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Abstract. The aims is to introduce complex-valued modified intuitionistic fuzzy metric spaces as a fresh perspective

on complex-valued FMS and modified intuitionistic fuzzy metric spaces. Additionally, our work yields a fixed and

common fixed point result on this newly introduced space. Our research outcomes are exemplified through examples

that are included in this paper to help readers better grasp our findings. Our paper concludes with a discussion of

how our findings can be applied to the problem of determining the existence of a unique solution for Fredholm integral

equations.

1. Introduction

Fixed point theory is a powerful tool in mathematical analysis that has a wide range of applica-

tions. Ambiguous and vague situations in natural phenomena or real-life problems cannot always

be expressed by mathematical models using classical set theory. To tackle this issue, Zadeh [31]

established the notion of fuzzy set, where the membership of an element in a set is indicated by

assigning it a value from the interval [0, 1].

Later, Atanassov [2] proposed intuitionistic fuzzy sets, which allow for the representation of

degree of uncertainty when assigning membership and non-membership values to elements in a

set. In 1975, Kramosil and Michalek [20] put forth FMS as a way to extend probabilistic metric

spaces. The investigation into fuzzy metric FP theory was pioneered by Grabiec [11]. George

and Veeramani [8] altered FMS in 1994, which resulted in the emergence of a Hausdorff topology
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on such spaces. They also proposed modifications to Grabiec’s Cauchy sequence concept and

demonstrated various FP outcomes on the modified spaces.

In 2004, Park [24] put forward the framework of IFMS, which expanded the scope of FMS.

Since FMS came into existence, it has been generalized in several ways (see [5,6,21–23,25–29]). To

explore the studies regarding FP findings in such spaces, [1, 9, 10] and their cited sources provide

a good starting point. Complex-valued MS were brought into metric FP theory by Azam et al. [3]

in 2011. After that, MIFMS introduced by Sedghi [25] and common coupled FP theorem proved

by Gupta et al. [13]. While [12] advanced the theoretical foundations of fuzzy metric spaces, [19]

subsequently demonstrated their economic applications, particularly in profit dynamics analysis.

Recently, Shukla et al. [28] employed this concept in the realm of FMS theory, there has been

considerable research interest in exploring FP findings for contractions on CVFMS. Prominent

examples of such research include the works of [7, 30] and the extensive investigations conducted

by Humaira et al. [14–18], which derived numerous FP and CFP outcomes, as well as their practical

applications.

This manuscript presents a fixed point results in CVMIFMS with applications. This new concept

generalizes both CVFMS by [28] as well as MIFMS by [25]. We present some FP outcomes for

mappings subject to contractive constraints in newly defined spaces. Furthermore, we expand

the fuzzy variant of BCP to intuitionistic fuzzy spaces, establishing CFP outcomes for it within

CVMIFMS. We provide pratical examples and applications to demonstrate the usefulness and

relevance of our results.

2. Preliminary

In the present work, the notations N and C refer to, in order, the collection of natural numbers

and complex numbers. For every z ∈ C, we express z = k+ iv by (k, v), where k is the real part and

v is the imaginary part. Let P = {(k, v) : 0 ≤ k < ∞, 0 ≤ v < ∞} ⊂ C.

For (0, 0) and (1, 1) in C, we denote them as θ and `, respectively. We denote the closed unit

complex interval as I = {(k, v) : 0 ≤ k ≤ 1, 0 ≤ v ≤ 1}, as well as the open unit complex interval as

I0 = {(k, v) : 0 < k < 1, 0 < v < 1}. Furthermore, P0 is designated as {(k, v) : 0 < k < ∞, 0 < v < ∞}.
A partial order � is imposed on C, where f1 � f2 if and only if f2 − f1 ∈ P, where f1, f2 ∈ C. We

write f1 ≺ f2 to express Re( f1) < Re( f2) and Im( f1) < Im( f2). Clearly, we have f1 ≺ f2 implies and

is implied by f2 − f1 ∈ P0. Let { fn} be a sequence in C. When fn � cn+1 or cn+1 � fn holds for each

n ∈N, the sequence { fn} is termed monotonic with respect to �.

In the context of a subset K of C, an element inf K ∈ C is known as the infimum or greatest

lower bound of K provided that it acts as a lower bound of K, meaning that inf K � k for all k ∈ K
along with ` � inf K for any other lower bound ` of K. We introduce sup K in a similar way as the

supremum or the least upper bound of K.

Remark 2.1. [25] Given that fn ∈ P for every n ∈N, the following statements hold:
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(1) If { fn} is a monotonic sequence w.r.t � and there exist α, β ∈ P such that α � fn � β, then a limit
c ∈ P exists and fn → c as n→∞.

(2) Although � does not provide a total ordering on C, it creates a lattice structure on C.
(3) For K ⊂ C, if every k ∈ K satisfies α � k � β for some α, β ∈ C, it follows that inf K and sup K

exist.

Remark 2.2. [25] Given that fn, f ′n ∈ P for all n ∈N, the following statements hold:

(1) If for every n ∈N, we have fn � f ′n � ` and limn→∞ fn = `, then it follows that f ′n = `.
(2) If fn � y and limn→∞ fn = c ∈ P, then c � y.

