(ε, %) over the time interval ε ∈ [0, 2] and for values of % ∈ [0,π].

The function is given by x(ε, %) = e−ε sin(π%) cos(ε). The surface plot captures the combined effects

of two key components: the exponential decay factor e−ε and the oscillatory behavior induced by

the cosine term cos(ε). Initially, at small values of ε, the amplitude of the function is relatively

large due to the oscillations from the cosine term. However, since the exponential decay factor is

an increasing function of ε, as ε gets larger, it makes the amplitude of the function reduce. The

graph then becomes a flat surface at later values of ε, giving an idea about the damping as time

progresses. The sine function, sin(π%), affects the amplitude of the oscillation according to %.

When the value of % is high, the oscillation increases. Therefore, the surface plot visually exhibits

both the oscillatory nature of the solution and the damping effect as time progresses. The resulting

surface thus shows how oscillations gradually decline with time while remaining modulated by

the value of %.

Figure 3 depicts the contour plot of the same function x(ε, %) over the ε-% plane. In this plot, each

contour line represents a constant value of x(ε, %), with the spacing between the contours indicating

the rate of change of the function with respect to both ε and %. The color gradient in the contour

plot is used to visually represent the magnitude of x(ε, %), with different colors corresponding to

different values of the function. Just like in the case of the contour plot, the oscillation nature

from the function x(ε, %) is presented in the contour plot. The contours separate with time ε, which

means that the oscillation amplitudes are decaying due to the exponential factor e−ε. This decaying

process is easily noticed in the contour plot since their distance is increasing with time. On the

other hand, for higher values of %, the contours are closer together and so oscillation is stronger.

This behavior can be understood from the sine term sin(π%) in terms of amplitudes of oscillations

by %. Thus, the contour plot gives a 2-dimensional view of the behavior shown at the surface in the

3D plot. Although the surface plot is more vivid by capturing the dynamics in three dimensions,

the contour plot allows a better understanding of the spatial distribution of the values of x(ε, %) in

terms of ε and %.

Both the 3D surface plot and the contour plot give an overall visualization of how x(ε, %)
changes in time and how it is being controlled by the modulation parameter %. Damping effect,

which appears in the form of an exponential term, e−ε, reduces the amplitude as time increases. The

oscillations themselves are damped by the cosine term cos(ε) and the sine term sin(π%), the latter

of which depends on the amplitude of the oscillations according to the value assigned to %. These

plots become very useful to examine systems oscillatory and decaying with time simultaneously,

say in mechanical circuits, electrical circuits, or in wave propagation phenomena. The results show

that the behavior of the system is strongly influenced by the presence of time and the oscillatory

parameter %, revealing valuable information concerning the temporal evolution and parameter

sensitivity of such a system.
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5. Application to Cryptography: Secure Key Generation Framework

In this section, we consider some possible cryptographic applications of the system stated

by fractional neutral VFIDEs with SDD (Equations (1.1) and (1.2)). The properties of chaos and

unpredictability of the system along with the sensitivity to initial conditions and control parameters

make it a prime candidate for applications to secure cryptography. This would guarantee that the

produced keys are securely random and have a suitable unpredictability to ensure them adequate

for modern encryption schemes like symmetric encryption and public-key cryptography. Public-

key cryptography gets its justification in terms of key generation, which has to be generated in a

sufficiently random and nondeterministic manner.

5.1. Key Characteristics Supporting Cryptographic Applications. A key feature of this system

is a chaotic component due to the presence of fractional-order derivatives and SDDs. Specifically,

the model in the problem is governed by the fractional neutral VFIDE with SDDs, where the terms

g1, g2, Z1, and Z2 have played the crucial role in the behavior of the system. The term g1 introduces

memory effects and is responsible for the sensitivity of the system to initial conditions, since a very

small variation in the initial state Z1 or in the control parameters can result in radically different

outputs, thus giving strong properties to keys generated in such a system.

Similarly, the symbol g2, which incorporates the nonlinear dynamics of the system, enhances the

chaotic behavior and ensures that the evolution of the system is complex and cannot be reverse-

engineered. This nonlinearity is important for cryptographic applications because it makes the

system resistant to attacks in which an adversary tries to deduce the key by analyzing known

system behavior or partial knowledge of previous outputs. The two terms, Z1 and Z2, refer to

different states or parameters influencing the evolution of the system at different times. In this, the

interchange of these terms with each other, through the SDDs, ensures a very nonlinear and chaotic

manner of evolution of the system. The dependence on Z1 and Z2 guarantees that even the smallest

change in these states results in a completely different trajectory for the system. This sensitivity

makes it practically impossible for an attacker to predict future keys based on previous outputs,

thus giving strong resistance against key prediction or cryptanalysis. Therefore, the mixing of

these words-g1, g2, Z1, and Z2-makes the keys, generated by this system, both unpredictable and

quite complex, offering protection against both brute-force attacks and reverse engineering.

5.2. Cryptographic Key Generation Mechanism. The role of the system in the key generation

can be described as follows: given a set of initial conditions, say, an initial seed for the key, the

system evolves with time according to the integro-differential equations, whose terms g1, g2, Z1,

and Z2 contribute to the output, which represents the cryptographic key, %(ε). These terms lead

to chaotic behavior, so the produced keys are as unpredictable as possible, and they resist attacks.

This framework is ideal for cryptographic systems to resist external attacks on key generation in

the sense that keys produced here are hard to duplicate or anticipate by unauthorized parties.

The unique feature in the system, such as sensitivity to initial conditions, chaotic patterns, and
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nonlinearity, will result in the production of a completely different set of cryptographic keys

whenever the system is initialized. In other words, the keys produced will be virtually random

and resistant to cryptanalysis.

