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Abstract. In this paper, we consider classes of harmonic convex functions and give their special charac-

terizations. Furthermore, we consider Hermite Hadamard type inequalities related to these classes to give

some non-numeric estimates of well-known definite integrals.

1. Introduction

The classical or the usual convexity is defined as follows:

A function f : ∅ 6= I ⊆ R −→ R, is said to be convex on I if inequality

f (tx+ (1− t) y) ≤ tf(x) + (1− t) f(y)

holds for all x, y ∈ I and t ∈ [0, 1].
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A number of papers have been written on inequalities using the classical convexity and one of the most

fascinating inequalities in mathematical analysis is stated as follows

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
, (1.1)

where f : I ⊆ R −→ R be a convex mapping and a, b ∈ I with a ≤ b . Both the inequalities hold in reversed

direction if f is concave. The inequalities stated in (1.1) are known as Hermite-Hadamard inequalities.

For more results on (1.1) which provide new proof, significantly extensions, generalizations, refinements,

counterparts, new Hermite-Hadamard-type inequalities and numerous applications, we refer the interested

reader [1–4,14] and the references therein.

The usual notion of convex function have been generalized in diverse manners. Some of them are the so

called harmonically convex function, harmonically (α,m)-convex function and p-convex function, which are

stated in the definitions below.

Definition 1.1. [9] A function f : I ⊆ R\{0} → R is said to be harmonically-convex function on I if

f

(
xy

tx+ (1− t)y

)
≤ tf (y) + (1− t) f (x)

holds for all x, y ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be harmonically concave.

Definition 1.2. [10] A function f : I ⊆ R\{0} → R is said to be harmonically (α,m)-convex function on

I if

f

(
mxy

mty + (1− t)x

)
≤ tαf (x) +m (1− tα) f (y)

holds for all x, y ∈ I and t ∈ [0, 1], where α ∈ [0, 1] and m ∈ (0, 1]. If the inequality is reversed, then f is

said to be harmonically (α,m)-concave.

Definition 1.3. [11, 13] Let I ⊆ (0,∞) be a real interval. A function f : I → R is p-convex, where

p ∈ R/{0} if

f
(

[txp + (1− t)yp]
1
p

)
≤ tf (y) + (1− t) f (x)

holds for all x, y ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be p-concave.

2. Main Results

The convexity of functions and their generalized forms, play an important role in many fields such as

Economic Science, Biology, Optimization. In recent years, several extensions, refinements, and generaliza-

tions have been considered for classical convexity. In [7], I. A. Baloch and İ. İ şcan defined a new class of

functions which is defined as follow:
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Definition 2.1. [6, 7] A function f : I ⊆ R\{0} → R is said to be harmonically (s,m)-convex function on

I if

f

(
mxy

mty + (1− t)x

)
≤ tsf (x) +m (1− t)s f (y)

holds for all x, y ∈ I and t ∈ [0, 1], where s ∈ (0, 1] and m ∈ (0, 1]. If the inequality is reversed, then f is

said to be harmonically (s,m)-concave.

Definition 2.2. [5] A function f : I ⊆ R\{0} → R is said to be harmonically (p, (s,m))-convex function,

where p ∈ R/{0}, s,m ∈ (0, 1], if

f

(
mxy

[t(my)p + (1− t)xp]
1
p

)
≤ tsf(x) +m(1− t)sf(y),

for all x, y ∈ I with my ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be harmonically

(p, (s,m))-concave.

Now, first of all, we give an example of harmonic convex function which is not a convex function.

x

y

f(x) = ln(x)

Here, some more examples of harmonic convex functions.

x

y

f(x) =
√
x
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x

y

f(x) = 1
x2

x

y

f(x) =


1−x
x if 0 < x ≤ 1

0 if 1 < x ≤ 2

x−2
x if x > 2

Lemma 2.1. Let I ⊆ R/{0} be a real interval. Define I−1 = {y ∈ R, y = 1
x , x ∈ I}.