Definition 2.1. [25] A binary operation ∗: I × I → I (I=closed unit complex interval) is referred to as a
complex-valued t-norm when it satisfies the following conditions:

(1) c ∗ θ = θ, c ∗ ` = c for every c ∈ I;
(2) ∗ is associative and commutative;
(3) f1 ∗ f2 � f3 ∗ f4 whenever f1 � f3, and f2 � f4 for each f1, f2, f3, f4 ∈ I where f1 = (k1, v1),

f2 = (k2, v2), f3 = (k3, v3), f4 = (k4, v4).
For example:
(a) f1 ∗m f2 = (min{k1, k2}, min{v1, v2});
(b) f1 ∗p f2 = (k1k2, v1v2);
(c) f1 ∗L f2 = (max{k1 + k2 − 1, 0}, max{v1 + v2 − 1, 0}).

Definition 2.2. [25] Suppose Z , φ, ∗ is a continuous complex-valued t-norm, and U is a complex fuzzy
set defined on Z2

×P0 where as the following conditions hold:

(1) U($, ν, ξ̄) � θ;
(2) U($, ν, ξ̄) = U(ν,$, ξ̄);
(3) U($, ν, ξ̄) = ` for every c ∈ P0 if and only if $ = ν;
(4) U($, σ, ξ̄+ ξ̄′) � U($, ν, ξ̄) ∗U(ν, σ, ξ̄′);
(5) U($, ν, ·) : P0 → I is continuous, for every $, ν, σ ∈ Z and ξ̄, ξ̄′ ∈ P0.

Then, (Z,U, ∗) is referred to as a CVFMS where U characterizes the degree of nearness between two points
of the set Z relative to a complex parameter c ∈ P0.

Lemma 2.1. [25] Consider the set I∗ and operation � I∗ defined by

I∗ = {(k, v) : 0 ≤ |k| ≤ 1, 0 ≤ |v| ≤ 1 and |k+ v| ≤ 1}

(k1, k2) �I∗ (v1, v2) if and only if k1 � v1 and k2 � v2, for every (k1, k2), (v1, v2) ∈ I∗. Then (I∗,�I∗) is a
complete lattice.

Definition 2.3. An IFS A f ,g in a universe U is an object A f ,g = {( fA(u), gA(u)) : u ∈ U}, where fA(u)
and gA(u) ∈ [0, 1] for all u ∈ U are called the membership degree and non-membership degree respectively
and furthermore they satisfy fA(u) + gA(u) ≤ 1.
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Now, consider zi = ($i,κi) ∈ I∗ and ci ∈ [0, 1] such that
∑n

j=1 c j = 1 then

f1($1,κ1) + · · ·+ fn($n,κn) =

 n∑
j=1

c j$ j,
n∑

j=1

c jκ j

 ∈ I∗.

We represent its units as 0I∗ = (0, 1) and 1I∗ = (1, 0).

Definition 2.4. [25] These definitions can be naturally extended using the lattice (I∗,�I∗).
(i) A triangular norm denoted as ∗ is a mapping that is increasing, associative, and commutative. This
mapping is described by T : [0, 1]2 → [0, 1], and it satisfies the condition T(1,$) = 1 ∗$ = $ for any
$ ∈ [0, 1].
(ii) A triangular conorm denoted as S = ⊕ is a mapping that is increasing, commutative, and associative.
This mapping is represented by S : [0, 1]2 → [0, 1], and it follows the rule S(0,$) = 0 ⊕$ = $ for all
$ ∈ [0, 1].

Definition 2.5. [25] A t-norm on I∗ is a mapping R : {I∗}2 → I∗ satisfying the following conditions:

(1) ∀ $ ∈ I∗, R($, 1I∗) = $ (boundary condition);
(2) ∀ ($,κ) ∈ I∗ × I∗, R($,κ) = R(κ,$) (commutativity);
(3) ∀ ($,κ, z) ∈ I∗ × I∗ × I∗, R($, R(κ, z)) = R(R($,κ), z) (associativity);
(4) ∀ ($,$0,κ,κ0) ∈ I∗ × I∗ × I∗ × I∗, ($ �I∗ $0) and (κ �I∗ κ0 ⇒ R($,κ) �I∗ R($0,κ0))

(monotonicity).

Definition 2.6. [25] A mapping R defined on the interval I∗ is termed continuously t-representable if and
only if there exists both a continuous t-norm ∗ and a continuous t-conorm ⊕ defined on the closed interval
[0, 1] such that, for all $ = ($1,$2),κ = (κ1,κ2) ∈ I∗, and

R($,κ) = ($1 ∗ κ1,$2 ⊕ κ2).

Define a sequence Rn recursively in this way R1 = R and

Rn($(1); . . . ;$(n+1)) = R(Rn−1($(1), . . . ,$(n)),$(n+1))

for n ≥ 2 and $(i)
∈ I∗.

Definition 2.7. [25] An operator acting on I∗ is considered a negator if it is a decreasing function denoted
by N : I∗ → I∗, and it adheres to the conditions N(0I∗) = 1I∗ and N(1I∗) = 0I∗ . If, for all $ ∈ I∗, the
property N(N($)) = $ holds, the negator N is termed an involutive negator.
For the interval [0, 1], a negator refers to a decreasing function N : [0, 1] → [0, 1] that satisfies N(0) = 1

and N(1) = 0. The notation Ns is used to represent the standard negator on the interval [0, 1], which is
defined as Ns($) = 1−$.