Moreover, the output of the system may be used as a cryptographic key or may undergo further

processing (such as hashing) to be usable with more typical cryptographic algorithms such as AES

or RSA. Chaotic dynamics, controlled by the terms g1, g2, Z1, and Z2, guarantee that the keys

generated differ from all of their predecessors; thus, making it virtually impossible for an attacker

to predict further keys or reverse-engineer any part of the key sequence knowing some portion of

the past values.

5.3. Graphical Representation of System Behavior. We also present a set of graphical repre-

sentations to understand the dynamic nature of the system and its suitability for cryptographic

applications. This includes 2D, 3D, and contour plots representing the system behavior in different

domains. The following figures depict chaotic dynamics of the system and the consequences in

the context of secure key generation.

5.3.1. Dynamic Evolution of %(ε). Figure 4 displays the dynamic evolution of %(ε) for different initial

conditions and control parameters. In this 2D plot, the system is sensitive to its initial conditions.

This is the most important characteristic of a chaotic system in terms of cryptography: the plot

displays how small differences in initial conditions or control parameters lead to qualitatively very

different evolutions over time. This feature is critical for the generation of cryptographic keys,

ensuring that the keys produced by the system are unique and unpredictable. The sensitivity

of the system makes it nearly impossible to reverse-engineer or predict future key values, which

provides a good defense against attacks that are based on predicting the keys or recovering them

from previous values. Exploiting this chaotic nature, the system guarantees that no two keys will

be alike, even if the initial conditions are similar.

Figure 4. Dynamic evolution of %(ε) under varying initial conditions and control

parameters. The trajectories demonstrate the sensitivity and chaotic behavior of

the system, critical for secure cryptographic key generation.
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5.3.2. Solution Space Complexity. Figure 5 shows a 3D surface plot of %(ε) versus time ε and pa-

rameter %. This plot visualizes the solution space complexity of the system. The surface contains

complex patterns, which underpin the chaotic and nonlinear nature of the system; this is also the

reason behind the randomness and unpredictability of the output. The complexity of the solution

space will ensure that keys generated for encryption and decryption operations are non-predictive

to the greatest extent. Surface plots of the fluctuations show highly nonlinear behavior where

the system cannot evolve in any predictable manner and therefore is suitable for cryptographic

use when strong randomness is required, like in highly secure applications. The behavior of the

system, as shown in this plot, ensures that keys produced by the system are highly resistant to

reverse engineering or attacks based on previously generated keys.

Figure 5. 3D surface plot showing the dynamic evolution of %(ε) over time ε and

parameter %. The complex, nonlinear fluctuations highlight the chaotic nature of

the system, critical for cryptographic security.

5.3.3. Chaotic Patterns in Contour Representation. Figure 6 is a contour plot of the behavior of %(ε)

with respect to time ε and parameter %. The pattern in the plot is highly irregular and complex,

which is typical of chaotic systems. These unpredictable patterns strengthen the case for the

system’s use in cryptographic key generation, since the keys produced will be highly random

and secure. The non-repetitive nature of the contour plot shows that the system’s behavior is
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not predictable or periodic, which is a must for key generation systems that are to be resistant to

cryptanalysis. The chaotic behavior of the system ensures that the keys remain unpredictable and

cannot be replicated even if past keys are known. This is one of the essential features of modern

cryptography, which has security based on the unpredictability of future keys or even deriving

them from earlier keys.

Figure 6. Contour plot of %(ε) over the ε-% domain, showing the complex, unpre-

dictable patterns that reinforce the system’s suitability for generating highly secure

cryptographic keys.

The graphical representations above-2D, 3D, and contour plots-represent the sensitive depen-

dence on initial conditions, complexity of the solution space, and chaotic behavior of the system.

These are the characteristics that the generation of unpredictable cryptographic keys needs. The

dynamic evolution of %(ε) ensures that the keys generated are unique and not susceptible to attacks

such as brute-force and reverse-engineering. The system is inherently chaotic, and that guaran-

tees no two keys will ever be alike, providing a robust framework for secure key generation in

cryptographic applications. The system of fractional neutral VFIDE with SDD is mathematically

rich and powerful for generating secure keys. By utilizing the sensitivity, controllability, and chaos

nature of the system, we can generate keys that are unique and unpredictable, thus resisting cryp-

tographic attacks. Graphical representations further validate the system’s potential as a robust

tool for advanced cryptographic frameworks, to ensure security in applications requiring such a

high level of confidentiality and integrity.
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6. Conclusion

In this paper, we perform a comprehensive study of the state-dependent fractional neutral

VFIDE, with the Caputo fractional derivative being used to describe fractional differentiation.

We use Schauder’s fixed point theorem to establish some controllability results under specific

conditions. We then provide a detailed example to validate our theoretical findings and perform

numerical simulations, showing the convergence of the actual solution in the dynamic evolution

of the system. Graphical analysis further clarifies the behavior of the solution under various

conditions and highlights the sensitivity of the system to initial conditions and parameters. This

work further explores potential applications of these equations in cryptography, as the system’s

chaotic nature, due to fractional-order derivatives and SDDs, especially makes it apt for secure

key generation. The unpredictability and sensitivity of chaotic systems to initial conditions will

ensure that the produced cryptographic keys are complex, random, and resist cryptanalytic at-

tacks. Therefore, the play of terms involving g1, g2, Z1, and Z2 leads to the generation of secure

keys that are not predictable, showing the applicability of this system in advanced cryptographic

applications. Hence, both controllability analysis and cryptographic applications conclude the

flexibility of fractional neutral VFIDE with SDD. New directions in the form of practical applica-

tions in various domains can now be envisaged from these findings, particularly those which are

highly critical of real-world models in the requirement of security with the occurrence of complex

dynamic behavior.
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