Fixed Point Results in Complex Valued Modified Intuitionistic Fuzzy Metric Space with Applications

Main Article Content

Vishal Gupta, Anju, Rahul Shukla

Abstract

The aims is to introduce complex-valued modified intuitionistic fuzzy metric spaces as a fresh perspective on complex-valued FMS and modified intuitionistic fuzzy metric spaces. Additionally, our work yields a fixed and common fixed point result on this newly introduced space. Our research outcomes are exemplified through examples that are included in this paper to help readers better grasp our findings. Our paper concludes with a discussion of how our findings can be applied to the problem of determining the existence of a unique solution for Fredholm integral equations.

Article Details

References

  1. M. Ashraf, R. Ali, N. Hussain, Geraghty Type Contractions in Fuzzy B-Metric Spaces with Application to Integral Equations, Filomat 34 (2020), 3083–3098. https://doi.org/10.2298/FIL2009083A.
  2. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
  3. A. Azam, B. Fisher, M. Khan, Common Fixed Point Theorems in Complex Valued Metric Spaces, Numer. Funct. Anal. Optim. 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046.
  4. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  5. A. Bartwal, R.C. Dimri, G. Prasad, Some Fixed Point Theorems in Fuzzy Bipolar Metric Spaces, J. Nonlinear Sci. Appl. 13 (2020), 196–204. https://doi.org/10.22436/jnsa.013.04.04.
  6. R. Chugh, S. Kumar, Weakly Compatible Maps in Generalized Fuzzy Metric Spaces, J. Anal. 10 (2002), 65–74.
  7. I. Demir, Fixed Point Theorems in Complex Valued Fuzzy B-Metric Spaces with Application to Integral Equations, Miskolc Math. Notes 22 (2021), 153-171. https://doi.org/10.18514/MMN.2021.3173.
  8. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
  9. D. Gopal, Contributions to Fixed Point Theory of Fuzzy Contractive Mappings, in: Y.J. Cho, M. Jleli, M. Mursaleen, B. Samet, C. Vetro (Eds.), Advances in Metric Fixed Point Theory and Applications, Springer Singapore, Singapore, 2021: pp. 241–282. https://doi.org/10.1007/978-981-33-6647-3_11.
  10. D. Gopal, P. Kumam, M. Abbas, eds., Background and Recent Developments of Metric Fixed Point Theory, Chapman and Hall/CRC, 2017. https://doi.org/10.1201/9781351243377.
  11. M. Grabiec, Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4.
  12. V. Gupta, A. Gondhi, R. Shukla, Fixed Point Results in Modified Intuitionistic Fuzzy Soft Metric Spaces with Application, Mathematics 12 (2024), 1154. https://doi.org/10.3390/math12081154.
  13. V. Gupta, R. Kumar Saini, A. Kanwar, Some Coupled Fixed Point Results on Modified Intuitionistic Fuzzy Metric Spaces and Application to Integral Type Contraction, Iran. J. Fuzzy Syst. 14 (2017), 123-137. https://doi.org/10.22111/ijfs.2017.3436.
  14. Humaira, H.A. Hammad, M. Sarwar, M. De La Sen, Existence Theorem for a Unique Solution to a Coupled System of Impulsive Fractional Differential Equations in Complex-Valued Fuzzy Metric Spaces, Adv. Differ. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0.
  15. Humaira, M. Sarwar, T. Abdeljawad, Existence of Unique Solution to Nonlinear Mixed Volterra FredholmHammerstein Integral Equations in Complex-Valued Fuzzy Metric Spaces, J. Intell. Fuzzy Syst. 40 (2021), 4065–4074. https://doi.org/10.3233/JIFS-200459.
  16. Humaira, M. Sarwar, T. Abdeljawad, Existence of Solutions for Nonlinear Impulsive Fractional Differential Equations via Common Fixed-Point Techniques in Complex Valued Fuzzy Metric Spaces, Math. Probl. Eng. 2020 (2020), 7042715. https://doi.org/10.1155/2020/7042715.
  17. H. Humaira, M. Sarwar, T. Abdeljawad, N. Mlaiki, Fixed Point Results via Least Upper Bound Property and Its Applications to Fuzzy Caputo Fractional Volterra–Fredholm Integro-Differential Equations, Mathematics 9 (2021), 1969. https://doi.org/10.3390/math9161969.
  18. Humaira, M. Sarwar, N. Mlaiki, Unique Fixed Point Results and Its Applications in Complex-Valued Fuzzy b -Metric Spaces, J. Funct. Spaces 2022 (2022), 2132957. https://doi.org/10.1155/2022/2132957.
  19. J. Johnsy, M. Jeyaraman, R. Shukla, R. Venkatesan, Exploring Profit Opportunities in Intuitionistic Fuzzy Metric Spaces via Edelstein Type Mappings, Int. J. Anal. Appl. 22 (2024), 143. https://doi.org/10.28924/2291-8639-22-2024-143.
  20. I. Kramosil, J. Michálek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika 11 (1975), (336)-344. http://eudml.org/doc/28711.
  21. N. Mani, M. Pingale, R. Shukla, R. Pathak, Fixed Point Theorems in Fuzzy B-Metric Spaces Using Two Different t-Norms, Adv. Fixed Point Theory, 13 (2023), 29. https://doi.org/10.28919/afpt/8235.
  22. F. Mehmood, R. Ali, N. Hussain, Contractions in Fuzzy Rectangular B-Metric Spaces with Application, J. Intell. Fuzzy Syst. 37 (2019), 1275–1285. https://doi.org/10.3233/JIFS-182719.
  23. S. Nadaban, Fuzzy b-Metric Spaces, Int. J. Comput. Commun. Control 11 (2016), 273-281. https://doi.org/10.15837/ijccc.2016.2.2443.
  24. J.H. Park, Intuitionistic Fuzzy Metric Spaces, Chaos Solitons Fractals 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051.
  25. R. Saadati, S. Sedghi, N. Shobe, Modified Intuitionistic Fuzzy Metric Spaces and Some Fixed Point Theorems, Chaos Solitons Fractals 38 (2008), 36–47. https://doi.org/10.1016/j.chaos.2006.11.008.
  26. S. Shukla, S. Rai, R. Shukla, Some Fixed Point Theorems for α-Admissible Mappings in Complex-Valued Fuzzy Metric Spaces, Symmetry 15 (2023), 1797. https://doi.org/10.3390/sym15091797.
  27. S. Shukla, N. Dubey, R. Shukla, I. Mezník, Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets, Axioms 12 (2023), 854. https://doi.org/10.3390/axioms12090854.
  28. S. Shukla, R. Rodríguez-López, M. Abbas, Fixed Point Results for Contractive Mappings in Complex Valued Fuzzy Metric Spaces, Fixed Point Theory 19 (2018), 751–774. https://doi.org/10.24193/fpt-ro.2018.2.56.
  29. K.S. Wong, Z. Salleh, C.M.I.C. Taib, I. Abdullah, Some Fixed Point Results on Fuzzy Extended Rectangular B-Metric Spaces, AIP Conf. Proc. 2746 (2023), 060004. https://doi.org/10.1063/5.0152443.
  30. S.T. Zubair, K. Gopalan, T. Abdeljawad, N. Mlaiki, Novel Fixed Point Technique to Coupled System of Nonlinear Implicit Fractional Differential Equations in Complex Valued Fuzzy Rectangular b-Metric Spaces, AIMS Math. 7 (2022), 10867–10891. https://doi.org/10.3934/math.2022608.
  31. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.