3. Main Result

Definition 3.1. LetU,V be fuzzy sets from Z2
×P0 to [0, 1] such thatU($,κ, ξ̄) +V($,κ, ξ̄) ≤ 1 and Z is

a non-empty set, R is a continuous t-representable function, and £U,V is a mapping defined as Z2
×P0 → I∗,
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where P0 is a specified domain. The 3-tuple (Z, £U,V, R) is characterized as a CVMIFMS if the following
conditions are met for all $,κ ∈ Z and t, s > 0

(1) £U,V($,κ, ξ̄) �I∗ θI∗ ;
(2) £U,V($,κ, ξ̄) = lI∗ if and only if $ = κ;
(3) £U,V($,κ, ξ̄) = £U,V(κ,$, ξ̄);
(4) £U,V($,κ, ξ̄+ s) �I∗ R(£U,V($, z, ξ̄), £U,V(z,κ, s));
(5) £U,V($,κ, ·) : P0 → I∗ is continuous.

In this case, £U,V is called an CVMIFMS, where £U,V($,κ, ξ̄) = (U($,κ, ξ̄),V($,κ, ξ̄)).

Example 3.1. Consider a metric space (Z, d). We define a function R(k, v) = {k1v1, min(k2 + v2, 1)} for all
k = (k1, k2) and v = (v1, v2) ∈ I∗. Moreover, let £U,V($,κ, ξ̄) are fuzzy set on Z2

×P0 defined as follows:

£U,V($,κ, ξ̄) = (U($,κ, ξ̄),V($,κ, ξ̄)) =
(

hξ̄n

hξ̄n + md($,κ)
,

md($,κ)
hξ̄n + md($,κ)

)
,

for all ξ̄, h, m, n ∈ P0. Then (Z, £U,V, R) is an CVMIFMS.

Example 3.2. Let Z = N. The function R(k, v) = {max(0, k1 + v1 − 1), k2 + v2 − k2v2} is defined for all
k = (k1, k2) and v = (v1, v2) ∈ I∗. Additionally, consider fuzzy set £U,V($,κ, ξ̄) on Z2

× P0, which are
defined as follows:

£U,V($,κ, ξ̄) = (U($,κ, ξ̄),V($,κ, ξ̄)) =


(
$
κ , κ−$κ

)
if $ ≤ κ,(

κ
$ , $−κ$

)
if κ ≤ $,

for all $,κ ∈ Z and ξ̄ � 0. Then (Z, £U,V, R) is an CVMIFMS.

Remark 3.1. In a CVMFMS (Z, £U,V, R), where U($,κ, ξ̄) is non decreasing and V($,κ, ξ̄) is non
increasing then

£U,V($,κ, ξ̄) �I∗ R(U($,κ, ξ̄),V($,κ, ξ̄))

is non decreasing for all $,κ ∈ Z where

R(k, v) = (k1 ∗ v1, k2 ⊕ v2) and k = (k1, v1), v = (k2, v2) ∈ I.

Definition 3.2. In a CVMIFMS (Z, £U,V, R), a sequence {$n} is termed a Cauchy sequence if, for each
0 < e < 1 and ξ̄ � 0, there exists n0 ∈N such that for all n, m ≥ n0,

£U,V($n,κm, ξ̄) �I∗ (Ns(e), e),

where Ns denotes the standard negator.

Definition 3.3. In the CVMIFMS (Z, £U,V, R), The sequence {$n} is considered convergent to $ ∈ Z if

£U,V($n,$, ξ̄)→ 1I∗ as n→∞ for all ξ̄ � 0,denoted by $n
£U,V
→ $.

Definition 3.4. A CVMIFMS is termed complete if every Cauchy sequence within it converges.
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Lemma 3.1. Consider (Z, £U,V, R) as a CVMIFMS. In this context, for any ξ̄ � 0, the function £U,V($,κ, ξ̄)

exhibits a non-decreasing behavior with respect to ξ̄ within the lattice (I∗,�I∗), for all $,κ ∈ Z.

Definition 3.5. Let (Z, £U,V, R) be a CVMIFMS. For any ξ̄ � 0, we define an open ball B($, e, ξ̄) centered
at $ ∈ Z with a radius 0 < e < 1 as

B($, e, ξ̄) = {κ ∈ Z : £U,V($,κ, ξ̄) �I∗ (Ns(e), e)}.

A subset A ⊆ Z is called open if for each $ ∈ A, there exist ξ̄ � 0, 0 < e < 1 such that B($, e, ξ̄) ⊆ A.

Definition 3.6. Let (Z, £U,V, R) be an CVMIFMS. A subset A of Z is considered CVMIF-bounded if there
exist ξ̄ � 0 and 0 < e < 1 such that

£U,V($,κ, ξ̄) �I∗ (Ns(e), e) f or every $,κ ∈ A.

Definition 3.7. Let (Z, £U,V, R) be an CVMIFMS. £U,V is said to be continuous on Z×Z×P0 if

lim
n→∞

£U,V($n,κn, ξ̄n) = £U,V($,κ, ξ̄),

whenever a sequence {($n,κn, ξ̄n)} in Z×Z×P0 converges to a point ($,κ, ξ̄) ∈ Z×Z×P0, i.e.,

lim
n

£U,V($n,$, ξ̄) = lim
n

£U,V(κn,κ, ξ̄) = 1I∗ and lim
n

£U,V($,κn, ξ̄) = £U,V($,κ, ξ̄).

Lemma 3.2. Let (Z, £U,V, R) be an CVMIFMS. Then £U,V is a continuous function on Z×Z×P0.

Definition 3.8. Let A and S be mappings from (Z, £U,V, R)→ (Z, £U,V, R). The mappings are considered
weak compatible if their coincidence point satisfies the condition that when A$ = S$, implies that AS$ =

SA$.

