A Notion of Fractional Slice Monogenic Functions with Respect to a Pair of Real Valued Functions

Main Article Content

José Oscar González-Cervantes, Juan Bory-Reyes

Abstract

This work presents the basic elements and results of a Clifford algebra valued fractional slice monogenic functions theory defined from the null-solutions of a suitably fractional Cauchy-Riemann operator in the Riemann-Liouville and Caputo sense with respect to a pair of real valued functions on certain domains of Euclidean spaces.

Article Details

References

  1. D. Alpay, F. Colombo, K. Diki, I. Sabadini, Poly Slice Monogenic Functions, Cauchy Formulas and the PS-Functional Calculus, J. Oper. Theory 88 (2022), 309–364. https://doi.org/10.7900/jot.2021feb20.2347.
  2. F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Advanced Publishing Program, (1982).
  3. F. Colombo, J.O. Gonzalez-Cervantes, I. Sabadini, T.E. Simos, G. Psihoyios, et al., Comparison of the Various Notions of Slice Monogenic Functions and Their Variations, AIP Conf. Proc. (2011), 264–267. https://doi.org/10.1063/1.3636718.
  4. F. Colombo, D. Kimsey, S. Pinton, I. Sabadini, Slice Monogenic Functions of a Clifford Variable via the S-Functional Calculus, Proc. Am. Math. Soc. Ser. B 8 (2021), 281–296. https://doi.org/10.1090/bproc/94.
  5. F. Colombo, I. Sabadini, D.C. Struppa, Slice Monogenic Functions, Isr. J. Math. 171 (2009), 385–403. https://doi.org/10.1007/s11856-009-0055-4.
  6. F. Colombo, I. Sabadini, D.C. Struppa, An Extension Theorem for Slice Monogenic Functions and Some of Its Consequences, Isr. J. Math. 177 (2010), 369–389. https://doi.org/10.1007/s11856-010-0051-8.
  7. F. Colombo, I. Sabadini, D.C. Struppa, Slice Monogenic Functions, in: Progress in Mathematics, Springer Basel, Basel, 2011: pp. 17–80. https://doi.org/10.1007/978-3-0348-0110-2_2.
  8. F. Colombo, I. Sabadini, A Structure Formula for Slice Monogenic Functions and Some of Its Consequences, in: Hypercomplex Analysis, Birkhäuser, Basel, 2008: pp. 101–114. https://doi.org/10.1007/978-3-7643-9893-4_6.
  9. F. Colombo, I. Sabadini, The Cauchy Formula with S-Monogenic Kernel and a Functional Calculus for Noncommuting Operators, J. Math. Anal. Appl. 373 (2011), 655–679. https://doi.org/10.1016/j.jmaa.2010.08.016.
  10. F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac Systems and Computational Algebra, Birkhäuser, Boston, 2004. https://doi.org/10.1007/978-0-8176-8166-1.
  11. L. Cnudde, H. De Bie, G. Ren, Algebraic Approach to Slice Monogenic Functions, Complex Anal. Oper. Theory 9 (2014), 1065–1087. https://doi.org/10.1007/s11785-014-0393-z.
  12. N. Coloma, A. Di Teodoro, D. Ochoa-Tocachi, F. Ponce, Fractional Elementary Bicomplex Functions in the Riemann–Liouville Sense, Adv. Appl. Clifford Algebr. 31 (2021), 63. https://doi.org/10.1007/s00006-021-01165-0.
  13. B.B. Delgado, J.E. Macías-Díaz, On the General Solutions of Some Non-Homogeneous Div-Curl Systems with Riemann–Liouville and Caputo Fractional Derivatives, Fractal Fract. 5 (2021), 117. https://doi.org/10.3390/fractalfract5030117.
  14. R. Delanghe, F. Sommen, V. Souček, Clifford Algebra and Spinor-Valued Functions, Springer, Dordrecht, 1992. https://doi.org/10.1007/978-94-011-2922-0.
  15. J. Gilbert, M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, 1991. https://doi.org/10.1017/cbo9780511611582.
  16. J.O.G. Cervantes, On Some Quaternionic Generalized Slice Regular Functions, Adv. Appl. Clifford Algebr. 32 (2022), 36. https://doi.org/10.1007/s00006-022-01219-x.
  17. J.O. González-Cervantes, J. Bory-Reyes, A Quaternionic Fractional Borel-Pompeiu-Type Formula, Fractals 30 (2021), 2250013. https://doi.org/10.1142/s0218348x2250013x.
  18. J.O. González-Cervantes, J. Bory-Reyes, A Bicomplex $(vartheta,varphi)$-Weighted Fractional Borel-Pompeiu Type Formula, J. Math. Anal. Appl. 520 (2023), 126923. https://doi.org/10.1016/j.jmaa.2022.126923.
  19. J.O. González‐Cervantes, J. Bory‐Reyes, A Fractional Borel–Pompeiu Type Formula and a Related Fractional $psi$-Fueter Operator with Respect to a Vector‐valued Function, Math. Methods Appl. Sci. 46 (2022), 2012–2022. https://doi.org/10.1002/mma.8625.
  20. J.O. González-Cervantes, J. Bory-Reyes, I. Sabadini, Fractional Slice Regular Functions of a Quaternionic Variable, Results Math. 79 (2023), 32. https://doi.org/10.1007/s00025-023-02047-6.
  21. K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and N-Dimensional Space, Birkhäuser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8272-8.
  22. S. Bernstein, U. Kähler, I. Sabadini, F. Sommen, Hypercomplex Analysis: New Perspectives and Applications, Birkhäuser, (2014).
  23. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)X8001-5.
  24. F. Jarad, M.A. Alqudah, T. Abdeljawad, On More General Forms of Proportional Fractional Operators, Open Math. 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014.
  25. F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More Properties of the Proportional Fractional Integrals and Derivatives of a Function with Respect to Another Function, Adv. Differ. Equ. 2020 (2020), 303. https://doi.org/10.1186/s13662-020-02767-x.
  26. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, (1993).
  27. K.B. Oldham, J. Spanier, The Fractional Calculus, Dover Publications, (2006).
  28. M.D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, Dordrecht, 2011. https://doi.org/10.1007/978-94-007-0747-4.
  29. Y.P. Pérez, R.A. Blaya, M.P.Á. Alejandre, J.B. Reyes, Biquaternionic Reformulation of a Fractional Monochromatic Maxwell System, Adv. High Energy Phys. 2020 (2020), 6894580. https://doi.org/10.1155/2020/6894580.
  30. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, 1999.
  31. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
  32. N. Vieira, Fischer Decomposition and Cauchy-Kovalevskaya Extension in Fractional Clifford Analysis: The Riemann-Liouville Case, Proc. Edinb. Math. Soc. 60 (2016), 251–272. https://doi.org/10.1017/s0013091516000109.
  33. Y. Yang, T. Qian, Zeroes of Slice Monogenic Functions, Math. Methods Appl. Sci. 34 (2011), 1398–1405. https://doi.org/10.1002/mma.1447.
  34. Z. Xu, I. Sabadini, Generalized Partial-Slice Monogenic Functions: A Synthesis of Two Function Theories, Adv. Appl. Clifford Algebr. 34 (2024), 10. https://doi.org/10.1007/s00006-024-01314-1.