A function f : I → R is harmonically convex if and only if g : I−1 → R is convex, where g is defined as

g(y) = f( 1
y ).

Proof. Let f be harmonically convex function on I and consider a function g : I−1 → R defined as g(y) =

f( 1
y ). Now, ∀ y1, y2 ∈ I−1, ∃ x1, x2 ∈ I such that y1 = 1

x1
and y2 = 1

x2

g(ty1 + (1− t)y2) = f

(
1

ty1 + (1− t)y2

)
= f

(
1

t 1
x1

+ (1− t) 1
x2

)
= f

(
x1x2

tx2 + (1− t)x1

)
≤ tf(x1) + (1− t)f(x2)

= tf

(
1

y1

)
+ (1− t)f

(
1

y1

)
+ tg(y1) + (1− t)g(y2).
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From above, we conclude the proof. �

Lemma 2.2. [12] Let f be a real function defined on an interval I ⊆ R. Then, f is convex if and only if

∣∣∣∣∣∣∣∣∣
1 x f(x)

1 y f(y)

1 z f(z)

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣∣∣∣ ≥ 0

for all three distinct points x, y, z of I; equivalently, if and only if

∣∣∣∣∣∣∣∣∣
1 x f(x)

1 y f(y)

1 z f(z)

∣∣∣∣∣∣∣∣∣ ≥ 0 (2.1)

for all x < y < z in I.

Lemma 2.3. Let I ⊆ (0,∞) and I−1 has a similar definition as given in Lemma 2.1. A function f : I → R

is harmonically convex if and only if h : I → R is convex, where h is defined as h(z) = zf(z) .

Proof. From the Lemma 2.1, a function f is harmonically convex function on I if and only if g(y) = f( 1
y ) is

convex on I−1 and by Lemma 2.2, a function g(y) is convex if and only if∣∣∣∣∣∣∣∣∣
1 y1 g(y1)

1 y2 g(y2)

1 y3 g(y3)

∣∣∣∣∣∣∣∣∣ ≥ 0

for all y1, y2, y3 ∈ I−1 such that y1 < y2 < y3. Equivalently∣∣∣∣∣∣∣∣∣
1 y1 f( 1

y1
)

1 y2 f( 1
y2

)

1 y3 f( 1
y3

)

∣∣∣∣∣∣∣∣∣ ≥ 0

for all y1, y2, y3 ∈ I−1 such that y1 < y2 < y3.

Equivalently

∣∣∣∣∣∣∣∣∣
x1 1 x1f(x1)

x2 1 x2f(x2)

x3 1 x3f(x3)

∣∣∣∣∣∣∣∣∣ ≥ 0
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for all x1, x2, x3 ∈ I such that x1 > x2 > x3. Now, by interchanging the first and third row, first and second

column, and relabeling x3 = z1, x2 = z2 and x1 = z3, we arrive at∣∣∣∣∣∣∣∣∣
1 z1 z1f(z1)

1 z2 z2f(z2)

1 z3 z3f(z3)

∣∣∣∣∣∣∣∣∣ ≥ 0

for all z1, z2, z3 ∈ I such that z1 < z2 < z3, which is equivalent to the convexity of the function h(z) = zf(z)

on I.

�

Proposition 2.1. [9] Let I ⊆ R/{0} be a real interval and f : I → R is a function, then ;

1) If I ⊂ (0,∞) and f is convex and nondecreasing function, then f is a harmonically convex function.

2) If I ⊂ (0,∞) and f is a harmonically convex and nonincreasing function, then f is convex function.

3) If I ⊂ (−∞, 0) and f is a harmonically convex and nondecreasing function, then f is convex function.

4) If I ⊂ (−∞, 0) and f is convex and nonincreasing function, then f is a harmonically convex function.