Definition 3.9. Let A and S be mappings from (Z, £U,V, R)→ (Z, £U,V, R) are said to be compatible if

lim
n→∞

£U,V(AS$n, SA$n, ξ̄) = 1I∗ for all ξ̄ � 0.

Whenever {$n} in Z such that
lim
n→∞

A$n = lim
n→∞

S$n = $ ∈ Z.

Proposition 3.1. In a CVMIFMS (Z, £U,V, R), the mappings A and S are compatible, so they are weak
compatible.

The converse is not true, see the next example.

Example 3.3. Let (Z, £U,V, R) be an CVMIFMS, where Z = [0, 2], and

£U,V($,κ, ξ̄) =
{

ξ̄

ξ̄+ d($,κ)
,

d($,κ)
ξ̄+ d($,κ)

}
for all ξ̄ � 0 and$,κ ∈ Z. Denote R(k, v) = (k1v1, min(k2 + v2, 1)) for all k = (k1, k2) and v = (v1, v2) ∈ I∗.
Specify the mappings A and S on the set Z as follows:

A($) =


$
2 , if 1 ≤ $ ≤ 2;

2, if 0 ≤ $ ≤ 1,
and S($) =

2, if $ = 1;
$+3

5 , otherwise.
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So, the value of S(1) = A(1) = 2 and S(2) = A(2) = 1. Also, the value SA(1) = AS(1) = 1 and
SA(2) = AS(2) = 2.
Therefore, (A, S) is becomes weak compatible. Again,

A($n) = 1−
1

4n
, S($n) = 1−

1
10n

.

Thus,

A($n)→ 1, S($n)→ 1.

Further,

SA($n) =
(4
5
−

1
20n

)
, AS($n) = 2.

Now,

lim
n→∞

£U,V(AS($n), SA($n), ξ̄) = lim
n→∞

£U,V

(
2,

4
5
−

1
20n

, ξ̄
)

=

 ξ̄

ξ̄+ 6
5

,
6
5

ξ̄+ 6
5

 ≺I∗ 1I∗ for all ξ̄ � 0.

Hence, the compatibility of (A, S) is not established.

Definition 3.10. Assume that A and B are two self-mappings of the CVMIFMS (Z, £U,V, R). We say that
A and B meet the property (E), if there exists a sequence {$n} such that

lim
n→∞

£U,V(A$n, z, ξ̄) = lim
n→∞

£U,V(B$n, z, ξ̄) = 1I∗

for some z ∈ Z and ξ̄ � 0.

Example 3.4. Let Z = R and

£U,V($,κ, ξ̄) =
{

ξ̄

ξ̄+ |$− κ|
,
|$− κ|

ξ̄+ |$− κ|

}
.

Let A and B be defined as,

A($) = 2$+ 1, B($) = $+ 2.

And the sequence

{$n} =
{1

n
+ 1

}
, n = 1, 2, . . .

Thus we have,

lim
n→∞

£U,V(A$n, 3, ξ̄) = lim
n→∞

£U,V(B$n, 3, ξ̄) = 1I∗ .

Thus, A and B exhibit property (E).

Example 3.5. Let Z = R and

£U,V($,κ, ξ̄) =
{

ξ̄

ξ̄+ |$− κ|
,
|$− κ|

ξ̄+ |$− κ|

}
.

For every $,κ ∈ Z and ξ̄ � 0, let A$ = $+ 1 and B$ = $+ 2.
If a sequence {$n} exists such that, limn→∞ £U,V(A$n, z, ξ̄) = limn→∞ £U,V(B$n, z, ξ̄) = 1I∗ for some
z ∈ Z, therefore,
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limn→∞ £U,V(A$n, z, ξ̄) = limn→∞ £U,V($n + 1, z, ξ̄) = limn→∞ £U,V($n, z− 1, ξ̄) = 1I∗ .

limn→∞ £U,V(B$n, z, ξ̄) = limn→∞ £U,V($n + 2, z, ξ̄) = limn→∞ £U,V($n, z− 2, ξ̄) = 1I∗ .

Hence, as $n converges to z − 1 and z − 2, a contradiction arises. Consequently, it can be concluded that
neither A nor B possesses property (E).

Lemma 3.3. Let (Z, £U,V, R) be an CVMIFMS. Define Ee,µ : Z2
→ P by

Ee,µ($,κ) = inf
{
ξ̄ � 0 : £U,V($,κ, ξ̄) � 1I∗ (Ns(e), e)

}
,

for every 0 < e < 1 and $,κ ∈ Z. Then,

(1) For any µ ∈ (0, 1), there exists e such that

Ee,µ($1,$n) ≤ Ee,µ($1,$2) + Ee,µ($2,$3) + . . .+ Ee,µ($n−1,$n)for any$1, . . . ,$n ∈ Z

.
(2) In the CVMIFMS a sequence {$n}n∈N is converges if and only if Ee,µ($n,$)→ 0.

Also, the sequence {$n}n∈N is a Cauchy sequence iff it is Cauchy w.r.t Ee,µ.

Lemma 3.4. Let (Z, £U,V, R) be an CVMIFMS. If

£U,V($n,$n+1, ξ̄) �I∗ £U,V($0,$1, knξ̄)

then {$n} is a Cauchy sequence for some k > 1 and n ∈ N.

Proof. For every e ∈ (0, 1) and {$n} ∈ Z, we have

Ee,µ($n+1,$n) = inf
{
ξ̄ � 0 : £U,V($n+1,$n, ξ̄) �I∗ (Ns(e), e)

}
� inf

{
ξ̄ � 0 : £U,V($0,$1, knξ̄) �I∗ (Ns(e), e)

}
= inf

{
ξ̄
kn : £U,V($0,$1, ξ̄) �I∗ (Ns(e), e)

}
= 1

kn inf
{
ξ̄ � 0 : £U,V($0,$1, ξ̄) �I∗ (Ns(e), e)

}
= 1

kn Ee,µ($0,$1).

