Title: Fixed Points for Triangular α−Admissible Geraghty Contraction Type Mappings in Partial b-Metric Spaces
Author(s): Haitham Qawaqneh, Mohd Salmi Noorani, Wasfi Shatanawi, Habes Alsamir
Pages: 208-225
Cite as:
Haitham Qawaqneh, Mohd Salmi Noorani, Wasfi Shatanawi, Habes Alsamir, Fixed Points for Triangular α−Admissible Geraghty Contraction Type Mappings in Partial b-Metric Spaces, Int. J. Anal. Appl., 17 (2) (2019), 208-225.

Abstract


In this paper, we introduce the notion of generalized C−class functions for Geraghty contraction type mappings on a set X. We utilize our new notion to prove fixed point results in the setting of triangular weak α−admissible mappings with respect to η in Partial b-Metric Spaces. Our results modify and improve many exciting results in the literature. Also, we introduce an example and an application to show the validity of our main result.

Full Text: PDF

 

References


  1. T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory Appl., 2013 (2013), Art. ID 19. Google Scholar

  2. A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Mathematica Slovaka, (2013). Google Scholar

  3. S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for (α, β) − (ψ, φ)−contractive mappings, Filomat, 28 (2014), 635-647. Google Scholar

  4. A. H. Ansari, Note on ϕ − ψ− contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, (2014), 377-380. Google Scholar

  5. A.H Ansari, W. Shatanawi, A. kurdi, G. Maniu, Best promixity points in complete metric spaces with (P)−property via C-class fuctions, J. Math. Anal., 7 (2016), 54-67. Google Scholar

  6. A. H. Ansari, J. Kaewcharoen, C-class functions and fixed point theorems for generalized α-η-ψ-ϕ-F-contraction type mappings in α-η-complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4177-4190. Google Scholar

  7. I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37. Google Scholar

  8. S. Banach, Sur Les operations ´ dans les ensembles abstraits et leur application aux ´equations int´egrals, Fund. Math, 3 (1922), 133-181. Google Scholar

  9. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen. 57 (2000), 31-37. Google Scholar

  10. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11. Google Scholar

  11. S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46 (1998), 263-276. Google Scholar

  12. P. Das, A fixed point theorem in a generalized metric space, Soochow J. Math., 33 (2007) 33-39. Google Scholar

  13. H. Isik, A. H. Ansari,S. Chandok, Common fixed points for (ψ, f, α, β)−weakly contractive mappings in generalized matric space via new functions, Gazi Univ. J. Sci., 4 (2015),703-708. Google Scholar

  14. N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued a α − eta − ψ−contractive mappings, Fixed Point Theory Appl., 2013 (2013), Art. ID 212. Google Scholar

  15. N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α−complete metric spaces with applications, Abstr. Appl. Anal., 2014 (2014), Article ID 280817. Google Scholar

  16. E. Karapinar, B. Samet, Generalized α−ψ−contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., (2012), Article ID 793486. Google Scholar

  17. E. Karapinar, P. Kumam and P. Salimi, On α − ψ−Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), Art. ID 94. Google Scholar

  18. E. Karapinar, α−ψ−Geraghty contraction type mappings and some relatead fixed point results, Filomat, 28 (2014), 37-48. Google Scholar

  19. M. S. Khan, A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste., 8 (1976), 69-72. Google Scholar

  20. M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9. Google Scholar

  21. S.G Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Application. Ann. New York Acad. Sci., 728 (1994), 183-197. Google Scholar

  22. D. K. Patel, Th. Abdeljawad, D. Gopal, Common fixed points of generalized Meir-Keeler α-contractions, Fixed Point Theory Appl., 2013 (2013), Art. ID 260. Google Scholar

  23. H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Alsamir, Common fixed points for pairs of triangular (α)−admissible mappings, J. Nonlinear Sci. Appl., 10 (2017), 6192-6204. Google Scholar

  24. H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, K. Abodayeh, H. Alsamir, Fixed point for mappings under contractive condition based on simulation functions and cyclic (α, β)−admissibility, J. Math. Anal., 9 (2018), 38-51. Google Scholar

  25. H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, Fixed Point Results for Geraghty Type Generalized F −contraction for Weak alpha-admissible Mapping in Metric-like Spaces, Eur. J. Pure Appl. Math., 11 (2018), 702-716. Google Scholar

  26. H. Qawaqneh, M.S.M. Noorani, W. Shatanawi, Common Fixed Point Theorems for Generalized Geraghty (α, ψ, φ)-Quasi Contraction Type Mapping in Partially Ordered Metric-like Spaces, Axioms, 7 (2018), Art. ID 74. Google Scholar

  27. H. Qawaqneh, M.S.M. Noorani, W. Shatanawi, Fixed Point Theorems for (α, k, θ)−Contractive Multi-Valued Mapping in b−Metric Space and Applications, Int. J. Math. Comput. Sci., 14 (2018), 263-283. Google Scholar

  28. H. Qawaqneh, M.S.M. Noorani, W. Shatanawi, H. Alsamir, Some Fixed Point Results for the Cyclic (α, β) − (k, θ)−MultiValued Mappings in Metric Space, International Conference on Fundamental and Applied Sciences (ICFAS2018), 2018. Google Scholar

  29. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized (ψ, ϕ)scontractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), Art. ID 159. Google Scholar

  30. P. Salimi, A. Latif and N. Hussain, Modified a α − ψ−contractive mappings with applications, Fixed Point Theory Appl. 2013 (2013), Art. ID 151. Google Scholar

  31. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for a α − ψ−contractive type mappings, Nonlinear Anal., Theory Methods Appl., 75 (2012), 2154-2165. Google Scholar

  32. W. Sintunavarat, Nonlinear integral equations with new admissibility types in b−metric spaces, J. Fixed Point Theory Appl., 18 (2016), 397-416. Google Scholar

  33. W. Shatanawi and M. Postolache, common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), Art. ID 60. Google Scholar

  34. W. Shatanawi, M. Noorani, H. Alsamir and A. Bataihah, Fixed and common fixed point theorems in partially ordered quasi-metric spaces, J. Math. Computer Sci., 16 (2016), 516-528. Google Scholar

  35. S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11(2014), 703-711. Google Scholar