Proof. The proof is immediate by following inequality

0 ≤ t(1− t)(x− y)2

for all x, y ∈ I. Equivalently,

xy

tx+ (1− t)y
≤ ty + (1− t)x

for all x, y ∈ (0,∞), and

xy

tx+ (1− t)y
≥ ty + (1− t)x

for all x, y ∈ (−∞, 0). �

Examples:

• Let f : (0,∞) → R, f(x) = x and g : (−∞, 0) → R, g(x) = x, then f is a harmonically convex

function and g is a harmonically concave function.

• Let f : (0,∞)→ R,

f(x) =

 x, 0 < x < 2

4− 4
x , x ≥ 2

is harmonically convex function on (0,∞), since xf(x) is convex on (0,∞).

• Let f : (0,∞)→ R,

f(x) =
(x− 1)2 + 1

x

is a harmonically convex function on (0,∞), since xf(x) is convex on (0,∞).
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• By the Proposition 2.1, increasing convex function is harmonically convex. This means that ex is

harmonically convex.

The following result of the Hermite-Hadamard type holds for class of harmonically convex functions.

Theorem 2.1. [9] Let f : I ⊆ R/{0} → R be harmonically convex and a, b ∈ I with a < b. If f ∈ L[a, b],

then following inequalities hold

f

(
2ab

a+ b

)
≤ (ab)

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
. (2.2)

The above inequalities are sharp.

Remark 2.1. Since, f(x) = lnx is harmonic convex on (0,∞), therefore by inequality (2.2) we have

2ab

a+ b
≤ e

[
ab

ba

] 1
b−a

≤
√
ab

Now,using Lemma 2.3, we get following interesting result.

Theorem 2.2. Let I ⊆ (0,∞) be a real interval. If function f : I → R is harmonically convex and a, b ∈ I

with a < b such that f ∈ L[a, b], then the following inequalities hold

(
a+ b

2

)
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

xf(x)dx ≤ af(a) + bf(b)

2
. (2.3)

Proof. Since, f(x) is harmonically convex on I, therefore by Lemma 2.3 xf(x) is convex on I. Hence, by

the use of inequality (1.1), we get required result. �

Remark 2.2. Since, f(x) = lnx is harmonic convex on (0,∞), therefore by inequality (2.3) we have

(
a+ b

2

) a+b
2

≤ e−
a+b
2 .

[
bb

2

aa2

] 1
b−a

≤
√
aabb

Theorem 2.3. [8] Let I ⊆ R be a real interval. If function f : I → R is p-convex, where p ∈ R/{0} and

a, b ∈ I with a < b such that f ∈ L[a, b], then following inequalities hold

f

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

∫ b

a

f(x)

x1−p
dx ≤ f(a) + f(b)

2
. (2.4)

Lemma 2.4. Let I ⊆ R/{0} be a real interval and I−1 has similar definition as given in Lemma 2.1. A

function f : I → R is harmonically p-convex if and only if g(y) = f( 1
y ) is p-convex.
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Proof. Let f be a function on I and consider a function g : I−1 → R defined as g(y) = f( 1
y ), is p-convex

function. Now, ∀ y1, y2 ∈ I−1, ∃ x1, x2 ∈ I such that y1 = 1
x1

and y2 = 1
x2

f

(
x1x2

[txp2 + (1− t)xp1]
1
p

)
= f

(
1

[typ1 + (1− t)yp2 ]
1
p

)
= g([typ1 + (1− t)yp2 ]

1
p )

≤ tg(y1) + (1− t)g(y2)

= tf

(
1

y1

)
+ (1− t)f

(
1

y2

)
= tf(x1) + (1− t)f(x2)

From above, we conclude the proof. �

Lemma 2.5. Let I ⊆ R be a real interval. A function f : I → R is a p-convex function if and only if∣∣∣∣∣∣∣∣∣
1 xp f(x)

1 yp f(y)

1 zp f(z)

∣∣∣∣∣∣∣∣∣ ≥ 0

for all x, y, z ∈ I such that x < y < z.