From Lemma above 3.3, for every µ ∈ (0, 1) there exists e such that

Ee,µ($n,$m) � Ee,µ($n,$n+1) + Ee,µ($n+1,$n+2) + . . .+ Ee,µ($m−1,$m)

�
1
kn Ee,µ($0,$1) +

1
kn+1 Ee,µ($0,$1) + ... + 1

km−1 Ee,µ($0,$1).

= Ee,µ($0,$1)
∑m−1

j=n
1
k j → 0.

Hence, sequence {$n} is a Cauchy sequence. �
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Definition 3.11. Let (Z, £U,V, R) be a CVMIFMS have property (C)If it fulfills the subsequent condition:

£U,V($,κ, ξ̄) = C for all ξ̄ � 0 implies C = 1I∗ .

Theorem 3.1. Let (Z, £U,V, R) be a complete CVMIFMS with property (C) , and let S and T represent two
self-mappings of the set Z fulfills the subsequent condition:

(1) £U,V(S$, TSκ, ξ̄) � γ(£U,V($, Sκ, kξ̄)) for some k > 1, where γ : I∗ → I∗ is an operator with
γ(k) � k for each k ∈ I∗.

(2) T or S is continuous.

Then, the map S and T have a unique CFP.

Proof. Let $0 ∈ Z be any arbitrary point, and define

$2n = S$2n−1, n = 1, 2,

$2n+1 = T$2n, n = 0, 1, 2, .

Now, for an even integer n = 2m, we have

£U,V($2m,$2m+1, ξ̄) = £U,V(S$2m−1, T$2m, ξ̄)

= £U,V(S$2m−1, TS$2m−1, ξ̄)

� γ(£U,V($2m−1, S$2m−1, kξ̄))

� £U,V($2m−1,$2m, kξ̄)

= £U,V($2m,$2m−1, kξ̄)...

� £U,V($0,$1, knξ̄).

By, using Lemma 3.4, the sequence {$n} is a Cauchy sequence and completeness of Z, {$n} converges

to $ ∈ Z. Then,

lim
n→∞

$n = lim
n→∞

$2n = lim
n→∞

S$2n−1 = S lim
n→∞

$2n−1 = S$ = $,

lim
n→∞

$2n+1 = lim
n→∞

T$2n = lim
n→∞

$2n = $.

Given that the map S is continuous. Then,

lim
n→∞

S$2n−1 = S lim
n→∞

$2n−1 = S$ = $.

Since, £U,V($, T$, ξ̄) = £U,V(S$, TS$, ξ̄)

� γ(£U,V($, S$, kξ̄))
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� γ(£U,V($,$, kξ̄))

� £U,V($,$, ξ̄)

= 1I∗ ,

then T$ = $.

To prove uniqueness, let us consider κ be another CFP of S and T. Then,

£U,V($,κ, ξ̄) = £U,V(S$, TSκ, ξ̄)

� γ(£U,V($, Sκ, kξ̄))

� £U,V($,κ, kξ̄) � ...

� £U,V($,κ, knξ̄).

Now by using Lemma 3.1, we have

£U,V($,κ, ξ̄) � £U,V($,κ, knξ̄).

Hence, £U,V($,κ, ξ̄) = C for all ξ̄ � 0, where C = 1I∗ , i.e., κ = $.

Therefore, $ is the unique CFP. �

Example 3.6. Let Z = [0, 1]. Define the mapping S and T by

S$ = 1,

and

T$ =

0 if $ is irrational;

1 if $ is rational
f or every $ ∈ [0, 1].

Define γ : I∗ → I∗ by

γ(ξ̄1, ξ̄2) =


(
ξ̄1 +

1
2 , ξ̄2 −

1
2

)
i f 0 � ξ̄1 �

1
2 , 1

2 � ξ̄2 ≤ 1;

(1, 0) = 1 i f ξ̄1, ξ̄2 otherwise.

Denote R(k, v) = (k1v1, min(k2 + v2, 1)) for all k = (k1, k2) and v = (v1, v2) ∈ I∗. For each ξ̄ ∈ P0, define

£U,V($,κ, ξ̄) =
{

ξ̄

ξ̄+ |$− κ|
,
|$− κ|

ξ̄+ |$− κ|

}
.

Therefore, £U,V(S$, TSκ, ξ̄) � (£U,V($, Sκ, kξ̄)).
Thus all the conditions are satisfied so 1 are the only CFP of S and T.

Theorem 3.2. Let (Z, £U,V, R) be a complete CVMIFMS. Suppose φ is the set of all continuous functions
γ : I∗ → I∗ with γ(k) �I∗ (k) for every k ∈ I \ {0I∗ , 1I∗}. If A, B, S, and T are four mappings from Z to Z, that
they satisfy the following conditions:
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(1) £U,V(A$, Bκ, ξ̄) � φ
{
min(£U,V(S$, Tκ, ξ̄), £U,V(S$, Bκ, ξ̄), £U,V(Tκ, Bκ, ξ̄))

}
for every $,κ in

Z.
(2) A(Z) ⊆ T(Z), B(Z) ⊆ S(Z), also T(Z) or S(Z) is a closed subset of Z.
(3) The pairs (A, S) and (B, T) are weak compatible and (A, S) or (B, T) satisfy the property (E).

