Title: Characterizations of Classes of Harmonic Convex Functions and Applications
Author(s): Imran Abbas Baloch, Manuel De La Sen, Imdat Iscan
Pages: 722-733
Cite as:
Imran Abbas Baloch, Manuel De La Sen, Imdat Iscan, Characterizations of Classes of Harmonic Convex Functions and Applications, Int. J. Anal. Appl., 17 (5) (2019), 722-733.

Abstract


In this paper, we consider classes of harmonic convex functions and give their special characterizations. Furthermore, we consider Hermite Hadamard type inequalities related to these classes to give some non-numeric estimates of well-known definite integrals.

Full Text: PDF

 

References


  1. D-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables, Appl. Math. Comput. 217 (2011), 9598-9605. Google Scholar

  2. D-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted midpoint formula and higher moments of random variables, Appl. Math. Comput. 232 (2014), 68-75. Google Scholar

  3. S.S. Dragomir, Hermite-Hadamard’s type inequalities for convex funtions of selfadjoint operators in Hilbert spaces, Linear Algebra Appl. 436 (2012), no. 5, 1503-1515. Google Scholar

  4. S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite-Hadamard type inequalities and applications, RGMIA Monographs, 2000. Available online at https://rgmia.org/monographs/hermite hadamard.html. Google Scholar

  5. I. A. Baloch and I. Iscan, Some Hermite-Hadamard type integral inequalities for Harmonically (p,(s,m))-convex functions, J. Inequal. Spec. Funct. 8 (2017), 65-84. Google Scholar

  6. I. A. Baloch, I. Iscan and S. S. Dragomir, Fejer’s type inequalities for Harmonically (s, m)-convex functions, Int. J. Anal. Appl. 12 (2016), 188-197. Google Scholar

  7. I. A. Baloch, I.I¸scan, Some Ostrowski Type Inequalities For Harmonically (s, m)-convex functoins in Second Sense, Int. J. Anal. 2015 (2015), Article ID 672675, 9 pages. Google Scholar

  8. Z. B. Fang and R. Shi, On the(p,h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), Art. ID 45. Google Scholar

  9. ˙I. ˙I¸scan, Hermite-Hadamard type inequaities for harmonically functions, Hacettepe J. Math. Stat. 43 (6) (2014), 935-942. Google Scholar

  10. I. Iscan, Hermite-Hamard type inequalities for harmonically (α, m)-convex functions. arXiv:1307.5402 [math.CA], 2015. Google Scholar

  11. I. Iscan, Hermite-Hadamard type inequaities for p-convex functions, Int. J. Anal. Appl. 11 (2016), 137-145. Google Scholar

  12. C. P. Niculescu and L. E. Persson (2006). Convex functions and their applications, Springer-Verlag, New York. Google Scholar

  13. K.S. Zhang and J.P. Wan, p-convex functions and their properties, Pure Appl. Math. 23(1) (2007), 130-133. Google Scholar

  14. M. E. Gordji, M. R. Delavar and M. De La Sen, On φ-convex functions, J. Math. Inequal. 10 (2016), 173-183. Google Scholar