Title: Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type
Author(s): Abebe R. Tufa, H. Zegeye, M. Thuto
Pages: 129-141
Cite as:
Abebe R. Tufa, H. Zegeye, M. Thuto, Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type, Int. J. Anal. Appl., 9 (2) (2015), 129-141.

Abstract


Let H be a real Hilbert space. Let F,K : H → H be Lipschitz monotone mappings with Lipschtiz constants L1and L2, respectively. Suppose that the Hammerstein type equation u + KFu = 0 has a solution in H. It is our purpose in this paper to construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein type equation. The results obtained in this paper improve and extend known results in the literature.


Full Text: PDF

 

References


  1. H. Brezis and F. Browder, Nonlinear integral equations and systems of Hammerstein type, Advances in Math., 18 (1975), 115-147. Google Scholar

  2. H. Brezis and F. Browder, Existence theorems for nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 81 (1975), 73-78. Google Scholar

  3. F. E. Browder, D. G. de Figueiredo and P. Gupta, Maximal monotone operators and a nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 76 (1970), 700- 705. Google Scholar

  4. Felix E. Browder and Chaitan P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 75 (1969), 1347-1353. Google Scholar

  5. C.E. Chidume and N. Djitte, Approximation of solutions of nonlinear integral equations of Hammerstein type, ISRN Mathematical Analysis, 2012(2012), Article ID 169751, 12 pages. Google Scholar

  6. C.E. Chidume and H. Zegeye, Approximation of solutions of nonlinear equations of Hammerstein type in Hilbert space, Proc. Amer. Math. Soc. 133(2004), 851-858. Google Scholar

  7. C. L. Dolph, Nonlinear integral equations of the Hammerstein type,Trans. Amer. Math. Soc. 66 (1949), 289-307. Google Scholar

  8. A. Hammerstein, Nichtlineare integralgleichungen nebst anwendungen, Acta Math. Soc. 54 (1930), 117-176. Google Scholar

  9. Kacurovskii, On monotone operators and convex functionals, Uspekhi Mat. Nauk, 15 (1960), 213-215. Google Scholar

  10. P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912. Google Scholar

  11. G. J. Minty, Monotone operators in Hilbert spaces. Duke Math. J., 29 (1962), 341-346. Google Scholar

  12. D. Pascali and Sburlan, Nonlinear mappings of monotone type, editura academiai, Bucuresti, Romania (1978). Google Scholar

  13. W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications,Yokohama Publishers, Yokohama, Japan (2000). Google Scholar

  14. M. M. Vainberg and R. I. Kacurovskii, On the variational theory of nonlinear operators and equations, Dokl. Akad. Nauk 129(1959), 1199-1202. Google Scholar

  15. H.K.Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65(2002),109-113. Google Scholar

  16. E. H. Zarantonello, Solving functional equations by contractive averaging, Mathematics Research Center Rep, #160, Mathematics Research Centre,Univesity of Wisconsin, Madison, 1960. Google Scholar

  17. H. Zegeye and David M. Malonza, Habrid approximation of solutions of integral equations of the Hammerstein type, Arab.J.Math., 2(2013),221-232. Google Scholar

  18. H. Zegeye and N. Shahzad, Convergence of Mann’s type iteration method for generalized asymptotically nonexpansive mappings, Comput. Math. Appl. 62(2011), 4007-4014. Google Scholar

  19. H. Zegeye and N. Shahzad, Approximating common solution of variational inequality problems for two monotone mappings in Banach spaces, Optim. Lett. 5(2011), 691-704. Google Scholar

  20. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators, Springer-verlag, Berlin(1985). Google Scholar


COPYRIGHT INFORMATION

Copyright © 2020 IJAA, unless otherwise stated.