Then A, S, B, and T have a unique CFP in Z.

Proof. Assuming the pair (B, T) exhibits property (E). Hence, there exists a sequence {$n} such

that:

lim
n→∞

£U,V(B$n, z, ξ̄) = lim
n→∞

£U,V(T$n, z, ξ̄) = 1I∗

for some z ∈ Z and every ξ̄ � 0. As B(Z) ⊆ S(Z), there exists a sequence {κn} such that B$n = Sκn,

Hence

lim
n→∞

£U,V(Sκn, z, ξ̄) = 1I∗ .

We prove that limn→∞ £U,V(Aκn, z, ξ̄) = 1I∗ . Since

£U,V(Aκn, B$n, ξ̄) � γ (min(£U,V(Sκn, T$n, ξ̄), £U,V(Sκn, B$n, ξ̄), £U,V(T$n, B$n, ξ̄))) ,

on taking n→∞ in the above inequality, we get

lim
n→∞

£U,V(Aκn, B$n, ξ̄) � γ (min(£U,V(z, z, ξ̄), £U,V(z, z, ξ̄), £U,V(z, z, ξ̄)))

= 1I∗ .

Therefore,

lim
n→∞

£U,V(Aκn, B$n, ξ̄) = 1I∗ .

hence

lim
n→∞

Aκn = z.

Let SZ be a CVMIFMS, then there exists $ ∈ Z such that S$ = z, and

limn→∞ £U,V(Aκn, S$, ξ̄) = limn→∞ £U,V(B$n, S$, ξ̄)

= limn→∞ £U,V(T$n, S$, ξ̄)

= limn→∞ £U,V(Sκn, S$, ξ̄)

= 1I∗ .

On the other hand,

£U,V(A$, B$n, ξ̄) � γ (min(£U,V(S$, T$n, ξ̄), £U,V(S$, B$n, t), £U,V(T$n, B$n, ξ̄)))

therefore,

lim
n→∞

£U,V(A$, B$n, ξ̄) � 1I∗ .



12 Int. J. Anal. Appl. (2025), 23:105

Hence A$ = limn→∞ B$n = z = S$. Since A and S are weak compatible maps, that is AS$ = SA$,

so

AA$ = AS$ = SA$ = SS$.

As AZ ⊆ TZ, there exists v ∈ Z such that

A$ = Tv.

To prove Tv = Bv. suppose that Tv , Bv, then,

£U,V(A$, Bv, ξ̄) � γ (min(£U,V(S$, Tv, ξ̄), £U,V(S$, Bv, ξ̄), £U,V(Tv, Bv, ξ̄)))

� £U,V(A$, Bv, ξ̄)

which comes contradiction. Hence,

£U,V(A$, Bv, ξ̄) = 1I∗ .

So, Tv = A$ = S$ = Bv.

Since B and T are weak compatible maps, we have,

BTv = TBv,

So,

TTv = TBv = BTv = BBv.

To prove that A$ is a FP for A and S. i.e,

AA$ = SA$ = A$.

For this let us suppose that

AA$ , A$,

we have

£U,V(AA$, A$, ξ̄) = £U,V(AA$, B$, ξ̄)

� γ (min(£U,V(SA$, Tv, ξ̄), £U,V(SA$, Bv, ξ̄), £U,V(Tv, Bv, ξ̄)))

� £U,V(AA$, A$, ξ̄)

which arises a contradiction. Hence,

A$ = AA$ = SA$.

In the same way, Bv is a FP for T and B. Therefore Bv = A$, so all the mappings A, B, S, and T
have a CFP A$.
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For uniqueness, let, if possible, $ , v be other CFP. Then

£U,V($, v, ξ̄) = £U,V(A$, Bv, ξ̄)

� γ (min(£U,V(S$, Tv, ξ̄), £U,V(S$, Bv, ξ̄), £U,V(Tv, Bv, ξ̄)))

� £U,V($, v, ξ̄).

This comes contradiction. �

Theorem 3.3. Let (Z, £U,V, R) be an CVMIFMS and assume S, I, J, T : Z → Z be four mappings, such
that

TZ ⊆ JZ, SZ ⊆ IZ (3.1)

and

£U,V(T$, Sκ, ξ̄) � a(ξ̄)£U,V(I$, Jκ, ξ̄) + b(ξ̄)min{£U,V(I$, T$, kξ̄), £U,V(Jκ, Sκ, kξ̄)}

+c(ξ̄)max{£U,V(I$, T$, kξ̄), £U,V(Jκ, Tκ, kξ̄)}

for every $,κ ∈ Z, and some k > 1, where a, b, c : P → I are three continuous functions such that
a(ξ̄) + b(ξ̄) + c(ξ̄) = 1 for all ξ̄ � 0.

Suppose in addition that either

(1) I is continuous, T, I are compatible and S, J are weak compatible, or
(2) J is continuous, S, J are compatible and T, I are weak compatible.

Then S, T, J and I have a unique CFP.

Proof. Let $0 ∈ Z be any point. Take a point $1 ∈ Z such that T$0 = J$1 = κ1, and a point $2 ∈ Z
such that S$1 = T$2 = κ2.

Now, by using induction a sequence {$n} in Z is defined as

I$2n+2 = S$2n+1 = κ2n+2, n = 0, 1, 2,

J$2n+1 = T$2n = κ2n+1, n = 0, 1, 2

We set

dn(ξ̄) = £U,V(κn,κn+1, ξ̄), n = 0, 1, 2, . . .

