A Notion of Fractional Slice Monogenic Functions with Respect to a Pair of Real Valued Functions
Main Article Content
Abstract
This work presents the basic elements and results of a Clifford algebra valued fractional slice monogenic functions theory defined from the null-solutions of a suitably fractional Cauchy-Riemann operator in the Riemann-Liouville and Caputo sense with respect to a pair of real valued functions on certain domains of Euclidean spaces.
Article Details
References
- D. Alpay, F. Colombo, K. Diki, I. Sabadini, Poly Slice Monogenic Functions, Cauchy Formulas and the PS-Functional Calculus, J. Oper. Theory 88 (2022), 309–364. https://doi.org/10.7900/jot.2021feb20.2347.
- F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Advanced Publishing Program, (1982).
- F. Colombo, J.O. Gonzalez-Cervantes, I. Sabadini, T.E. Simos, G. Psihoyios, et al., Comparison of the Various Notions of Slice Monogenic Functions and Their Variations, AIP Conf. Proc. (2011), 264–267. https://doi.org/10.1063/1.3636718.
- F. Colombo, D. Kimsey, S. Pinton, I. Sabadini, Slice Monogenic Functions of a Clifford Variable via the S-Functional Calculus, Proc. Am. Math. Soc. Ser. B 8 (2021), 281–296. https://doi.org/10.1090/bproc/94.
- F. Colombo, I. Sabadini, D.C. Struppa, Slice Monogenic Functions, Isr. J. Math. 171 (2009), 385–403. https://doi.org/10.1007/s11856-009-0055-4.
- F. Colombo, I. Sabadini, D.C. Struppa, An Extension Theorem for Slice Monogenic Functions and Some of Its Consequences, Isr. J. Math. 177 (2010), 369–389. https://doi.org/10.1007/s11856-010-0051-8.
- F. Colombo, I. Sabadini, D.C. Struppa, Slice Monogenic Functions, in: Progress in Mathematics, Springer Basel, Basel, 2011: pp. 17–80. https://doi.org/10.1007/978-3-0348-0110-2_2.
- F. Colombo, I. Sabadini, A Structure Formula for Slice Monogenic Functions and Some of Its Consequences, in: Hypercomplex Analysis, Birkhäuser, Basel, 2008: pp. 101–114. https://doi.org/10.1007/978-3-7643-9893-4_6.
- F. Colombo, I. Sabadini, The Cauchy Formula with S-Monogenic Kernel and a Functional Calculus for Noncommuting Operators, J. Math. Anal. Appl. 373 (2011), 655–679. https://doi.org/10.1016/j.jmaa.2010.08.016.
- F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac Systems and Computational Algebra, Birkhäuser, Boston, 2004. https://doi.org/10.1007/978-0-8176-8166-1.
- L. Cnudde, H. De Bie, G. Ren, Algebraic Approach to Slice Monogenic Functions, Complex Anal. Oper. Theory 9 (2014), 1065–1087. https://doi.org/10.1007/s11785-014-0393-z.
- N. Coloma, A. Di Teodoro, D. Ochoa-Tocachi, F. Ponce, Fractional Elementary Bicomplex Functions in the Riemann–Liouville Sense, Adv. Appl. Clifford Algebr. 31 (2021), 63. https://doi.org/10.1007/s00006-021-01165-0.
- B.B. Delgado, J.E. Macías-Díaz, On the General Solutions of Some Non-Homogeneous Div-Curl Systems with Riemann–Liouville and Caputo Fractional Derivatives, Fractal Fract. 5 (2021), 117. https://doi.org/10.3390/fractalfract5030117.
- R. Delanghe, F. Sommen, V. Souček, Clifford Algebra and Spinor-Valued Functions, Springer, Dordrecht, 1992. https://doi.org/10.1007/978-94-011-2922-0.
- J. Gilbert, M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, 1991. https://doi.org/10.1017/cbo9780511611582.
- J.O.G. Cervantes, On Some Quaternionic Generalized Slice Regular Functions, Adv. Appl. Clifford Algebr. 32 (2022), 36. https://doi.org/10.1007/s00006-022-01219-x.
- J.O. González-Cervantes, J. Bory-Reyes, A Quaternionic Fractional Borel-Pompeiu-Type Formula, Fractals 30 (2021), 2250013. https://doi.org/10.1142/s0218348x2250013x.
- J.O. González-Cervantes, J. Bory-Reyes, A Bicomplex $(vartheta,varphi)$-Weighted Fractional Borel-Pompeiu Type Formula, J. Math. Anal. Appl. 520 (2023), 126923. https://doi.org/10.1016/j.jmaa.2022.126923.
- J.O. González‐Cervantes, J. Bory‐Reyes, A Fractional Borel–Pompeiu Type Formula and a Related Fractional $psi$-Fueter Operator with Respect to a Vector‐valued Function, Math. Methods Appl. Sci. 46 (2022), 2012–2022. https://doi.org/10.1002/mma.8625.
- J.O. González-Cervantes, J. Bory-Reyes, I. Sabadini, Fractional Slice Regular Functions of a Quaternionic Variable, Results Math. 79 (2023), 32. https://doi.org/10.1007/s00025-023-02047-6.
- K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and N-Dimensional Space, Birkhäuser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8272-8.
- S. Bernstein, U. Kähler, I. Sabadini, F. Sommen, Hypercomplex Analysis: New Perspectives and Applications, Birkhäuser, (2014).
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)X8001-5.
- F. Jarad, M.A. Alqudah, T. Abdeljawad, On More General Forms of Proportional Fractional Operators, Open Math. 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014.
- F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More Properties of the Proportional Fractional Integrals and Derivatives of a Function with Respect to Another Function, Adv. Differ. Equ. 2020 (2020), 303. https://doi.org/10.1186/s13662-020-02767-x.
- K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, (1993).
- K.B. Oldham, J. Spanier, The Fractional Calculus, Dover Publications, (2006).
- M.D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, Dordrecht, 2011. https://doi.org/10.1007/978-94-007-0747-4.
- Y.P. Pérez, R.A. Blaya, M.P.Á. Alejandre, J.B. Reyes, Biquaternionic Reformulation of a Fractional Monochromatic Maxwell System, Adv. High Energy Phys. 2020 (2020), 6894580. https://doi.org/10.1155/2020/6894580.
- I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, 1999.
- S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
- N. Vieira, Fischer Decomposition and Cauchy-Kovalevskaya Extension in Fractional Clifford Analysis: The Riemann-Liouville Case, Proc. Edinb. Math. Soc. 60 (2016), 251–272. https://doi.org/10.1017/s0013091516000109.
- Y. Yang, T. Qian, Zeroes of Slice Monogenic Functions, Math. Methods Appl. Sci. 34 (2011), 1398–1405. https://doi.org/10.1002/mma.1447.
- Z. Xu, I. Sabadini, Generalized Partial-Slice Monogenic Functions: A Synthesis of Two Function Theories, Adv. Appl. Clifford Algebr. 34 (2024), 10. https://doi.org/10.1007/s00006-024-01314-1.