Lemma 2.6. Let I ⊆ (0,∞) be a real interval and I−1 has similar definition as given in Lemma 2.1. A

function f : I → R is harmonically p-convex if and only if h : I → R defined by h(z) = zpf(z) is convex.

Proof. From the Lemma 2.4, a function f is a harmonically p-convex function on I if and only if g(y) = f( 1
y )

is p-convex and by Lemma 2.5, a function g(x) is p-convex if and only if∣∣∣∣∣∣∣∣∣
1 yp1 g(y1)

1 yp2 g(y2)

1 yp3 g(y3)

∣∣∣∣∣∣∣∣∣ ≥ 0

for all y1, y2, y3 ∈ I such that y1 < y2 < y3. Equivalently

∣∣∣∣∣∣∣∣∣
1 1

xp
1

f(x1)

1 1
xp
2

f(x2)

1 1
xp
3

f(x3)

∣∣∣∣∣∣∣∣∣ ≥ 0

for allx1, x1, x1 ∈ I such that x1 > x2 > x3. Now, by the multiplying the ith row of the determinant by xpi ,

interchanging the first and third row, first and second column, and relabeling x3 = z1, x2 = z2 and x1 = z3,

we arrive at
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∣∣∣∣∣∣∣∣∣
1 zp1 zp1f(z1)

1 zp2 zp2f(z2)

1 zp3 zp3f(z3)

∣∣∣∣∣∣∣∣∣ ≥ 0

for all z1, z2, z3 ∈ I such that z1 < z2 < z3, which is equivalent to the convexity of the function h(z) =

zpf(z). �

Proposition 2.2. Let I ⊆ R/{0} be a real interval, p ∈ R/{0} and f : I → R is a function, then;

• If p ≥ 1 and harmonically convex and nondecreasing function, then f is harmonically p-convex

function.

• If p ≥ 1 and harmonically p-convex and nonincreasing function, then f is harmonically convex

function.

• If p ≥ 1 and harmonically p-concave and nondecreasing function, then f is harmonically concave

function.

• If p ≥ 1 and harmonically concave and nonincreasing function, then f is harmonically p-concave

function.

• If p ≤ 1 and harmonically p-convex and nondecreasing function, then f is harmonically convex

function.

• If p ≤ 1 and harmonically convex and nonincreasing function, then f is harmonically p-convex

function.

• If p ≤ 1 and harmonically concave and nondecreasing function, then f is harmonically p-concave

function.

• If p ≤ 1 and harmonically p-concave and nonincreasing function, then f is harmonically concave

function.

Proof. Since f(x) = xp, p ∈ (−∞, 0) ∪ [1,∞), is convex function on (0,∞) and f(x) = xp, p ∈ (0, 1], is a

concave function on (0,∞), therefore the proof is obvious from the following power mean inequalities

[txp + (1− t)yp]
1
p ≥ tx+ (1− t)y, p ≥ 1

,

which is equivalent to

xy

[txp + (1− t)yp]
1
p

≤ xy

tx+ (1− t)y
, p ≥ 1

,
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and

[txp + (1− t)yp]
1
p ≤ tx+ (1− t)y, p ≤ 1

,

which is equivalent to

xy

tx+ (1− t)y
≤ xy

[txp + (1− t)yp]
1
p

, p ≥ 1,

for all x, y ∈ (0,∞) and t ∈ [0, 1]. �

Similar to inequality given in Theorem 2.1, we proved the result for harmonically p-convex functions as

given below

Theorem 2.4. [5] Let I ⊆ R/{0} be a real interval and f : I → R be harmonically p-convex, a, b ∈ I with

a < b. If f ∈ L[a, b], then following inequalities hold

f

(
2

1
p ab

[ap + bp]
1
p

)
≤ p(ab)p

bp − ap

∫ b

a

f(x)

xp+1
dx ≤ f(a) + f(b)

2
. (2.5)