For each n = 0, 1, 2, . . . we have

d2n+1(ξ̄) = £U,V(κ2n+1,κ2n+2, ξ̄)

= £U,V(T$2n, S$2n+1, ξ̄)

� a(ξ̄)£U,V(I$2n, J$2n+1, ξ̄) + b(ξ̄)min{£U,V(I$2n, T$2n, kξ̄), £U,V(J$2n+1, S$2n+1, kξ̄)}
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+c(ξ̄)max{£U,V(I$2n, S$2n+1, kξ̄), £U,V(J$2n+1, T$2n, kξ̄)}

= a(ξ̄)d2n(ξ̄) + b(ξ̄)min{d2n(kξ̄), d2n+1(kξ̄)}+ c(ξ̄).

Now, if d2n+1(kξ̄) ≺ d2n(kξ̄), then

d2n+1(ξ̄) � [a(ξ̄) + b(ξ̄) + c(ξ̄)] d2n+1(kξ̄)

Hence d2n+1(ξ̄) � d2n+1(kξ̄), that is a contradiction. Therefore d2n+1(ξ̄) � d2n(kξ̄).
Thus,

£U,V(κ2n+1,κ2n+2, ξ̄) � £U,V(κ2n,κ2n+1, ξ̄k).

So,

£U,V(κ2n+1,κ2n+2, ξ̄) � £U,V(κn,κn+1, ξ̄)

� £U,V(κn−1,κn, kξ̄) � ...

� £U,V(κ0,κ1, knξ̄).

By Lemma 3.1, sequence {κn} is a Cauchy sequence, therefore it converges to a point k ∈ Z.

i.e, lim
n→∞

κn = k = lim
n→∞

J$2n+1 = lim
n→∞

S$2n+1 = lim
n→∞

I$2n+2 = lim
n→∞

T$2n.

Now (1) is satisfied. Then I2$2n → Ik and IT$2n → Ik. Since T and I are compatible map, i.e,

TI$2n →I.

Now, to prove that k is the CFP of T,S,J,I.

Case 1. k is a FP of I. Indeed, if Ik , kwe have

£U,V(TI$2n, S$2n+1, ξ̄) � a(ξ̄)£U,V(I2$2n, J$2n+1, ξ̄)

+b(ξ̄)min{£U,V(I2$2n, TI$2n, kξ̄), £U,V(J$2n+1, S$2n+1, kξ̄)}

+c(ξ̄)max{£U,V(I2$2n, S$2n+1, kξ̄), £U,V(J$2n+1, TI$2n, kξ̄)}.

Letting n→∞, yields The expression

£U,V(Ik, k, ξ̄) � a(ξ̄)£U,V(Ik, k, ξ̄) + b(ξ̄)min{£U,V(Ik, Ik, kξ̄), £U,V(k, k, kξ̄)}

+c(ξ̄)max{£U,V(Ik, k, kξ̄), £U,V(Ik, k, kξ̄)}
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� £U,V(Ik, k, kξ̄)

leads to a contradiction, which implies that Ik = k.

Case 2. k is a FP of T. Indeed,

£U,V(Tk, S$2n+1, ξ̄) � a(ξ̄)£U,V(Ik, J$2n+1, ξ̄)

+b(ξ̄)min{£U,V(Ik, Tk, kξ̄), £U,V(J$2n+1, S$2n+1, kξ̄)}

+c(ξ̄)max{£U,V(Ik, S$2n+1, kξ̄), £U,V(J$2n+1, Tk, kξ̄)}

and letting n→∞, if Tk , k gives

£U,V(Tk, k, ξ̄) � a(ξ̄)£U,V(Ik, k, ξ̄) + b(ξ̄)min{£U,V(Ik, Tk, kξ̄), £U,V(k, k, kξ̄)}

+c(ξ̄)max{£U,V(Ik, k, kξ̄), £U,V(Ik, Tk, kξ̄)}

� £U,V(k, Tk, kξ̄)

Hence, Tk = k.

Case 3. Since TZ ⊆ JZ for all $ ∈ Z, there is a point b ∈ Z such that

Tk = k = Jb.

We will prove that b is a coincidence point for J and S. Indeed, if Tk , Sbwe have

£U,V(Tk, Sb, ξ̄) � a(ξ̄)£U,V(k, Jb, ξ̄) + b(ξ̄)min{£U,V(k, Tk, kξ̄), £U,V(Jk, Sk, kξ̄)}

+c(ξ̄)max{£U,V(k, Sb, kξ̄), £U,V(Jb, Tk, kξ̄)}

> £U,V(Tk, Sb, kξ̄),

which is a contradiction. Thus, Tk = Sb = Jb = k.
Given that J and S are weakly compatible, we deduce that

SJb = JSb→ Sk = Jk.

To, show that Tk = Sk. Suppose, Tk , Sk, we have
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£U,V(Tk, Sk, ξ̄) � a(ξ̄)£U,V(Ik, Jk, ξ̄) + b(ξ̄)min{£U,V(Ik, Tk, kξ̄), £U,V(Jk, Sk, kξ̄)}

+c(ξ̄)max{£U,V(Ik, Sk, kξ̄), £U,V(Jk, Tk, kξ̄)}

� £U,V(Tk, Sk, kξ̄)
which is a contradiction.

Therefore,

Sk = Tk = Ik = Jk = k.

For Uniqueness, Let b , k be another FP of I, J, T and S, then

£U,V(Tk, Sb, ξ̄) � a(ξ̄)£U,V(Ik, Jb, ξ̄) + b(ξ̄)min{£U,V(Ik, Tk, kξ̄), £U,V(Jb, Sb, kξ̄)}

+c(ξ̄)max{£U,V(Ik, Sb, kξ̄), £U,V(Ib, Tk, kξ̄)}

= a(ξ̄)£U,V(a, b, ξ̄) + b(ξ̄) · 1I∗ + c(ξ̄)U(k, b, kξ̄)

� £U,V(k, b, kξ̄)

is a contradiction. That is, k is the unique CFP. �

4. Application to Fredholm Integral Equations of Second Kind

We explore in this section how Theorem 3.1 can be employed to demonstrate the existence of a

unique solution for Fredholm integral equations. The set C([0, 1], R) denotes set of all continuous

functions that map the interval [0, 1] to the real numbers. Below is an example of a second-kind

non linear Fredholm integral equation:

ψ(ξ̄) = Q(ξ̄) + γ

∫ 1

0
ω(ξ̄, s)χ(s,ψ(s))ds (4.1)

where Q represents a real-valued function that is continuous on the interval [0, 1],ω(ξ̄, s) represents

the kernel of the integral function, χ(s,ψ(s)) represents a non linear and continuous function

defined on [0, 1] ×R, and ψ(ξ̄) represents the function that we wish to be determined.

Theorem 4.1. Consider Z = C([0, 1], R). Suppose that the conditions outlined below are met:

(1) An element α ∈ (0, 1) can be located such that∣∣∣χ(s,ψ(s)) − χ(s,φ(s))
∣∣∣ ≤ α ∣∣∣ψ(s) −φ(s)∣∣∣

for any ψ,φ ∈ Z and s ∈ [0, 1];
(2)

∫ 1
0 ω(ξ̄, s)ds ≤ β;

(3) γ2β2α2
≤ k < 1.

Then, the integral equation (2) have a unique solution in Z.
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Proof. Given a mapping F : Z→ Z defined by

Fψ(ξ̄) = Q(ξ̄) + γ

∫ 1

0
ω(ξ̄, s)χ(s,ψ(s))ds

for every ψ(ξ̄) ∈ Z and ξ̄ ∈ [0, 1]. Furthermore, £U,V(ψ(ξ̄),φ(ξ̄), c) are defined by

£U,V(ψ(ξ̄),φ(ξ̄), c) =

 k+ b

k+ b+
∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2 l,

∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2
k+ b+

∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2 l


for all ψ,φ ∈ Z, c = (k, b) > 0, and ξ̄ ∈ [0, 1]. The fact that (Z, £U,V, R) is a complete CVMIFMS can

be established without much effort.

For all ψ,φ ∈ Z and ξ̄ ∈ [0, 1], it follows that

∣∣∣Fψ(ξ̄) − Fφ(ξ̄)
∣∣∣2 =

∣∣∣∣∣∣Q(ξ̄) + γ

∫ 1

0
ω(ξ̄, s)χ(s,ψ(s))ds−Q(ξ̄) − γ

∫ 1

0
ω(ξ̄, s)χ(s,φ(s))ds

∣∣∣∣∣∣
2

= γ2

∣∣∣∣∣∣
∫ 1

0
ω(ξ̄, s)χ(s,ψ(s))ds−

∫ 1

0
ω(ξ̄, s)χ(s,φ(s))ds

∣∣∣∣∣∣
2

≤ γ2
(∫ 1

0
ω(ξ̄, s)ds

)2 ∣∣∣χ(s,ψ(s)) − χ(s,φ(s))
∣∣∣2

≤ γ2β2α2
∣∣∣ψ(s) −φ(s)∣∣∣2 ≤ k

∣∣∣ψ(s) −φ(s)∣∣∣2
Now, for all ψ,φ ∈ Z and c ∈ P0, it can be seen that

£U,V(Fψ(ξ̄), Fφ(ξ̄), kc) =

 k(k+ b)

k(k+ b) +
∣∣∣Fψ(ξ̄) − Fφ(ξ̄)

∣∣∣2 l,

∣∣∣Fψ(ξ̄) − Fφ(ξ̄)
∣∣∣2

k(k+ b) +
∣∣∣Fψ(ξ̄) − Fφ(ξ̄)

∣∣∣2 l


=

 k(k+ b)

k(k+ b) +
∣∣∣Fψ(ξ̄) − Fφ(ξ̄)

∣∣∣2 l, 1−
k(k+ b)

k(k+ b) +
∣∣∣Fψ(ξ̄) − Fφ(ξ̄)

∣∣∣2 l


�

 k(k+ b)

k(k+ b) + k
∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2 l, 1−

k(k+ b)

k(k+ b) + k
∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2 l


=

 k+ b

k+ b+
∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2 l,

∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2
k+ b+

∣∣∣ψ(ξ̄) −φ(ξ̄)∣∣∣2 l


= £U,V(ψ(ξ̄),φ(ξ̄), c).

As a consequence, all the requirements of Theorem 3.1 are met, which indicates F possesses a

unique FP in Z. �
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Abbrevation

FP - fixed point.

MS - metric space.

FMS - fuzzy metric space.

CFP - common fixed point.

BCP - Banach contraction principle.

MIFMS - modified intuitionistic fuzzy metric space.

CVMS - complex valued metric space.

CVFMS - complex valued fuzzy metric space.

CVFbMS - complex valued fuzzy b-metric space.

CVIFMS - complex valued intuitionistic fuzzy metric space.

CVMIFMS - complex valued modified intuitionistic fuzzy metric space.
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