Also, by using Lemma 2.6 and Theorem 3, we have another interesting result as

Theorem 2.5. Let I ⊆ (0,∞) be a real interval and I−1 has similar definition as given in Lemma 2.1. If

function f : I → R is harmonically p-convex, where p ∈ R/{0} and a, b ∈ I with a < b such that f ∈ L[a, b],

then following inequalities hold(
ap + bp

2

)
f

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

∫ b

a

f(x)

x1−2p
dx ≤ apf(a) + bpf(b)

2
. (2.6)

3. Applications

• we have relation between Harmonic, Logarithmic and Arithmetic means as follow

2ab

a+ b
≤ ab

b− a
(ln b− ln a) ≤ a+ b

2
(HLA inequality)

whose proof is a direct consequence of the inequality of Theorem 2.1 for f(x) = x, ∀x ∈ (0,∞).

Furthermore, we have following consequence of the inequality of Theorem 2 for f(x) = x, ∀x ∈ (0,∞).(
a+ b

2

)2

≤ 1

3
(a2 + ab+ b2) ≤ a2 + b2

2
.

Even in more general setting for p ∈ R/{0, 1}, we have

2
1
p ab

[ap + bp]
1
p

≤ p(ab)p

bp − ap
(
b1−p − a1−p

1− p
) ≤ a+ b

2
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which is a direct consequence of inequality of Theorem 2.4 and we have

(
ap + bp

2

) p+1
p

≤ p

bp − ap
.
b2p+1 − a2p−1

2p+ 1
≤ ap+1 + bp+1

2
.

which is a direct consequence of inequality of Theorem 5 for f(x) = x , ∀x ∈ (0,∞).

• For a, b ∈ (0,∞) and a 6= b, we have

e
2ab
a+b ≤ ab

b− a

∫ b

a

ex

x2
dx ≤ ea + eb

2
,

whose proof is a direct consequence of inequality of Theorem 2.1 and we have

(
a+ b

2
).e

a+b
2 ≤ (1− a)ea + (b− 1)eb

b− a
≤ aea + beb

2
.

which is a direct consequence of inequality of Theorem 2 for f(x) = ex which is not only a harmonic

convex function, even it is a harmonic p-convex function too. Therefore, for p ≥ 1, we have

e

2
1
p ab

[ap+bp]
1
p ≤ p(ab)p

bp − ap

∫ b

a

ex

xp+1
dx ≤ ea + eb

2
.

From above discussion, it is easy to conclude that we have a good estimate of
∫ b
a
ex

xn dx ∀n ∈ N

• Since f(x) = x2ex
2

is non-decreasing convex function on (0, 1), so it is harmonic convex function.

Therefore, by using inequality of Theorem 2.1 for a, b ∈ (0,∞) and a 6= b, we have(
2ab

a+ b

)2

e(
2ab
a+b )

2

≤ ab

b− a

∫ b

a

ex
2

dx ≤ a2ea
2

+ b2eb
2

2

for all a, b ∈ (0,∞).

• Since, f(x) = sin(−x) is convex and non-decreasing function in (0, π2 ), therefore it is harmonic convex

∀x ∈ (0, π2 ). Therefore, by using inequality of Theorem 2.1 for a, b ∈ (0,∞), we have

sin a+ sin b

2
≤ ab

b− a

∫ b

a

sinx

x2
dx ≤ sin(

2ab

a+ b
)

Similarly, we can estimate
∫ b
a

sin x
xn dx and

∫ b
a

cos x
xn dx for all n ∈ N such that a, b ∈ (0,∞).

4. Conclusion

The harmonic convexity of a function is the basis for many inequalities in mathematics as you may see

in this research paper. Furthermore, harmonic convexity provide an analytic tool to estimate several known

definite integral like
∫ b
a
ex

xn dx,
∫ b
a
ex

2

dx,
∫ b
a

sin x
xn dx and

∫ b
a

cos x
xn dx ∀n ∈ N, where a, b ∈ (0,∞). We have

discussed several important aspect of harmonic p-convex functions and encourage the interested researcher

to explore more interesting results for this class of functions.
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